Université de M'sila

Faculté de : Technologie

Socle commun

Série de TD N° 02

EXERCICE 01: Interactions de charges:

I : Interaction de deux charges

Deux charges $Q_1(0, -d, 0) = q$, $Q_2(0, d, 0) = 2q$ (l'unité des distances est le cm)

 $\mathbf{1}^{\circ}$ - Quelle est la force qu'exerce Q_1 sur Q_2 ?

II: Principe de superposition

Trois charges ponctuelles $Q_1(0,0,0) = 2q$, $Q_2(0,a,0) = 4q$ (l'unité des distances est le cm)

 ${f 2}^\circ$ - Quelle est la force qu'exercent ${m Q}_1$ et ${m Q}_2$ sur ${m Q}_3({m 0},{m 0},{m 3}a)={m q}_0$? Représenter là

EXERCICE 02: Champ électrostatique

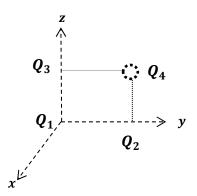
Deux charges identiques, $Q_1=q>0$ située au point A(0,-d,0) et $Q_2=q>0$ située au point B(0,d,0).

- 1° Quelle est le champ crée, par ces deux charges, au point $P(0,0,z_0)$?
- **2°** Vérifier la limite pour $z_0 \gg d$. Qu'est-ce que vous constatez ?
- 2° Que devienne la valeur du champ si les charges sont opposées $Q_1 = -q$ et $Q_2 = q$?
- $\mathbf{4}^{\circ}$ Vérifier la limite pour $\mathbf{z_0}\gg 2$. Qu'est-ce que vous constatez ? Que représente cette configuration ?

EXERCICE 03: SUPPLÉMENTAIRE

Une tige très mince longue de "l", chargée uniformément de distribution " λ ", s'étend le long de \overline{oy} dont l'une de ces extrémités est à l'origine.

1°- Quelle est le champ créé par la tige au point $P(x_0, 0, 0)$ situé à " x_0 " de l'origine ?

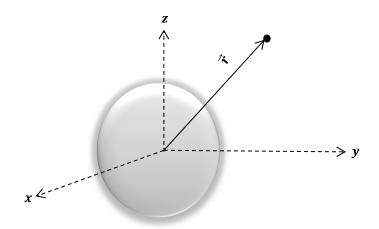

EXERCICE 04: D.M

On considère 3 charges ponctuelles $Q_1(0,0,0)=2\mu\mathcal{C}$, $Q_2(0,a,0)=8\mu\mathcal{C}$, $Q_3(0,0,a)=-4\mu\mathcal{C}$ (l'unité des distances est le cm).

Si ces charges sont placées aux sommets d'un triangle rectangle isocèle de côté "a".

1°- Quelle est la force due à Q_1 , Q_2 et Q_3 sur $Q_4(0,a,a) = -6\mu C$?

2°- Quelle est la force due à ces 4 charges au centre de ce carré formé?



EXERCICE 05:

Une sphère de rayon "a" chargée uniformément en volume avec une distribution " ρ "

1°- Calculer directement le champ en tout point de l'espace?

2°- Quel est le champ si toute la charge est concentrée au centre de la sphère ?

