

جامعة محمد بوضياف - المسيلة Université Mohamed Boudiaf - M'sila University of Mohamed Boudiaf - M'sila

Specification et Verification Formelle Chapter 02: Logical Notations and Set Theory basics

Dr. Hichem Debbi

hichem.debbi@gmail.com

March 20, 2022

Dr. Hichem Debbi

Specification et Verification Formelle

March 20, 2022 1/19

Basic

Relations

References

Quantifiers

Logical notation

Basic

Relations

Symbole	Signification	Syntaxe	Définition	
¥	pour tout	$\forall Id_liste \cdot (Pr\acute{e}dicat)$	$\exists x \cdot (P) \stackrel{def}{=} \neg \forall x \cdot (\neg P)$	
E	il existe	$\exists Id_liste \cdot (Pr\acute{e}dicat)$		

Sets Predicates

Logical notation

Basic

Relations

Basic

Relations

	Signification	Définition
U	union	$s_1 \cup s_2 \stackrel{def}{=} \{x \mid x \in t \land (x \in s_1 \lor x \in s_2)\}$
Π	intersection	$s_1 \cap s_2 \stackrel{def}{=} \{x \mid x \in t \land (x \in s_1 \land x \in s_2)\}$
	différence d'ensembles	$s_1 - s_2 \stackrel{def}{=} \{x \mid x \in t \land (x \in s_1 \land x \notin s_2)\}$

Properties

Logical notation

Basic

Relations

References

$$s \subseteq s$$

$$s \subseteq t \land t \subseteq u \Rightarrow s \subseteq u$$

$$s \subseteq t \land t \subseteq s \Rightarrow s = t$$

(réflexivité) (transitivité) (anti-symétrie)

Basic

Relations

References

they represent a set of couples

Relations are useful in specifying invariants, properties...

Symbole	Signification	Définition	
\leftrightarrow	relation entre deux ensembles	$E_1 \leftrightarrow E_2 \stackrel{def}{=} \mathbb{P}(E_1 \times E_2)$	

Relations

- Basic
- Relations
- References

E٢	$r E^2_A$					
	b		→B			
	Condition	Expression	\bigcup	Définition		
	$r \in E_1 \leftrightarrow E_2$	dom(r)	$\{x\mid x\in$	$E_1 \land \exists y \cdot (y \in E_2 \land (x \mapsto y) \in r)\}$		
	$r \in E_1 \leftrightarrow E_2$	ran(r)	$\{y\mid y\in$	$E_2 \land \exists x \cdot (x \in E_1 \land (x \mapsto y) \in r)\}$		
	$r \in E_1 \leftrightarrow E_2$ et $F \subseteq E_1$	r[F]	$\{y \mid y \in .$	$E_2 \land \exists x \cdot (x \in F \land (x \mapsto y) \in r)\}$		

Relations - Example

References

Basic

Relations

References

- $R1 : E1 \leftrightarrow E2$ $R1 = \{(a, A), (a, B), (b, B)\} = \{a \mapsto A, a \mapsto B, b \mapsto B\}$ ■ $R2 : E2 \leftrightarrow E3R2 = \{(A, x), (A, y), (B, y), (C, z)\}$ ■ $dom(R1) = \{a, b\}$ $ran(R1) = \{A, B\} codomain(R1) =$
- $dom(R1) = \{a, b\} \quad ran(R1) = \{A, B\} codomain(R1) = \{A, B, C\} \quad R1[b, c] = \{B\}$

$$\blacksquare R1; R2 = \{(a, x), (a, y), (b, y)\}$$

 $\blacksquare R1^{-1} = \{ (A, a), (B, a), (B, b) \}$

Basio

Relations

References

Relations - Example

Relations

Basic

Relations

References

- $E \lhd R$ Restriction of R to domain EExample: $\{b, c\} \lhd R1 = \{b \mapsto B\}$
- $E \triangleright R$ Restriction of R to co-domain EExample: $R1 \triangleright \{B, C\} = \{a \mapsto B, b \mapsto B\}$
- $\blacksquare E \lhd \lhd R \qquad \text{Anti-restriction of } \mathsf{R} \text{ to domain } E \\ \text{Example: } \{b, c\} \lhd \lhd R \mathsf{1} = \{a \mapsto A, a \mapsto B\}$
- $E \triangleright \triangleright R$ Anti-restriction of R to co-domain EExample: $\{b, c\} \triangleright \triangleright R1 = \{a \mapsto A, a \mapsto B\}$

Fonctions

Logical notation

Basic

- Relations
- References
- Functions are relations, in which each element of the domain is associated to one and only one element of the co-domain.
- Let *A* and *B* be two sets. A function *F* from *A* to *B* has the following notation: $F \rightarrow B$
- *F* affect exactly one element of *B*, denoted $F(a) \in B$, to $a \in A$, and this for every $a \in A$.
- A is called the domain, and B is the co-domain.
- b is the image of a by F
- a is the pre-image of b

Specification et verification Formelle

Fonctions Examples

Logical notation

Basic

Relations

References

Specification et Verification Formelle

Fonctions types

Logical notation

Basi

Relations

References

Fonctions types

small-corne

Logical notation

Basic

Relations

Fonctions

Logical notation

Basic

Relations

- Injective: Every member of A has its unique matching member in B
- Surjective: Every member of *B* has at least on matching member in *A* or The range of function is equal to co-domain.
- Bijective: Every member of *B* has exactly on matching member in *A*

Basic

- The B-Book: Assigning Programs to Meanings, J. R. Abrial
- Specification en B Support de cours Ecole des Jeunes Chercheurs en Programmation EJCP 2007

