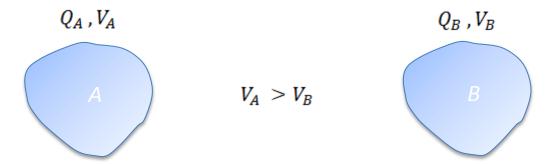
Bases de l'électrocinétique (Chapitre 3)

Physique 2

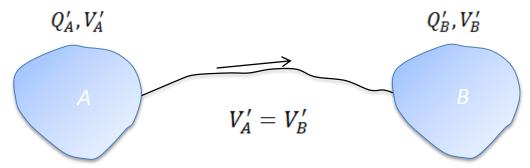
H. Latelli

Département de physique Laboratoire de Physique et Chimie des Matériaux Equipe: Modélisation et Simulation des Matériaux

1. Rupture d'un équilibre électrostatique → courant électrique



Si on relie A et B par un fil conducteur,

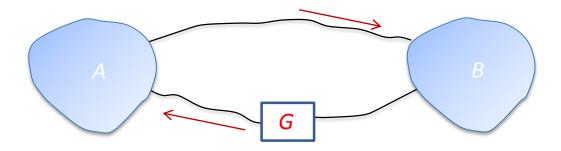


Lors de ce mouvement, la charge totale des conducteurs A et B se conserve: :

$$Q_A+Q_B=Q_A'+Q_B'$$
 $\Delta Q_A=Q_A'-Q_A$, $\Delta Q_B=Q_B'-Q_B$ $-\Delta Q_A=\Delta Q_B$

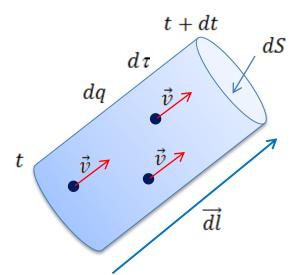
 $V_A > V_B \rightarrow$ diminution des charges + ou à une augmentation des charges – sur A.

Obtention d'un courant permanent :



Le générateur ne crée pas de charges, il les fait circuler tout en maintenant constante la DDP entre ses bornes.

2. Intensité du courant électrique



$$i = \frac{dq}{dt}$$

$$[i] = \frac{[q]}{[t]} = \frac{C}{s} = Amp\`ere (A)$$

Par convention, le sens du courant est le sens du vecteur $q\vec{v}$:

$$q < 0$$
 , les électrons :

$$q > 0$$
 , les cations :

$$\begin{array}{ccc}
 & i & \vec{v} \\
 & i & \vec{v}
\end{array}$$

3. Vecteur densité de courant

$$dq =
ho \, d au$$

Densité vol.
de charges

$$\overrightarrow{dl} = \overrightarrow{v} dt$$

$$d\tau = \overrightarrow{dl} \cdot \overrightarrow{dS} = \overrightarrow{v} dt \cdot \overrightarrow{dS}$$

$$d^2q = \rho \ \vec{v}. \overrightarrow{dS} \, dt$$

$$\vec{J} = \rho \ \vec{v}$$

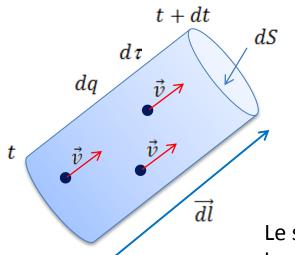
$$[j] = [\rho][v] = \frac{C}{m^3} \frac{m}{s} = \frac{A}{m^2}$$

$$d^{2}q = \vec{J}. \overrightarrow{dS} dt$$

$$\frac{d^{2}q}{dt} = d\left(\frac{dq}{dt}\right) = \vec{J}. \overrightarrow{dS}$$

$$di = \vec{J}. \overrightarrow{dS}$$

$$i = \iint_{\mathcal{S}} \vec{J} \cdot \overrightarrow{dS}$$



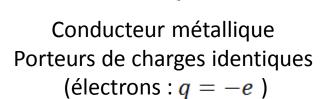
Si *n* est le nombre de porteurs de charges mobiles par Unité de volume,

$$\rho = n q$$

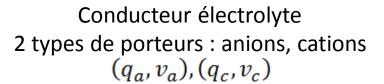
$$\vec{J} = \rho \, \vec{v} = n \, q \, \vec{v}$$

Le sens de \vec{J} est le sens du vecteur $q\vec{v}$. D'où \vec{J} et i ont le même sens.

$$\vec{J} = \rho \, \vec{v} = n \, q \, \vec{v}$$



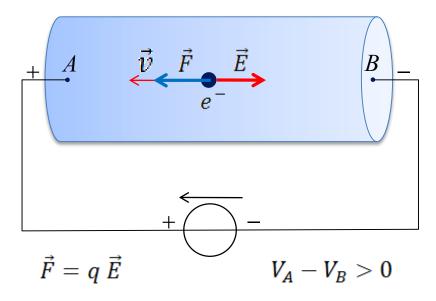
$$\vec{J} = \rho \, \vec{v} = -n \, e \, \vec{v}$$



$$\vec{J} = \sum_{i=1}^{N} n_i \ q_i \ \vec{v}_i$$

$$\vec{J} = n_a \, q_a \, \vec{v}_a + n_c \, q_c \, \vec{v}_c$$

4. Loi d'Ohm microscopique



Conducteur métallique : q = -e

$$ec{f} = -K \ ec{v}$$
 , $K > 0$ (Force de frottement)

$$\sum_{i} \vec{F}_{i} = \vec{F} + \vec{f} = m \frac{d\vec{v}}{dt}$$

Lorsque le régime stationnaire est atteint

$$\rightarrow \vec{v} = \overrightarrow{Cte}$$

$$\vec{F} + \vec{f} = \vec{0}$$

$$q \vec{E} - K \vec{v} = \vec{0} \rightarrow \vec{v} = \frac{q}{K} \vec{E}$$

La quantité q/K est appelée mobilité des porteurs de charges: $\mu = \frac{q}{K}$

$$\vec{v} = \mu \vec{E}$$

D'autre part, nous avons trouvé que :

$$\vec{J} = n \, q \, \vec{v} = n \, q \, \mu \, \vec{E}$$

La quantité $n q \mu$ est appelée : conductivité du milieu :

$$\gamma = n \ q \ \mu$$
 , $(\gamma > 0)$

D'où:

$$\vec{J} = \gamma \vec{E}$$

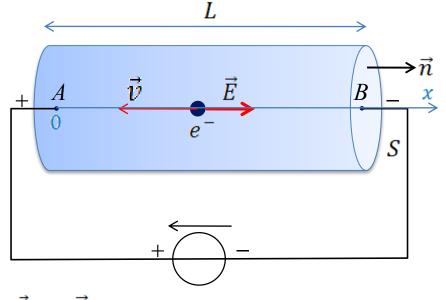
Loi d'Ohm microscopique

L'inverse de la conductivité est appelé : résistivité. $\rho_r = \frac{1}{\gamma}$

$$\rho_r(Cu) \approx 1.7 \times 10^{-8} \Omega. \text{ m}$$

 $\rho_r(Al) \approx 2.9 \times 10^{-8} \Omega. \text{ m}$

5. Loi d'Ohm macroscopique



$$\vec{J} = \gamma \vec{E}$$

$$i = \iint_{S} \vec{J} \cdot \vec{dS} = \iint_{S} \gamma \vec{E} \cdot \vec{dS}$$

$$\overrightarrow{dS} = \overrightarrow{n} \cdot dS$$

$$i = \iint_{S} \gamma \vec{E} \cdot \vec{n} \cdot dS = \gamma \cdot E \cdot S$$

$$\vec{E} = -\overline{grad(V)}$$

$$\vec{E} = -\left(\frac{\partial V}{\partial x}\vec{i} + \frac{\partial V}{\partial y}\vec{j} + \frac{\partial V}{\partial z}\vec{k}\right)$$

$$\vec{E} // (x'x) \rightarrow E = -\frac{dV}{dx} \rightarrow dV = -E dx$$

$$\int_{V_A}^{V_B} dV = -\int_0^L E \ dx$$

$$V_{\Delta} - V_{R} = E.L$$

$$V_A - V_B = E.L = \frac{i}{\gamma.S}L = \frac{\rho_r L}{S}i$$

La quantité $\rho_r L/S$ est la résistance du conducteur : $\rho_r L$

eur:
$$R = \frac{\rho_r L}{S}$$
 $[R] = \Omega$

D'où : $V_A - V_B = R.\,i$ Loi d'Ohm macroscopique

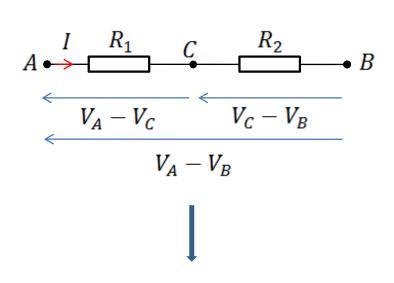
$$V_A \longrightarrow V_B$$

$$U_{AB} = V_A - V_B = R. i$$

6. Association de résistances

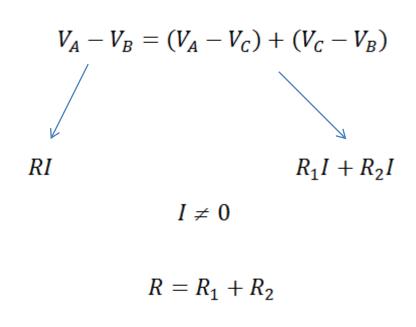
On distingue deux types de groupements de résistances :

a) Association en série



$$A \stackrel{I}{\longleftarrow} B$$

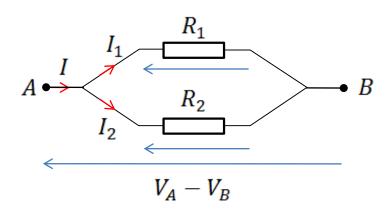
$$\longleftarrow V_A - V_B$$

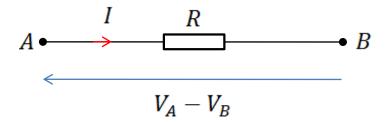


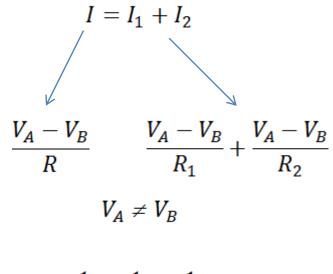
Pour *n* résistances :

$$R = \sum_{i=1}^{n} R_i$$

b) Association en parallèle







$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

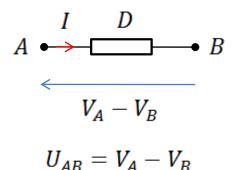
Pour *n* résistances :

$$\frac{1}{R} = \sum_{i=1}^{n} \frac{1}{R_i}$$

7. Puissance et énergie électrique (loi de Joule)

a) Puissance électrique

Soit:



La puissance reçue par D est :

$$P = U_{AB}.I$$
 , $[P] = Watt(W)$

Si P > 0 alors D reçoit cette puissance, Si P < 0 alors D fournit cette puissance.

Cas où :
$$D = R \rightarrow U_{AB} = R.I$$

$$P = R.I^2 = \frac{U_{AB}^2}{R}$$

Puissance dissipée par effet Joule

b) Energie électrique

Si pendant **t**, **D** consomme **P**, il reçoit :

$$W = P.t$$
 , $[W] = [P][t] = W.s = Joule(J)$
 $1kWh = 10^3 W \times 3600 s = 3.6 \times 10^6 J$
 $W = U_{AB}.I.t = U_{AB}.Q$

Cas où :
$$D=R o U_{AB}=R$$
 . I
$$W=R.\,I^2.\,t$$
 Loi de Joule

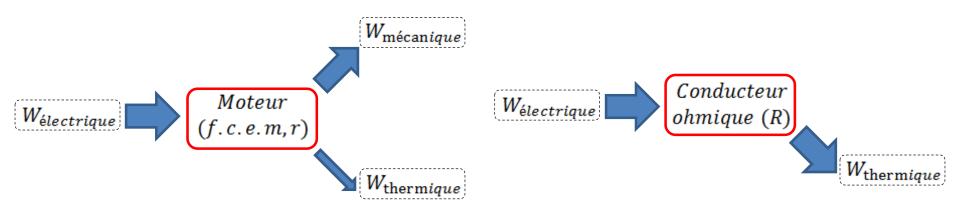
<u>Principe de conservation de l'énergie</u> :

L'énergie reçue = L'énergie perdue + L'énergie utile

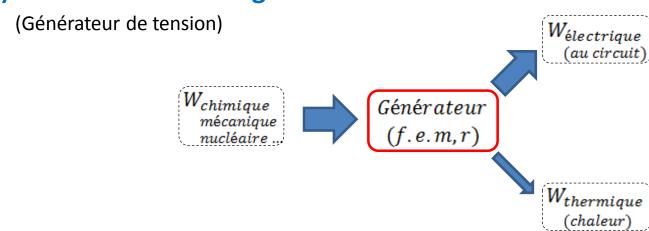
$$W_r = W_p + W_u$$

c) Effet Joule dans les récepteurs

(Moteur, conducteur ohmique)



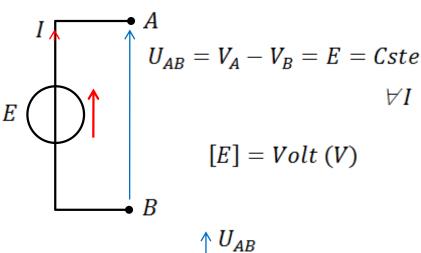
d) Effet Joule dans un générateur

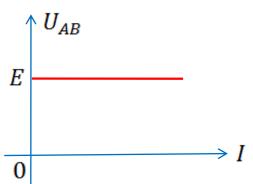


8. Générateurs et récepteurs électriques

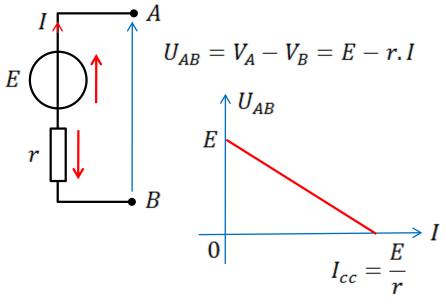
Le passage d'un courant continu dans un circuit nécessite une source d'énergie capable de maintenir une DDP constante : le générateur électrique.

<u>Générateur idéal</u> : $r \approx 0$

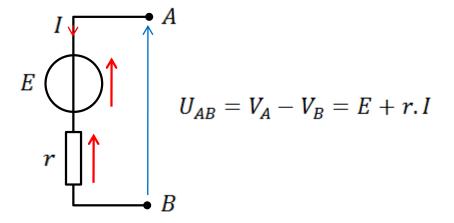




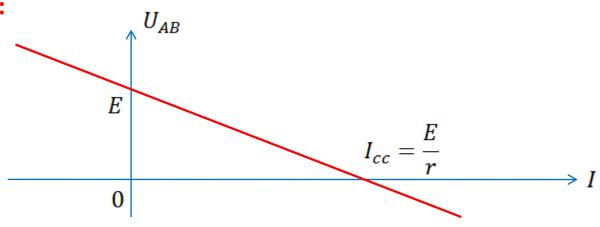
Générateur réel : $r \neq 0$



Récépteur réel : $r \neq 0$



Rôle du générateur :



U_{AB}	- () + 1	E +
I	+ 1	cc +	0 –
$P=U_{AB}.I$	_	+	_
Rôle de G.	Récépteur	Générateur	Récépteur

Bilan des puissances:

$$U_{AB}=E-r.I$$

$$U_{AB}I = E.I - r.I^2 \rightarrow E.I = U_{AB}I + r.I^2$$

 $\overset{\vee}{P_T} = P_e + P_J \longleftarrow$

Puissance électromotrice (totale)

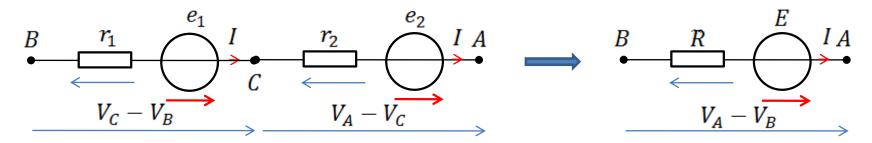
 $\dot{P_T} = P_e + P_I \leftarrow$ Puissance dissipée par effet Joule dans le G.

Puissance fournie au circuit ext.

9. Association de générateurs

a) Association en série

Soient N générateurs montés en série :



$$V_A - V_B = (V_A - V_C) + (V_C - V_B)$$

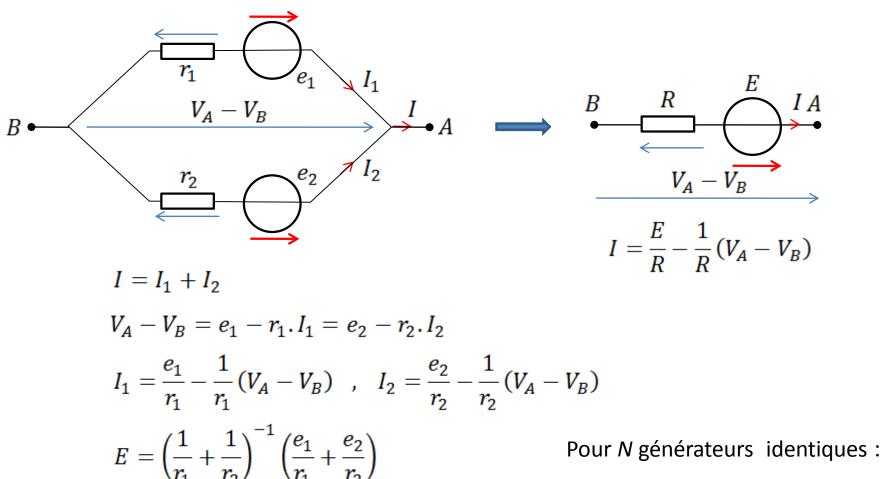
 $V_A - V_B = e_1 - r_1 \cdot I + e_2 - r_2 \cdot I$
 $V_A - V_B = (e_1 + e_2) - (r_1 + r_2) \cdot I$
 $V_A - V_B = E - R \cdot I$
 $E = e_1 + e_2$, $R = r_1 + r_2$

Pour *N* générateurs :

$$E = \sum_{i=1}^N e_i$$
 , $R = \sum_{i=1}^N r_i$

b) Association en parallèle

Soient N générateurs montés en parallèle :

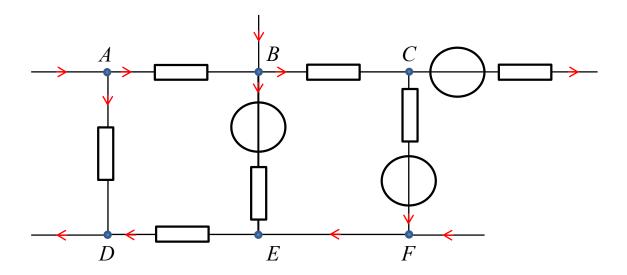


$$E=e$$
 , $R=rac{r}{N}$

10. Analyse des réseaux électriques

a) Définitions

<u>Réseau</u>: est un circuit complexe constitué d'un ensemble de dipôles (résistances, générateurs, récepteurs...) reliés entre eux.



Nœud: on appelle nœud, un point où aboutissent au moins trois dipôles du réseau.

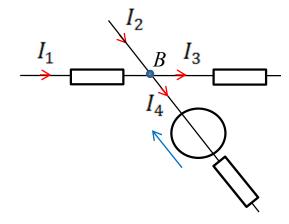
Branche: une branche est une portion du réseau comprise entre deux nœuds.

<u>Maille</u>: une maille du réseau est constituée par un ensemble de branches, formant un circuit fermé tel que ABEDA.

b) Lois de Kirchhoff

Les lois de Kirchhoff nous aident à déterminer les intensités des courants circulant dans les différentes branches du réseau. En effet, ils conduisent à des équations linéaires vis-a-vis des intensités.

1ère loi de Kirchhoff (loi des nœuds)



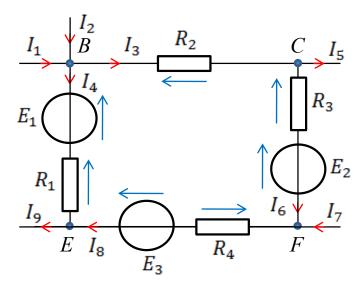
La somme des courants qui entrent dans ce nœud est égale à la somme des courants qui en sortent :

$$\sum_{i} I_{i} (entrant) = \sum_{j} I_{j} (sortant)$$

Dans ce cas:

$$I_1 + I_2 = I_3 + I_4$$

2^{ème} loi de Kirchhoff (loi des mailles)



Pour une maille d'un circuit, la **somme algébrique** des f.é.m. est égale à la **somme algébrique** des DDP dans la maille :

$$\sum_{i} E_{i} = \sum_{j} R_{j}.I_{j}$$

Dans ce cas:

$$E_1 - E_2 + E_3 = R_2 I_3 + R_3 I_6 + R_4 I_8 - R_1 I_4$$

Exemple d'application:

Calculer l'intensité du courant circulant dans les différentes branches du réseau.

1°/ Loi des nœuds:

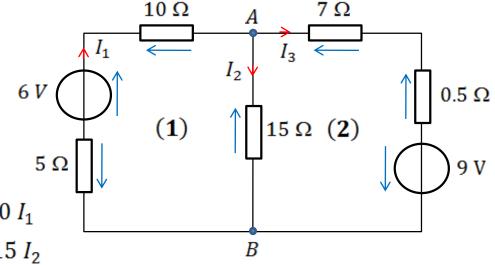
 $N \otimes ud A : I_1 = I_2 + I_3$

 $N \times udB$: idem

2°/ Loi des mailles :

Maille (1): $6 = 5 I_1 + 15 I_2 + 10 I_1$

Maille (2): $9 = 7 I_3 + 0.5 I_3 - 15 I_2$



$$\begin{cases} 5 I_1 + 5 I_2 = 2 \\ -15 I_2 + 7.5 (I_1 - I_2) = 9 \end{cases} \longrightarrow \begin{cases} I_1 + I_2 = 0.4 \\ 7.5 I_1 - 22.5 I_2 = 9 \end{cases}$$

$$I_1 = 0.6 A$$
 , $I_2 = -0.2 A$, $I_3 = 0.8 A$

Le courant réel d'intensité I_2 circule dans le sens contraire de la flèche.

Merci de votre attention...