
CTL model
checking

Specification et Verification Formelle
Chapter 04: CTL Model Checking

Dr. Hichem Debbi

hichem.debbi@gmail.com

April 25, 2022

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 1/17

hichem.debbi@gmail.com

CTL model
checking

CTL semantics
We use the Computation Tree Logic (CTL) to specify
properties of systems described using Kripke Structures.
The CTL formulas are evaluated over infinite
computations produced by Kripke structure K . A
computation of a Kripke structure is an infinite sequence
of states s0s1, ... such that si , si+1 ∈ R for all i ∈ N. We
denote by Paths(s) the set of all paths starting at s. The
syntax of CTL state formula over the set AP is given as
follows:

φ ::= true|a|¬φ|φ1 ∧ φ2|∃ϕ|∀ϕ

where a ∈ AP is an atomic proposition and ϕ is a path
formula. The path formulas are formed according to the
following grammar:

ϕ ::=©φ|φ1Uφ2

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 2/17

CTL model
checking

CTL semantics
We denote by K , s |= φ the satisfaction of CTL formula at
a state s of K . The semantics defined by the satisfaction
relation for a state formula is given as follows

K , s |= true⇔ true
K , s |= a⇔ a ∈ L(s)
K , s |= ¬φ⇔ s 6|= φ
K , s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2
K , s |= ∃ϕ⇔ for some π ∈ Paths(s), π |= ϕ
K , s |= ∀ϕ⇔ for all π ∈ Paths(s), π |= ϕ

Given a path π = s0s1... and an integer i ≥ 0, where
π[i] = si , the semantics of path formulas is given as
follows:

K , π |=©φ⇔ π [1] |= φ
K , π |= φ1Uφ2 ⇔ ∃j ≥ 0.π [j] |= φ2 ∧ (∀0 ≤ k < j .π [k] |=
φ1)

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 3/17

CTL model
checking

CTL satisfaction

The temporal operators in branching temporal logic allow
the expression of properties of some or all computations
that start in a state. To that end, it supports an existential
path quantifier (denoted ∃) and a universal path quantifier
(denoted ∀). For instance, the property ∃♦ϕ denotes that
there exists a computation along which ♦ϕ holds,
whereas ∀♦ϕ denotes that for all computations ♦ϕ holds.

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 4/17

CTL model
checking

Frequent CTL Formulae

∀�a: along All paths a holds Globally
∃�a: there Exists a path where a holds Globally
∀♦a: along All paths a holds at some state in the Future
∃♦a: there Exists a path where a holds at some state in
the Future

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 5/17

CTL model
checking

Frequent CTL Formulae

∀© a: along All paths, p holds in the neXt state
∃© a: there Exists a path where p holds in the neXt
state
∀[aUb]: along All paths, p holds Until q holds
∃[aUb]: there Exists a path where p holds Until q holds

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 6/17

CTL model
checking

Basic CTL Equivalences

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 7/17

CTL model
checking

CTL Examples

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 8/17

CTL model
checking

CTL model checking

Kripke Structure Tree of Computations

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 9/17

CTL model
checking

Basic CTL Formulae

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 10/17

CTL model
checking

Basic CTL Formulae

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 11/17

CTL model
checking

Basic CTL Formulae

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 12/17

CTL model
checking

Basic CTL Formulae

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 13/17

CTL model
checking

Basic CTL Formulae

The formula ∃© a is valid for all states since all states
have some direct successor state that satisfies a.
∀© a a is not valid for state s0, since a possible path
starting at s0 goes directly to state s2 for which a does
not hold. Since the other states have only direct
successors for which a holds, ∀© a is valid for all other
states.
For all states except state s2, it is possible to have a
computation that leads to state s3 (such as s0s1s3ω

when starting in s0) for which a is globally valid.
Therefore, ∃ a is valid in these states. Since a /∈ L(s2)
there is no path starting at s2 for which a is globally valid.
∀�a is only valid for s3 since its only path, s3ω , always
visits a state in which a holds. For all other states it is
possible to have a path which contains s2 that does not
satisfy a. So for these states ∀�a is not valid.

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 14/17

CTL model
checking

Equivalence rules for CTL– duality laws

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 15/17

CTL model
checking

Equivalence rules for CTL–Expansion laws

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 16/17

CTL model
checking

Equivalence rules for CTL– Distributuve laws

Dr. Hichem Debbi Specification et Verification Formelle April 25, 2022 17/17

	CTL model checking

