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CTL semantics
We use the Computation Tree Logic (CTL) to specify
properties of systems described using Kripke Structures.
The CTL formulas are evaluated over infinite
computations produced by Kripke structure K . A
computation of a Kripke structure is an infinite sequence
of states s0s1, ... such that si , si+1 ∈ R for all i ∈ N. We
denote by Paths(s) the set of all paths starting at s. The
syntax of CTL state formula over the set AP is given as
follows:

φ ::= true|a|¬φ|φ1 ∧ φ2|∃ϕ|∀ϕ

where a ∈ AP is an atomic proposition and ϕ is a path
formula. The path formulas are formed according to the
following grammar:

ϕ ::=©φ|φ1Uφ2
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CTL semantics
We denote by K , s |= φ the satisfaction of CTL formula at
a state s of K . The semantics defined by the satisfaction
relation for a state formula is given as follows

K , s |= true⇔ true
K , s |= a⇔ a ∈ L(s)
K , s |= ¬φ⇔ s 6|= φ
K , s |= φ1 ∧ φ2 ⇔ s |= φ1 ∧ s |= φ2
K , s |= ∃ϕ⇔ for some π ∈ Paths(s), π |= ϕ
K , s |= ∀ϕ⇔ for all π ∈ Paths(s), π |= ϕ

Given a path π = s0s1... and an integer i ≥ 0, where
π[i] = si , the semantics of path formulas is given as
follows:

K , π |=©φ⇔ π [1] |= φ
K , π |= φ1Uφ2 ⇔ ∃j ≥ 0.π [j] |= φ2 ∧ (∀0 ≤ k < j .π [k ] |=
φ1)
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CTL satisfaction

The temporal operators in branching temporal logic allow
the expression of properties of some or all computations
that start in a state. To that end, it supports an existential
path quantifier (denoted ∃) and a universal path quantifier
(denoted ∀). For instance, the property ∃♦ϕ denotes that
there exists a computation along which ♦ϕ holds,
whereas ∀♦ϕ denotes that for all computations ♦ϕ holds.
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Frequent CTL Formulae

∀�a: along All paths a holds Globally
∃�a: there Exists a path where a holds Globally
∀♦a: along All paths a holds at some state in the Future
∃♦a: there Exists a path where a holds at some state in
the Future
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Frequent CTL Formulae

∀© a: along All paths, p holds in the neXt state
∃© a: there Exists a path where p holds in the neXt
state
∀[aUb]: along All paths, p holds Until q holds
∃[aUb]: there Exists a path where p holds Until q holds
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Basic CTL Equivalences
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CTL Examples
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Kripke Structure Tree of Computations
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Basic CTL Formulae
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Basic CTL Formulae

The formula ∃© a is valid for all states since all states
have some direct successor state that satisfies a.
∀© a a is not valid for state s0, since a possible path
starting at s0 goes directly to state s2 for which a does
not hold. Since the other states have only direct
successors for which a holds, ∀© a is valid for all other
states.
For all states except state s2, it is possible to have a
computation that leads to state s3 (such as s0s1s3ω

when starting in s0) for which a is globally valid.
Therefore, ∃ a is valid in these states. Since a /∈ L(s2)
there is no path starting at s2 for which a is globally valid.
∀�a is only valid for s3 since its only path, s3ω , always
visits a state in which a holds. For all other states it is
possible to have a path which contains s2 that does not
satisfy a. So for these states ∀�a is not valid.
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Equivalence rules for CTL– duality laws
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Equivalence rules for CTL–Expansion laws
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Equivalence rules for CTL– Distributuve laws
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