Section: Master 1 SIGL

Faculty of Mathematics and Computer Science
Department of Computer Science

Formal Verification and Specification
Lab Session (TP) 02

1. Dictionnary:
Implement in Atelier B a dictionary of words, where we define a total function between each two
words. The dictionary defines a maximum number of words maxMots, which is of type MaxInt. In
this Machine we can define the following operations:

e AddWord: Add a word to the dictionary
e Retrieve Word: Delete a word from the dictionary
o FEristWord: Find a word

2. SIGL students:
Define the abstract machine SIGL _Student as follows:

e Define two variables SIGL _Student and year, where year refers to the level (1 or 2)
e A SIGL student must be a student

e A year is a total function that maps to each student in SIGL _Student a year

e A year is a natural (1 or 2)

As operations we have the following operations:

initialization: which initializes the defined variables

inscription: which allows the addition of a new student to SIGL_Students (NB: the year is
affected automatically)

graduate: the graduation function means that a student is no longer in SIGL _Students
get_year: which returns the current year for a given student

admis: the admission function, which allows a student to pass from a year to another, where
the maximum value is 2

Désignation Notation ASCII
Uniion EUF E VF
Total fonction S>T S-->T
appartenance xX€EE x:E
Difference E/F E-F
Restriction rl>T
codomaine
Ant[—rest_rlctlon S <<
domaine
For all \4 !

Figure 1: Symbols to use for describing the machine

Answers

1. Dictionnary:
Implement in Atelier B a dictionary of words, where we define a total function between each two
words. The dictionary defines a maximum number of words maxMots, which is of type MaxzInt. In
this Machine we can define the following operations:

o AddWord: Add a word to the dictionary
o RetrieveWord: Delete a word from the dictionary
e EzristWord: Find a word

MACHINE dicoMot
SETS MOT /* abstract set of words */
7 SIGNIFIK = {s0,sl,s2}/* abstract set of significations */
; OKKO = {ok, ko} /* a word used or not */
CONSTANTS maxMots /* limit */
PROPERTIES maxMots : 1..MAXINT
VARIABLES mots /* subset of words */
, dico /* the dictionary */
INVARIANT mots <: MOT /* subset of used words */
& card(mots) <= maxMots & dico : mots --> SIGNIFIK

INITIALISATION mots := {} ||
dico := {} /* : mots --> SIGNIFIK */
OPERATIONS

ajoutMot (mm, signif) =
PRE mm : MOT & mm /: mots & signif : SIGNIFIK & (mm,signif) /:

dico

& card(mots) < maxMots

THEN

mots := mots \/ {mm} || dico(mm) := signif
END ;

RetraitMot (mm) =

PRE mm : MOT & mm : dom(dico) & card(mots) > 1
THEN

mots := mots - {mm} || dico := {mm} <<| dico
END ;

bb <—— existeMot (mm) =

PRE mm : MOT

THEN

bb := bool(mm : dom(dico))

END

res <-- rechercheSignifMot(mm) = /* find the signification

of a word */

PRE mm : MOT & mm : dom(dico)
THEN

res := dico(mm)

END

END

Figure 2: Abstract machine for SIGL _Student

IMPLEMENTATION dicoMot_i REFINES dicoMot

DEFINITIONS PLAGE MOT == 0..20 /* a range for implimenting the set

VALUES MOT = PLAGE MOT /* iplmimentation of abstract MOT */

; maxMots = 22 /* some value */

CONCRETE VARIABLES c_mots, /* new variables */

c dico

INVARIANT c mots : PLAGE MOT --> OKKO /* used or not */
& mots = c mots~[{ok}] /* 1link abstract/goncret */
& c_dico : PLAGE_MOT --> SIGNIFIK
& dico = (mots <| c_dico) /* link abstract cgoncret */

INITIALISATION c mots := (PLAGE MOT)?*{ko}; /* no word is already used */

c_dico := (PLAGE_MOT)*{s0} /* empty */

OPERATIONS

ajoutMot (mm , signif) =

BEGIN

c_mots(mm) := ok ; /* mots := mots \/ { mm } */

c dico (mm) := signif

END ;

RetraitMot (mm)} =

BEGIN

¢ mots{mm) := ko /* mots := mots - { mm } */

END ;

bb <—— existeMot (mm) =

BEGIN /* bb := bool (mm : dom (dico))*/

VAR okko IN

okko := c_mots (mm);

IF okko = ok THEN

bb := TRUE

ELSE

bb := FALSE

END

END

END ;

res <-- rechercheSignifMot (mm) =

BEGIN

res := c dico(mm) /* res := dico (mm)} */

END

END

Figure 3: Abstract machine for SIGL _Student

Answer:

2. SIGL students:
Define the abstract machine SIGL _Student as follows:

*/

e Define two variables SIGL Student and year, where year refers to the level (1 or 2)

o A SIGL student must be a student

e A year is a total function that maps to each student in SIGL _Student a year

A year is a natural (1 or 2)

As operations we have the following operations:

— qnitialization: which initializes the defined variables

— inscription: which allows the addition of a new student to SIGL _Students (NB: the year is

affected automatically)

— graduate: the graduation function means that a student is no longer in SIGL _Students

— get_year: which returns the current year for a given student

— admis: the admission function, which allows a student to pass from a year to another, where

the maximum value is 2

Désignation Notation ASCII
Uniion EUF E VF
Total fonction S>T S-->T
appartenance x€EE x:E
Difference E/F E—-F
Restriction r>T
codomaine
Antl—rest_rlctlon S <<|r
domaine
For all \4 !

Figure 4: Symbols to use for describing the machine

MACHINE

SIGL Student (STUDENT)
VARIABLES

SIGL students, year
INVARIANT

SIGL students <: STUDENT &

year : SIGL students --> NATURAL &
card (year) = 2

INITIALISATION
SIGL students := {} ||
year = {}
OPERATIONS
inscription (ss) =
PRE
ss : STUDENT - SIGL students
THEN
SIGL students := SIGL students \/ {ss} ||
year := year \/ {ss |-> 0}
END ;

graduate (ss) =

PRE
55 : SIGL students

THEN
5IGL students := 5IGL students - {ss} ||
year := {ss} <<| year

END ;

vy <-- get year (ss) =

PRE
55 : S5IGL students
THEN
yy = year (ss)
END ;
adnis =
ANY
new_year
WHERE

new_year : SIGL students --> NATURAL &

'ss . (95 : SIGL_students => (new_year(ss) = year(ss) + 1) &(year(ss)<=l))
THEN
year := new year
END
END

Figure 5: Abstract machine for SIGL _Student

Answer:

