TP N°: 07

LE TRANSISTOR À EFFET DE CHAMP (T.E.C)

1. Le but de la manipulation

Dans ce TP nous allons étudier un transistor appartenant à la famille des transistors à effet de champ (TEC), un transistor à jonction couramment appelé (JFET), dont le but est la familiarisation de l'étudiant avec les transistors à effet de champs.

2. Rappel théorique

2.1. Le transistor à effet de champ

2.1.1. Présentation générale

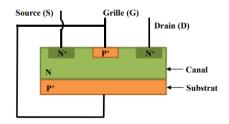
Le transistor à effet de champ se présente comme une résistance variable commandée par une tension extérieure.

• Comparaison avec le transistor bipolaire :

- ✓ Fonctionnement lié au déplacement d'un seul type de porteur (porteur majoritaire).
- ✓ Très forte impédance d'entrée (M Ω).
- ✓ Facteur de bruit inférieur au transistor bipolaire.

Transistor à canal N

> Transistor PNP



NB: Le sens de la flèche indique le sens du courant de grille.

Constitution du TEC à canal N

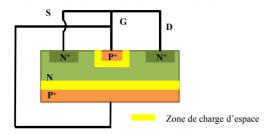
Sur un substrat de type P (Grille) fortement dopé (P+) sont déposées :

- ✓ Une zone N faiblement dopée qui constitue le canal
- ✓ Deux zones N fortement dopées (N⁺) qui constitue des bornes d'entrée (Source) et de sortie du canal (Drain)

TRAVAUX PRATIQUES ELECTRONIQUE FONDAMENTALE

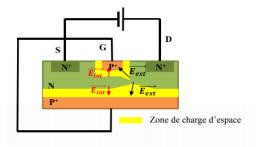
• Elément actif à 3 accès :

Grille (G): électrode de commande,


Source (S): électrode par laquelle les porteurs majoritaires entrent dans le canal,

Drain (D): électrode par laquelle les porteurs majoritaires quittent le canal.

2.1.2. Fonctionnement du transistor à canal N


V_{GS} = 0 V (grille et source reliées) - V_{DS} = 0 V

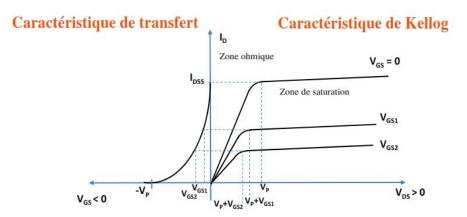
La mise en contact des zones P et N donne naissance à des zones de charges d'espace qui diminuent la largeur effective du canal :

\triangleright V_{GS} = 0 V (grille et source reliées) - V_{DS} ≥ 0 V faible

La jonction grille drain est polarisée en inverse – Les zones de charge d'espace augmentent – Si V_{DS} faible, le canal se comporte comme une résistance R_{DS} (transistor à un comportement ohmique).

> V_{GS} = 0 V (grille et source reliées) - V_{DS} ≥ 0 V élevée

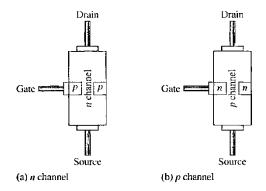
Si V_{DS} augmente la section conductrice du canal diminue et R_{DS} augmente, le courant I_D entre le drain et la source commence à être limité – Lorsque les deux zones de charge d'espace se rejoignent le canal est pincé ($V_{DS} = V_p$).

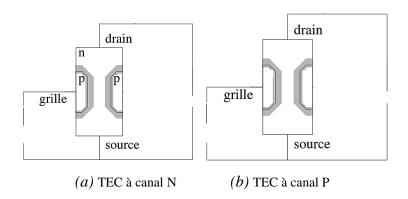

\triangleright VGS < 0V - VDS = 0v

Si $|V_{GS}|$ augmente l'épaisseur du canal se rétrécit ; le canal est totalement pincé lorsque $V_{GS} = -V_{P.}$

\triangleright VGS < 0v - VDS > 0v

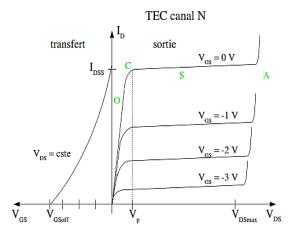
- ✓ Si $|V_{GS}|$ < V_p le canal ne peut être complètement fermé ; le courant I_D qui circule dépend de V_{DS} .
- ✓ Si $V_{DS} > V_{DScoude} = V_P V_{GS}$ le courant I_D n'augmente plus.


2.1.3. Caractéristiques d'un transistor à effet de champ


NB : La caractéristique de transfert est tracée lorsque le transistor est dans la zone de saturation.

3. Travail de préparation

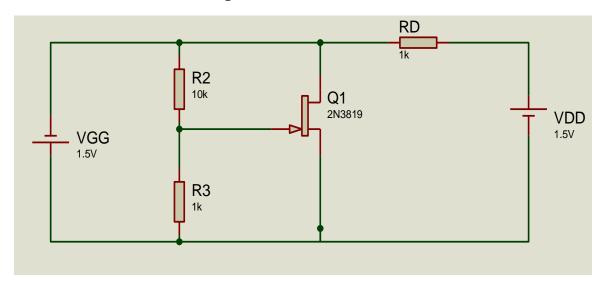
a. Quelle est la différence entre un TEC à canal N et à canal P ? (Expliquer).



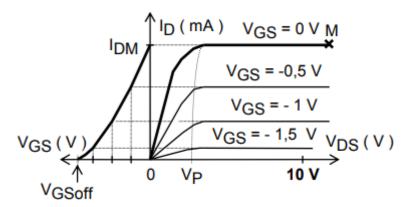
b. Compléter sur les deux schémas électrique (a) et (b) la polarisation des deux TEC à canal N et à canal P (V_{GS} et V_{DS}) avec les sens des courants I_G, I_D et I_S. (Expliquer).

TRAVAUX PRATIQUES ELECTRONIQUE FONDAMENTALE

c. La figure ci-dessous représente la caractéristique de TEC « de transfert et de sortie »:



- 1. Que signifier les termes IDSS, VGSoff, Vpet VDSmax.
- 2. Expliquer en bien détail le comportement du TEC dans les deux caractéristiques de transfert et de sortie.

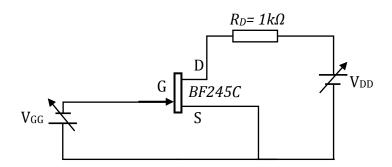

4. Manipulation

4.1. Travail personnel

a. A l'aide de Proteus réaliser le montage ci-dessous :

b. Relever et simuler le montage en ajoutant les appareils mesurant les grandeurs électriques nécessaires pour réaliser les courbes ci-dessus :

TRAVAUX PRATIQUES ELECTRONIQUE FONDAMENTALE


c. Montrer que $RD = 1 k\Omega$ limite la puissance transmise par l'alimentation VDD au T.E.C.

NB: la puissance maximale transmise au TEC par VDD associé à RD est VDD² / 4 RD.

4.2. Travail présentiel

4.2.1. Etudier les caractéristiques de transfert d'un FET

a. Réaliser le montage ci-dessous :

 Relever le montage en ajoutant les appareils mesurant les grandeurs électriques nécessaires pour remplir le tableau ci-dessous :

V _{DS} = 10 Volt											
V _{GS} (V)	-3.5	-3	-2.5	-2	-1.5	-1.2	-1	-0.6	-0.3	0	
I _D (mA)											

- c. Tracer sur un papier millimétrique la caractéristique de transfert $I_D = f(V_{GS})$ avec $V_{DS} = C^{st}$.
- d. Donnez les valeurs de: VGSoff et IDSS.

4.2.2. Etudier les caractéristiques de sortie

a. En utilisant le même montage compléter le tableau ci-dessous :

$V_{GS} = 0 \text{ Volt}$		$V_{GS} = -1$	l Volt	$V_{GS} = -2 \text{ Volt}$		
V_{DS}	I_{D}	V_{DS}	I_D	V_{DS}	I_D	

- b. Tracer sur un papier millimétrique la caractéristique de sortie $I_D = f(V_{DS})$ avec $V_{GS} = Cst$.
- **c.** Donner les valeurs de: V_P et I_{DSS} .