Formal Verification and Specification Lab Session (TP) 04

1. LTL equivalence:

- Express $\Box p$ with the operators \neg , \Diamond and p.
- Express $\Diamond p$ with the operator U.
- Can we express \bigcirc using other operators ?
- Can we express U using other operators?

2. LTL Buchi automaton:

Transform the following LTL formulae into Buchi automaton with the alphabet $p, \neg p$: $p, \neg p, Xp, Fp, Gp, pUq$.

3. LTL Buchi automaton:

Express in LTL the following properties:

- in the future state, if p is true, q is never true
- *p* will be true one time at most
- *p* will be true Exactly two times

Answers

1. LTL equivalence:

- Express $\Box p$ with the operators \neg , \Diamond and p.
- Express $\Diamond p$ with the operator U.
- Can we express \bigcirc using other operators ?
- Can we express U using other operators?

Answer: • $\Box p \equiv \neg F \neg p$

- $\Diamond p \equiv trueUp$
- $\bullet\,$ NO, the other connectors are looser. \bigcirc is exact
- No, U is mainly used between two subformulas

2. LTL Buchi automaton:

Transform the following LTL formulae into Buchi automaton with the alphabet $p, \neg p$: $p, \neg p, Xp, Fp, Gp, pUq$.

Figure 1: p

Figure 2: p

init 1 P 2

Figure 3: X $\mathbf p$

Figure 6: p U q

Figure 4: F p

Figure 5: G p

Answer:

- 3. LTL Buchi automaton: Express in LTL the following properties:
 - in the future state, if p is true, q is never true
 - p will be true one time at most
 - p will be true Exactly two times

Answer: • $X(p \implies G \neg q)$ or $((Xp) \implies (XG \neg q))$

- $((G\neg p) \lor (\neg pU(p \land X(G\neg p))))$
- $(\neg pU(p \land X(\neg pU(p \land X(G\neg p)))))$