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I-The electroweak mode

The electroweak mode is the second successfully unified model after the unification between electrical and

magnetic interaction in the mode of Maxwell. Glashow, Weinberg and Salam released this model in 1967-1971. The
electroweak mode is a local gauge theory for the gauge-unified group G, = SU(2), ®U (1), , where the notation

L denote to left polarization while hypercharge Y = B — L the deference between tow quantum numbers. The electric

charge Q is linked to the weak isospin | and the hypercharge Y through the Gell-Mann —Nishijima relation:
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For the weak interactions, the fermion field can represent by isospin doublet as follows:
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The Fermi model, which is a current-current interaction, can describe the weak interaction using the Following

Lagrangian density:
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For the doublet leftY, = —1. For the electromagnetic interactions, the fermion field can represent by singlet fields as

follows:
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In addition, the hypercharge right Y, = —2. The gauge fields for the weak interactions SU (2), is linked by

AZ (X), (a=12,3) (we have three gauge fields) with coupling g while the gauge fields for the electromagnetic

interactions U (1), is linked by B,, (x) (only one gauge field) with coupling g".

For scalar fields, we use the following complex doublet:
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With, the hyperchargeY = +1. The Lagrangian density terms for electroweak model can be represent by the following

principle terms:
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The hyper-complex term (h. c.) added to the Lagrangian density to ensure that is a scalar quantity. With
F. =0,A -0,A + ggQ‘CAZAC andF,, =0,B, —0,B,. The total Lagrangian density L, for electroweak

model can be represent by:
Lew = Lgr +Lsr + L + Ly, (16)
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Where D, =0, —1g — A% +ig'— B, is the covariant derivative operator, we have three-cases:
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Where 72 are the three usual Pauli matrices. Now, the generalization of Higgs mechanism to theories with

non-abelian gauge symmetry allows writing:
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The physical vacuum corresponding to the expectation value having the following form:
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Thus m? will be negative. If we define:
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The covariant derivative term will generate a mass for the vector boson fields for A; as follows:
\
M= (21)

Now, we generalize this procedure to the case of G, = SU (2), ®U (1), , thus we have for the physical

vacuum corresponding to the expectation value having the following form:
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After straightforward calculations, we obtain:
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Which allows us to gives the following results:
+ 1 1 . 1 .
(D,¢) D p= 5(8yp(><))(8“p(><))+ g9 (A% —iAZ ] p(x) + 39 (0A3 -g'B, ) p(x)’ (25)

We have observe one scalar field (p(X) = h(X)+V) and three-boson fields A; (X) (a=12,3)and one

boson B, (x) We are interest now for the following part of the quadratic Lagrangian density Lq;ad:
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We introduce the following notations of the bosons fields as follows:
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The orthogonal matrix and the Weinberg angle are defined as:
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We also introduce two bosons fields as:
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Substituting Egs. (30), (29), (28), (27) in (26) gives
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Thus, the quadratic Lagrangian density L(j:ad describe the following particles:

1- One scalar real field known by the Higgs boson with spin-0 and mass m, =+/— 2m?

2
Vv
2- One vectoriel real field known by Zﬂ with spin-1 and mass m, = I(g2 + g'z) and null charge

3- One vectoriel real field known by the Higgs boson with spin-1 and mass m, =0
v2
4- One vectoriel complex field with mass m, = I g 2 = vg/ 2 and anti-vectoriel complex field with same

mass

It should be noting that the Weinberg angle satisfies the relation g'COS(@W ) =g Sin(G)W ) The fermionic

part of the Lagrangian density gives:
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After the diagonalization of the matrix of masses, we obtain the fermionic masses as follows:
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For study the interaction between electromagnetic field and the fermionic system, we rewrite the covariant

derivative as:
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Where f(Ai,Ai,Zﬂ) is different terms, which not interest with the electromagnetic interaction with

3
T
fermionic fields. Here e[?+§j is just the charge values, which cratered this interaction. Now, the interactions

electromagnetic with bosons can be observe in studying of the gauge term:
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II- The standard Model

The standard model include both the electroweak mode and the quantum chromodynamics. The local gauge

theory for the electroweak mode G, = SU(2), ®U (1), will be extend to become as follows:
Ggy =SU(2), ®U (1), > G, =SUB). ®SU(2), ®U (D), (38)

Where SU (3). is non-abelian lie group with dimension equal 8, thus for this group we have eight generators or

eight gauge boson fields known by gluons. As in SU (2), , in SU (3).. , we have the following fermionic fields:
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WithYQi =1/3. In addition to the following singlet fields:
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The indices i =1,2,3is linked to the quarks colors. The covariant derivative operator in the electroweak model
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Here G; are the eight gluons and g, is the strongly coupling constant. The Lagrangian density terms for

electroweak model:

1

a

2

1

Ly =——F2F* —ZF FH

4//va

4~

Ly =(D,0) D p—m2p 0 — Alp* o)

3 3 _
Lep =D iWiy“D, ¥, + Y iEiy*D,E
i=1

And

i=1

3 —
L, = (Z fy WiE @+ h.c.J
1]

Will be in the standard model as follows:
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WhereG? = G#Gf —6VGE +0, fbacGZGf. The Lagrangian density contains new gauge term (—ZGa G#")
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which represent the dynamic of gluons and self-interactions. In addition to three fermionic termsZiQLiy“ D#QU ,
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when compared with corresponding term in the electroweak model.
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