UNIVERSITE MOHAMED BOUDIAF DE M'SILA

FACULTE DE TECHNOLOGIE

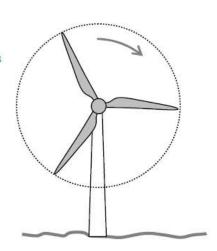
DEPARTEMENT DE GENIE ELECTRIQUE

Niveaux: 1 ère Année Master: Energies Renouvelables et Efficacité Energétique

Matière : Energie Eolienne

TD 02

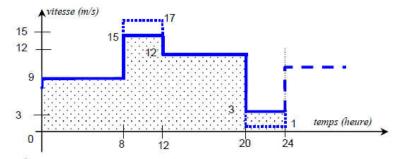
Exercice nº 1:


On s'intéresse à une éolienne moyenne, de diamètre Φ = 50 m.

Dans les conditions « normales » de température et de pression (15°C, 1013 hPa) la masse volumique de l'air sec est de ρ = 1,225 kg/m³.

Elle est animée par un vent régulier qui souffle à une vitesse de v = 11 m/s (\approx 40km/h)

- 1°) -. Calculer la masse m_1 d'une tranche d'air de longueur ℓ = 1 mètre se situant face l'éolienne. En déduire la masse m_s d'air qui franchi les pales chaque seconde.
- 2°) Calculer l'énergie cinétique E_{cin} de cette masse, en déduire la puissance du vent P.
- 3°) Reprendre le calcul en utilisant la loi P = $\frac{1}{2}$ ρ V³ π r², puis justifier cette formule.
- 4°) Calculer la puissance maximum récupérable en considérant que la limite de


Betz égale à
$$P_{max} = \frac{16}{27} P_{vent}$$

AU: 2023/2024

Exercice n° 2:

On considère un vent qui souffle pendant 24 heures suivant le chronogramme ci-dessous.

- 1°) Calculer la vitesse moyenne du vent V_{moy}
- 2°) En tenant compte de la limite de Betz, calculer l'énergie maximum récupérable sur 1 m² de surface :
 - a) si le vent soufflait de façon régulière à la vitesse V = V_{moy} = cte
 - b) pour le profil ci-dessus,
 - c) pour un vent de même vitesse moyenne et même profil mais avec V_{min} = 1 m/s et V_{max} = 17 m/s

Exercice n° 3:

- 1°) Calculer la vitesse tangentielle V_{T1} de l'extrémité de la pale d'une éolienne de Φ = 100 m de diamètre tournant à 12 tr/mn.
- 2°) Calculer les vitesses V_{T2} et V_{T3} respectivement à 2/3 et 1/3 de la pale.
- 3°) Calculer les vitesses apparentes du vent $(V_{\alpha 1}, V_{\alpha 2}, V_{\alpha 3})$ et les angles d'incidence $(\delta_1, \delta_2, \delta_3)$ correspondants si le vent arrive face à l'éolienne à V_V = 20 m/s

NB: L'angle formé par la palle et le plan d rotation est considéré nulle

Chargé du module : M.MAYOUF