Série de TD N°3 Clustering 2 (Clustering Hiérarchique)

Exercice1:

Le dendrogramme est une représentation graphique d'une classification (clustering) hiérarchique par un arbre.

- 1- Le dendrogramme d'une classification ascendante (ou descendante) est-il unique ? Si OUI dites Comment ? Si NON dites pourquoi ?
- 2- Comment déterminer le nombre de classes (clusters) à partir du dendrogramme ? Cette méthode est-elle exacte ou approximative ? Quel est le moyen le plus efficace pour avoir un nombre de classes (clusters) proche de la réalité?
- 3- Considérer la matrice de similarité suivante de cinq documents d1, d2, d3, d4 et d5. Déterminer le dendrogramme résultant de l'application du text clustering hiérarchique ascendant en utilisant le « **lien maximum** ».

	d1	d2	d3	d4	d5
d1	0	0.5	0.5	0.6	8.0
d2	0.5	0	0.7	0.6	0.5
d3	0.5	0.7	0	0.6	0.5
d4	0.6	0.6	0.6	0	0.9
d5	0.8	0.5	0.5	0.9	0

Exercice2:

Considérer la matrice de dissimilarité suivante P.

Déterminer les dendrogrammes résultants de l'application du « single link algorithm », puis du « complete link algorithm » sur P et commentez.

а	b	С	d	е
0	4	9	6	5
4	0	3	8	7
9	3	0	3	2
6	8	3	0	1
5	7	2	1	0

Exercice3:

Considérons la matrice de similarité suivante entre les exemples x_1 , x_2 , x_3 , x_4 et x_5

Déterminer le dendrogramme résultant de l'application du « single link algorithm » (lien minimum).

$$\begin{array}{c} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{array} \left(\begin{array}{cccccc} 0 & 0.4 & 0.9 & 0.6 & 0.5 \\ 0.4 & 0 & 0.3 & 0.8 & 0.7 \\ 0.9 & 0.3 & 0 & 0.3 & 0.2 \\ 0.6 & 0.8 & 0.3 & 0 & 0.1 \\ 0.5 & 0.7 & 0.2 & 0.1 & 0 \\ \end{array} \right)$$

Série de TD N°3 (Corrigé) Clustering 2 (Clustering Hiérarchique)

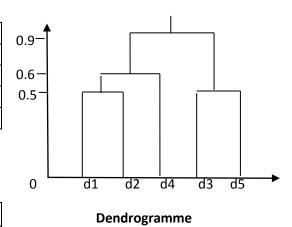
Exercice1:

- 1- Le dendrogramme d'un clustering n'est pas unique ; il dépend de la stratégie de regroupement : lien minimum, maximum ou moyen. En plus, si la distance minimale choisie n'est pas unique, le choix aléatoire diversifie le dendrogramme.
- 2- On détermine le nombre de clusters à partir d'un dendrogramme, en trouvant le nombre de points d'intersection entre la droite *y=d* et le dendrogramme, *d* étant la distance choisie. Cette méthode est exacte. Le moyen le plus efficace pour avoir un nombre de classes (clusters) proche de la réalité se fait généralement à l'aide de l'avis d'un expert dans le domaine.
- **3-** Le dendrogramme résultant de l'application du text clustering hiérarchique ascendant de cinq documents d1, d2, d3, d4 et d5, en utilisant le « **lien maximum** ».

	d1	d2	d3	d4	d5
d1	0				
d2	<u>0.5</u>	0			
d3	0.5	0.7	0		
d4	0.6	0.6	0.6	0	
d5	0.8	0.5	0.5	0.9	0

grouper (d1, d2)

	d1d2	d3d5	d4
d1d2	0		
d3d5	0.8	0	
d4	<u>0.6</u>	0.9	0


grouper (d1d2, d4)

	d1d2	d3	d4	d5
d1d2	0			
d3	0.7	0		
d4	0.6	0.6	0	
d5	0.8	0.5	0.9	0

grouper (d3, d5)

	d1d2d4	d3d5
d1d2d4	0	
d3d5	<u>0.9</u>	0

grouper(d1d2d4,d3d5)

Exercice3:

Single Link (Lien mimimum)

	X ₁	X ₂	Х3	X ₄	X ₅
X ₁	0				
X ₂	0.4	0			
Х3	0.9	0.3	0		
X ₄	0.6	0.8	0.3	0	
X 5	0.5	0.7	0.2	<u>0.1</u>	0

grouper (x_4, x_5)

	X ₁	X ₂	X ₃	X ₄ X ₅
X ₁	0			
X ₂	0.4	0		
Х3	0.9	0.3	0	
X ₄ X ₅	0.5	0.7	0.2	0

 $\mathbf{X_1}$

0

<u>0.4</u>

 $x_2x_3x_4x_5$

0

 $\mathbf{X_1}$ X₂X₃X₄X₅

0.4 0.3 - 0.2 - 0.1 -			<u></u>
	\mathbf{x}_1	x ₂ x ₃	X ₄ X ₅

Dendrogramme

	$\mathbf{X_1}$	X ₂	$X_3X_4X_5$
X ₁	0		
X ₂	0.4	0	
X ₃ X ₄ X ₅	0.5	0.3	0

grouper $(x_2, x_3x_4x_5)$