University of Mohamed Boudiaf M'sila Faculty of Mathematics and Computer Science Department of Computer Science Master 01 SIGL

Duration: 1h30 (90 Minutes)	Instructor	DR. Hichem Debbi

Formal Verification and Specification Final Exam June 06, 2022

True/False

(03 points) Write True if the statement is true, otherwise write False.

Linkage variable in Method-B is used for linking two sets

pUq is true if p is false in the current state and q is true

It is not possible to implement an abstract machine without passing by the refinement step

_____ SPIN is a language used in model checking

_____ Every LTL property might be translated into Buchi automaton

 $\underline{\qquad} AGAFp \equiv AGFp$

Section 2. Set theory (04 points)

- 1. We have three sets and two relations as presented in the Figure 1. We have a set of **teachers** (first set), who own (R1) a set of **datashows** (second set). Each datashow *has* (R2) possible **options**(third set). Introduce the following:
 - Domain: dom(R2)
 - Range: range(R1)
 - Domain restriction: U < |R1: U = Hichem
 - Domain anti-restriction: U < |R1: U = Hichem, Leila
 - Range restriction: R1 > U : U = Condor

Figure 1: Sets and relations

Section 3. Method-B Specification(06 points)

- 2. Suppose that we have the following problem: The computer science department has a number of available *Datashows*, and each one has possible *options* such as HDMI, VGA, ... A teacher may perform three main operations of the requested DataShow:
 - Add: add an option to the requested datashow
 - Remove: Remove an option from the requested datashow
 - HasOption: Asks whether the requested datashow is allowed to include a specific option

We consider the following:

- Three main sets: Datashows, OPTION and Allowed =OK, KO.
- One relation *options* from *Datashows* to *OPTION*.

Where the relation is denoted by $\langle - \rangle$ and a pair or a Maplet is denoted by $|-\rangle$.

Section 4. ω -expressions(03 points)

3. Give the ω -regular expressions for the following buchi automaton :

Figure 2: Automate one.

Section 5. LTL Specification(04 points)

4. express in LTL the following properties

- p is true again and again
- From some point and on, either you see $\neg a$ now, or in the next step.
- The drink is served once the tokens reach the required number and the drinks is available

Figure 3: Automate two.

Answer Key for Exam \blacksquare

True/False

(03 points) Write True if the statement is true, otherwise write False.

False	Linkage variable in Method-B is used for linking two sets
True	pUq is true if p is false in the current state and q is true
False	It is not possible to implement an abstract machine without passing by the refinement step
False	SPIN is a language used in model checking
True	Every LTL property might be translated into Buchi automaton
False	$AGAFp \equiv AGFp$

Section 2. Set theory (04 points)

- 1. We have three sets and two relations as presented in the Figure 1. We have a set of **teachers** (first
 - set), who own (R1) a set of **datashows** (second set). Each datashow has (R2) possible **options**(third
 - set). Introduce the following:
 - Domain: dom(R2)
 - Range: range(R1)
 - Domain restriction: U < |R1: U = Hichem
 - Domain anti-restriction: U < |R1: U = Hichem, Leila
 - Range restriction: R1 > U : U = Condor

Figure 4: Sets and relations

Answer: • Domain restriction: U < |R1: U = Hichem : Hichem-¿HP, Hichem-¿Compaq

- Domain anti-restriction: U < |R1: U = Hichem, Leila: Ahmed-¿Compaq, Omar-¿Condor
- Range restriction: R1| > U : U = Condor : Leila-¿Condor, Omar-¿Condor

Section 3. Method-B Specification(06 points)

- 2. Suppose that we have the following problem: The computer science department has a number of available *Datashows*, and each one has possible *options* such as HDMI, VGA, ... A teacher may perform three main operations of the requested DataShow:
 - Add: add an option to the requested datashow
 - Remove: Remove an option from the requested datashow
 - HasOption: Asks whether the requested datashow is allowed to include a specific option

We consider the following:

- Three main sets: Datashows, OPTION and Allowed =OK, KO.
- One relation options from Datashows to OPTION.

Where the relation is denoted by $\langle - \rangle$ and a pair or a Maplet is denoted by $|-\rangle$.

Answer:

Section 4. ω -expressions(03 points)

3. Give the ω -regular expressions for the following buchi automaton :

Figure 5: Automate one.

Answer: • $(a+b+c)(a+ab)^{\omega}$ • $a^{\omega} + ab^{\omega}$

Section 5. LTL Specification(04 points)

- 4. express in LTL the following properties
 - p is true again and again
 - From some point and on, either you see $\neg a$ now, or in the next step.

Figure 6: Automate two.

• The drink is served once the tokens reach the required number and the drinks is available

Answer: • GFp

- $FG(\neg a \lor X \neg a)$
- $(drink_available \land \neg tokens) \cup served$