1 pt

0.5 pt

1 pt

1 pt

0.5 pt

0.5 pt

01 pt

0.5 pt

1 pt

0.5 pt

0.5 pt

Correction d'exercice 1 : (6 pts)

Soit l'ensemble E définie par $E = \left\{ \frac{8}{n^2 + 2} : n \in \mathbb{N} \right\}$. Alors,

- **1 -** On a $\forall n \in \mathbb{N} : n^2 \ge 0$ $Rightarrown^2 + 2 \ge 2 \Rightarrow 0 < \frac{1}{n^2 + 2} \le \frac{1}{2} \Rightarrow 0 < \frac{8}{n^2 + 2} \le 4$. Alors, en on déduit que $E \subset]0,4]$, c'est-à-dire E est borné.
- **2 a)** Comme 4 est un majorant de E, car $\forall n \in \mathbb{N} : \frac{8}{n^2 + 2} \ge 4$ et $4 \in E$ (pour n = 0). Donc, $\sup(E) = 4$.
 - b) Dans ce cas là, en on déduit que $\max(E) = 4$, car $\sup(E) \in E$.
- **3** Maintenant, on montre que $\inf(E) = 0$.

a)
$$\inf(E) = 0 \Leftrightarrow \begin{cases} (i) & \forall u_n \in E & : u_n \ge 0 \\ (ii) & \forall \varepsilon > 0, \exists u_{n_0} \in E & : u_{n_0} < \varepsilon. \end{cases}$$

Tel que $u_n = \frac{8}{n^2 + 2}$.

D'après ce qui précédent (i) est évident, car $E \subset]0,4]$.

Montrons (ii). Soit $\varepsilon > 0$, alors, on a, $u_n \in E \Rightarrow \exists n \in \mathbb{N} : u_n = \frac{8}{n^2 + 2}$. Donc,

$$u_{n_0} < \varepsilon \Leftrightarrow \frac{8}{n_0^2 + 2} < \varepsilon \Leftrightarrow n_0^2 + 2 > \frac{8}{\varepsilon} \Leftrightarrow n_0^2 > \frac{8 - 2\varepsilon}{\varepsilon}, (\text{où } \varepsilon < 4) \Rightarrow n_0 > \sqrt{\frac{8 - 2\varepsilon}{\varepsilon}}$$

alors, d'après le théorème d'Archimède un tel naturel n_0 existe tel que $n_0 > \sqrt{\frac{8-2\varepsilon}{\varepsilon}}$.

On choisit, habituellement $n_0 = \max \left\{ 0, \left[\sqrt{\frac{8 - 2\varepsilon}{\varepsilon}} \right] + 1 \right\}$ pour garantir (ii).

b) $0 \notin E$, car si on pose $\frac{8}{n^2 + 2} = 0 \Rightarrow 8 = 0$. (Contradition). Donc, min(E) n'existe pas.

Correction d'exercice 2 : (7 pts)

Soient les suites (u_n) , (v_n) telles que $\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{4u_n + v_n}{5}, \end{cases}$ et $\begin{cases} v_0 = 2 \\ v_{n+1} = \frac{4v_n + u_n}{5}, \end{cases}$ et la suite (w_n) définie par $w_n = v_n - u_n$.

1 - a) On a pour tout $\forall n \in \mathbb{N}$:

$$w_{n} = v_{n} - u_{n} = \frac{4v_{n-1} + u_{n-1}}{5} - \frac{4u_{n-1} + v_{n-1}}{5} = \frac{3}{5}(v_{n-1} - u_{n-1}),$$

$$= \underbrace{\frac{3}{5} \times \frac{3}{5} \times \dots \times \frac{3}{5}}_{nfacteurs} \underbrace{(v_{0} - u_{0})}_{=1} = \left(\frac{3}{5}\right)^{n}.$$

Donc, (w_n) est une suite géométrique de raisan $q = \frac{3}{5}$

b)
$$\lim_{x\to 0} w_n = \lim_{x\to 0} \left(\frac{3}{5}\right)^n = 0$$
; car $|q| = \frac{3}{5} < 1$.

2 - On a
$$\forall n \in \mathbb{N} : v_n - u_n = \left(\frac{3}{5}\right)^n > 0 \Rightarrow n \in \mathbb{N} : v_n \ge u_n$$

	Correction d'Examen de Rattrapage
1 pt	3 - a_1) $u_{n+1} - u_n = \frac{4u_n + v_n}{5} - u_n = \frac{1}{5}(v_n - u_n) > 0$. Donc, (u_n) est strictement croissante sur \mathbb{N} .
1 pt	a_2) $v_{n+1} - v_n = \frac{4v_n + u_n}{5} - v_n = \frac{1}{5}(u_n - v_n) < 0$. Donc, (v_n) est strictement décroissante sur \mathbb{N} .
1 pt	b) Les suites (u_n) et (v_n) sont adjacentes, alors, elles admettent la même limite l .
0.5 pt	4 - la suite (z_n) définie par $z_n = v_n + u_n$. a) (z_n) constante $\Leftrightarrow \forall n \in \mathbb{N} : z_{n+1} - z_n = 0$ Donc, pour tout $n \in \mathbb{N}$, on a
	$z_{n+1} - z_n = v_{n+1} + u_{n+1} - (v_n + u_n),$
	$= (v_{n+1} - v_n) + (u_{n+1} - u_n) = \frac{1}{5}(u_n - v_n) + \frac{1}{5}(v_n - u_n) = 0.$
0.5 pt	Alors, (z_n) est constante, et on a $\forall n \in \mathbb{N} : z_n = z_0 = v_0 + u_0 = 3$.
1 pt	b) Comme, $\lim_{n \to +\infty} z_n = \lim_{n \to +\infty} v_n + \lim_{n \to +\infty} u_n \Rightarrow 2l = 3 \Rightarrow l = \frac{3}{2}$.
	Correction d'exercice 3 : (7 pts)
	Soit la fonction f définie par, $f(x) = \begin{cases} \frac{e^x - 1}{e^x + 1} & : x < 0 \\ 1 - e^x & : x \ge 0. \end{cases}$
0.5 pt	1 - f continuité au point $0 \Leftrightarrow \lim_{x \to 0} f(x) = f(0) = \lim_{x \to 0} f(x)$.
0.5 pt	On a $\lim_{\substack{x \to 0 \\ > >}} f(x) = \lim_{\substack{x \to 0 \\ > >}} (1 - e^x) = 0 = f(0)$, (f continue à droite de 0)
0.5 pt	On a aussi $\lim_{\substack{x\to 0\\<}} f(x) = \lim_{\substack{x\to 0\\<}} \frac{e^x-1}{e^x+1} = 0 = f(0)$, (f continue à gauche de 0)
0.5 pt	Alors, f est continue au point 0 et $\lim_{x\to 0} f(x) = 0 = f(0)$.
1 pt	2 - Au point 0. On utilisant la règle de l'Hopital. $\lim_{\substack{x \to 0 \\ <}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ <}} \frac{e^x - 1}{x(e^x + 1)} = \lim_{\substack{x \to 0 \\ <}} \frac{e^x}{e^x + 1 + xe^x} = \frac{1}{2} = f'_g(0).$
0.5 pt	De même manière, on aura, $\lim_{\substack{x \to 0 \\ >}} \frac{f(x) - f(0)}{x - 0} = \lim_{\substack{x \to 0 \\ >}} \frac{1 - e^x}{x} = \lim_{\substack{x \to 0 \\ >}} (-e^x) = -1 = f'_d(0).$
0.5 pt	Comme $f'_d(0) \neq f'_g(0)$. Alors, f n'est pas dérivable au point 0.
	3 - L'équation $f(x) = k$, $x \in [0, +\infty[$ tel que $k < 0$. a) D'une part, on a f est continue sur $[0, +\infty[$, car elle est somme deux fonctions continues
1 pt	$\operatorname{sur} \mathbb{R}, (x \mapsto 1, x \mapsto -e^x).$
0.5 pt	D'autre par, on a aussi, $f(0) = 0$, et $\lim_{x \to +\infty} f(x) = -\infty$. Donc $-\infty < k < 0$. Alors, d'après théorès des valeurs intermédiaires $\exists c \in]0, +\infty[: f(c) = k$.
0.5 pt	(L'unicité): On a f est srrictement décroissante sur $[0, +\infty[$, car $\forall x \in [0, +\infty[=f'(x)=-e^x<0]$. Donc, la solution c est unique.
1 pt	b) $f(x) = k \Leftrightarrow 1 - e^x = k \Leftrightarrow e^x = 1 - k > 0 \Leftrightarrow x = \ln(1 - k).$
	FIN.

2/2

Dr: Dahmane Bouafia

Université de M'sila \star MI \star Socle Commun