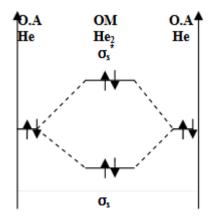

Solution TDN°6

Exercice 1:

L'indice (ou nombre) de liaison est : $i = 1/2(n-n^*) = 1/2(1-0) = \frac{1}{2}$

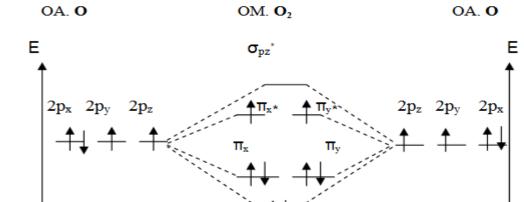
$$\mathbf{H_2}^+ : \boldsymbol{\sigma_s}^1$$



L'indice de liaison est $i = 1/2(2-1) = \frac{1}{2}$ $He_2^+: \sigma_s^2 \sigma_s^{*1}$

H H₂ H

$$\sigma_s$$


L'indice de liaison de est i = 1/2(2-0) = 1 $\mathbf{H_2}: \sigma_s^2$

L'indice de liaison de est i =1/2(2-2) = 0 $\mathbf{He_2}$: $\sigma_s^2 \sigma_s^{*2}$

Exercice 2

La structure électronique de O_2 est : $\sigma_s^2 \sigma_s^{*2} \sigma_{pz}^2 (\pi_x^2 = \pi_y^2) (\pi_x^{*1} = \pi_y^{*1})$ L'indice de liaison est : $i(O_2) = \frac{1}{2}(n-n^*) = \frac{1}{2}(8-4) = 2$

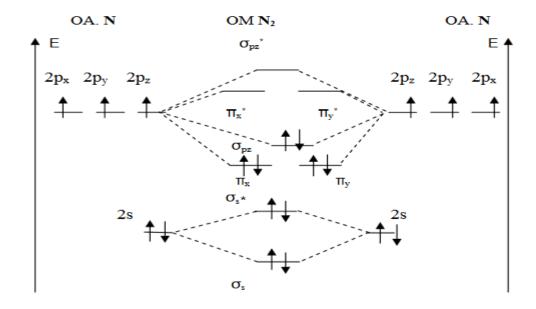
σ,

- 2. Structure électronique des ions moléculaires suivants : O_2^- ; O_2^+ et O_2^{2-}
 - La structure électronique de O2 est :

2s

$$\sigma_{s}^{2} \ \sigma_{s}^{*2} \ \sigma_{pz}^{2} \ (\pi_{x}^{2} \! = \! \pi_{y}^{2}) \ (\pi_{x}^{*2} \! = \! \pi_{y}^{*1})$$

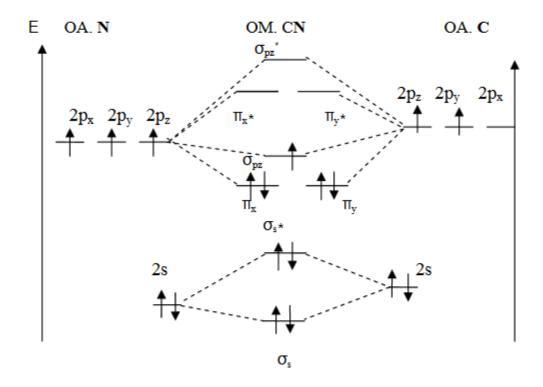
- La structure électronique de ${\rm O_2}^2$ est :


$$\sigma_{s}^{\;2}\;\sigma_{s}^{\;*2}\;\sigma_{pz}^{\;\;2}\;(\pi_{x}^{\;2}\!=\!\pi_{y}^{\;2})\;(\pi_{x}^{\;*2}\!=\!\;\pi_{y}^{\;*2})$$

-La structure électronique de O2+ est :

$$\sigma_{s}^{2} \sigma_{s}^{*2} \sigma_{pz}^{2} (\pi_{x}^{2} = \pi_{y}^{2}) \pi_{x}^{*1}$$

Exercice 3.


1. $N(Z = 7) : 1s^2 2s^2 2p^3$

La structure électronique de la molécule N_2 est : $\sigma_s^{~2}\,\sigma_s^{~*2}\,(\pi_x^{~2}=\pi_y^{~2})\,\sigma_{pz}^{~2}$

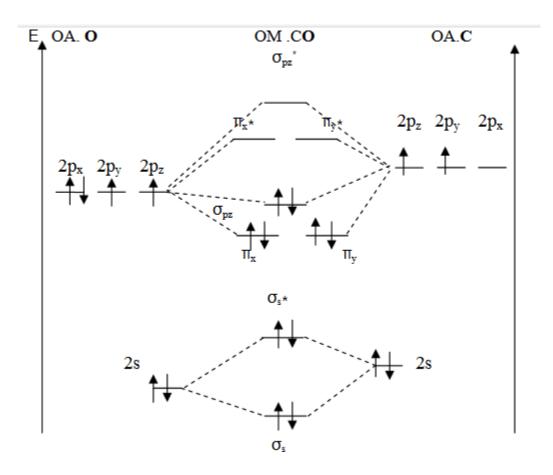
$$N(Z = 7) : 1s^2 2s^2 2p^3$$

$$C(Z = 6) : 1s^2 2s^2 2p^2$$

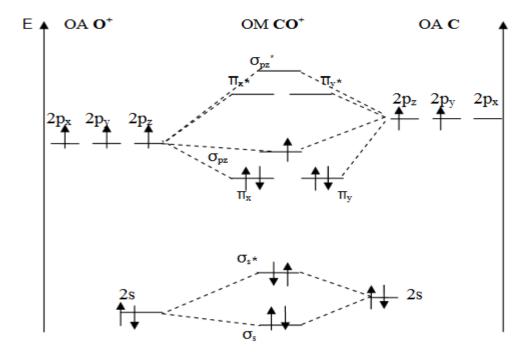
La structure électronique de la molécule CN est : $\sigma_s^2 \sigma_s^{*2} (\pi_x^2 = \pi_y^2) \sigma_{pz}^{-1}$

Les propriétés magnétiques de N₂ et CN.

La présence d'électron célibataire sur les orbitales moléculaires de CN rend cette molécule paramagnétique.

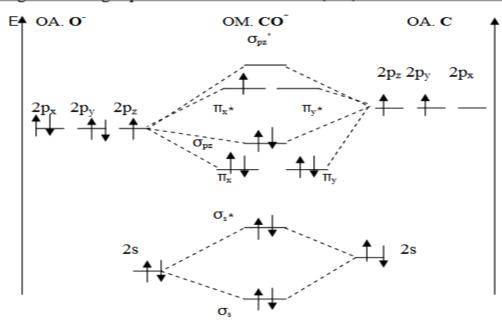

Par contre dans la molécule N_2 , nous trouvons que les électrons sont appariés ; ce qui confère à N_2 un caractère diamagnétique.

Exercice 4:


 $C(Z = 6) : 1s^2 2s^2 2p^2$

O (Z = 8): $1s^2 2s^2 2p^4$

L'atome d'oxygène O est plus électronégatif que l'atome du carbone. Les énergies des OA de l'oxygène sont donc plus faibles que celles du carbone. Le diagramme énergétique, dans ce cas, est asymétrique.



La structure électronique de la molécule CO est : $\sigma_s^2 \sigma_s^{*2} ((\pi_x^2 = \pi_y^2) \sigma_{pz}^2$ L'indice de liaison est : $i(CO) = \frac{1}{2}(8-2) = 3$

La structure électronique de la molécule CO^+ est : $\sigma_s^2 \sigma_s^{*2} (\pi_x^2 = \pi_y^2) \sigma_{pz}^{-1}$ L'indice de liaison est : $i (CO^+) = \frac{1}{2}(7-2) = 2,5$

Diagramme énergétique des orbitales moléculaires (OM) de la molécule de CO

La structure électronique de la molécule CO est :

$$\sigma_{s}^{2} \sigma_{s}^{*2} (\pi_{x}^{2} = \pi_{y}^{2}) \sigma_{pz}^{2} \pi_{x}^{*1}$$

L'indice de liaison est : i (CO') = $\frac{1}{2}(8-3) = 2,5$