Université Mohamed Boudiaf –Msila Faculté de Technologie Département de Génie électrique

Option: AUT, ELM, ELT

Matière : Electrotechnique Fondamentale 1

Niveau d'étude : 2^{ème} année Année universitaire : 2020-2021

Semestre: 03

TD N°7: Transformateur monophasé

Exercice 01:

Soit un transformateur parfait 380V/220 V 50 Hz de puissance apparente nominale S=2 kVA.

- 1. Calculer les courants nominaux $I_{\scriptscriptstyle 1N}$, $I_{\scriptscriptstyle 2N}$ et le rapport de transformation m .
- 2. La charge inductive est constituée d'une résistance R=20 Ω en série avec une inductance L=50mH . Calculer l'impédance de la charge et son facteur de puissance .
- 3. En déduire les courants du transformateur et la puissance active fournie.

Exercice 02:

La puissance apparente d'un transformateur monophasé 5.0~kV / 230~V ; 50~Hz est S=21~kVA. La section du circuit magnétique est $s=60~cm^2$ et la valeur maximale du champ magnétique T~B=1.1).

L'essai à vide a donné les résultats suivants : $U_1 = 5\,000\,V$; $U_{20} = 230\,V$; $I_{10} = 0,50\,A$ et $P_{10} = 250\,W$.

L'essai en court-circuit avec $I_{2CC} = I_{2n}$ a donné les résultats suivants : $P_{1CC} = 300$ W et $U_{1CC} = 200$ V.

- 1- Calculer le nombre de spires N₁ au primaire.
- 2- Calculer le rapport de transformation m et le nombre N₂ de spires au secondaire.
- 3- Quel est le facteur de puissance à vide de ce transformateur ?
- 4- Quelle est l'intensité efficace du courant secondaire I_{2n} ?
- 5- Déterminer les éléments R_S ; Z_S et X_S de ce transformateur.
- 6- Calculer le rendement de ce transformateur lorsqu'il débite un courant d'intensité nominale dans une charge inductive de facteur de puissance 0,83.

Exercice 03:

L'étude d'un transformateur monophasé a donné les résultats suivants : Mesure en continu des résistances des enroulements à la température de fonctionnement : $r1 = 0.2 \Omega$ et $r2 = 0.007 \Omega$.

Essai à vide : $U_1 = U_{1n} = 2300 \text{ V}$; U20 = 240 V ; $I_{10} = 1,0 \text{ A et } P_{10} = 275 \text{ W}$.

Essai en court-circuit : $U_{ICC} = 40 \text{ V}$; $I_{2CC} = 200$.

- 1- Calculer le rapport de transformation m.
- 2- Montrer que dans l'essai à vide les pertes Joule sont négligeables devant P₁₀.
- 3- Déterminer la valeur de la résistance ramenée au secondaire RS.
- 4- Calculer la valeur de P_{1CC}.
- 5- Déterminer X_S.
- 6- Déterminer par la méthode de votre choix, la tension aux bornes du secondaire lorsqu'il débite un courant d'intensité $I_2 = 180$ A dans une charge capacitive de facteur de puissance 0,9.
- 7- Quel est alors le rendement.

Exercice 04:

Les essais d'un transformateur monophasé ont donné les résultats suivants :

Essai à vide sous tension primaire nominale : $U_{1n} = 2,20 \text{ kV}$; f = 50 Hz ; Valeur efficace de l'intensité du courant mesuré au primaire : $U_{20} = 230 \text{ V}$; Puissance active mesurée au primaire : $P_{10} = 700 \text{ W}$;

Essai en court-circuit sous tension primaire réduite : $U_{1cc} = 130 \text{ V}$; $I_{2cc} = 200 \text{A}$ et $P_{1cc} = 1,50 \text{ kW}$.

- 1- Proposer un schéma de câblage du transformateur permettant lors de l'essai à vide, avec tous les appareils pour mesurer I_{10} , U_{20} , P_{10} en indiquant le type d'appareil choisi.
- 2- Calculer le rapport de transformation m.
- 3- Calculer le facteur de puissance du transformateur lors de l'essai à vide.
- 4- On note I1m la valeur efficace de la composante réactive de l'intensité I10. Calculer I1m (appelé parfois courant magnétisant).

Exercice 05:

Sur la plaque signalétique d'un transformateur monophasé de sécurité on relève :380V/24V; 2,5 kVA On réalise les essai suivant :

- Essai à vide sous U_{1n} =380V on relève : U_{2v} =25V P_{1v} =60 W I_{1v} =0,6A .
- Essai en courant continu $U_1=6V$ pour $I_1=6A$ et $U_2=0,37$ V pour $I_2=100$ A.
- Essai en court-circuit sous U_{1cc} =16V on relève P_{1cc} =80 W I_{2cc} = 100A .
- Essai en charge sous U_{1n} =380 V on relève U_2 = 24V , I_2 =100A avec $\cos \varphi_2$ =0.8 AR (i_2 en retard sur u_2).

1. Caractéristiques de la plaque signalétique :

Calculer les courants nominaux du transformateur.

2. Essai en courant continu :

- 2.1. Donner le schéma du montage et le type des appareils utilisés.
- **2.2.** Quel est le rôle de cet essai (justifier) .Que peut-on en déduire ?

3. Essai à vide :

- 3.1. Donner le schéma du montage.
- **3.2.** A quoi correspond P_{1v} ?(Justifier) . Quelle est la relation entre P_{1v} et U_1 . Calculer le rapport de transformation .

4. Essai en court-circuit:

- 4.1. Donner le schéma du montage,
- **4.2.** A quoi correspond P_{1cc} ? Comment varie P_{1cc} avec I_{2cc} (Justifier).
- **4.3.** Calculer la résistance Rs de 2 façons .
- **4.4.**Donner le schéma équivalent du transformateur en court-circuit et en déduire Zs et la réactance Xs du modèle équivalent du transformateur vu au secondaire .

5. Essai en charge .

5.1. Rappeler le modèle équivalent du transformateur vu au secondaire dans l'hypothèse de Kapp.

Donner l'équation correspondante . Donner l'allure du diagramme vectoriel .

5.2. Calculer la chute de tension absolue et relative (en %) à partir des mesures .

 5.3. Calculer les puissances au secondaire, au primaire et le rendement du transformateur. 5.4. La charge du transformateur est constituée d'une résistance Rc en série avec une inductance Lc. Calculer l'impédance complexe de charge Zc (On écrira les 2 formes) et en déduire les valeurs de Rc et Lc.