CPS 230

DESIGN AND ANALYSIS
OF ALGORITHMS

Fall 2008

Instructor:Herbert Edelsbrunner
Teaching AssistanZhigiang Gu



CPS 230 Fall Semester of 2008

Table of Contents

1 Introduction 3 \% GRAPH ALGORITHMS 45
| DESIGN TECHNIQUES 4 13 Graph Search 46
14  Shortest Paths 50
2 Divide-and-Conquer 5 15 Minimum Spanning Trees 53
3 Prune-and-Search 8 16 Union-Find 56
4 Dynamic Programming 11 Fourth Homework Assignment 60
5 Greedy Algorithms 14
First Homework Assignment 17 V TOPOLOGICALALGORITHMS 61
Il SEARCHING 18 17 Geometric Graphs 62
18 Surfaces 65
6 Binary Search Trees 19 19 Homology 68
7 Red-Black Trees 22 Fifth Homework Assignment 72
8 Amortized Analysis 26
9 Splay Trees 29 VI GEOMETRICALGORITHMS 73
Second Homework Assignment 33
20 Plane-Sweep 74
1" PRIORITIZING 34 21 Delaunay Triangulations 77
22 Alpha Shapes 81
10 Heaps and Heapsort 35 Sixth Homework Assignment 84
11 Fibonacci Heaps 38
12 Solving Recurrence Relations 41 VI NP-COMPLETENESS 85
Third Homework Assignment 44
23 Easy and Hard Problems 86
24  NP-Complete Problems 89
25 Approximation Algorithms 92

Seventh Homework Assignment 95



1 Introduction Overview. The main topics to be covered in this course

are
Meetings. We meet twice a week, on Tuesdays and . .
Thursdays, from 1:15 to 2:30pm, in room D106 LSRC. | Design Techniques;
Il Searching;
Communication. The course material will be delivered Il Prioritizing;

in the two weekly lectures. A written record of the lec- |V Graph Algorithms;
tures will be available on the web, usually a day after the
lecture. The web also contains other information, such as
homework assignments, solutions, useful links, etc. The VI Geometric Algorithms;

V Topological Algorithms;

main supporting text is VIl NP-completeness.
TARJAN. Data Structures and Network AlgorithmSIAM, . ) ) )
1983, The emphasis will be on algoritheesignand on algo-

rithm analysis For the analysis, we frequently need ba-
sic mathematical tools. Think of analysis as the measure-
ment of the quality of your design. Just like you use your
sense of taste to check your cooking, you should get into
the habit of using algorithm analysis to justify design de-
KLEINBERG AND TARDOS. Algorithm Design.Pearson Ed- cisions when you write an algorithm or a computer pro-
ucation, 2006. gram. This is a necessary step to reach the next level in
mastering the art of programming. | encourage you to im-
plement new algorithms and to compare the experimental

Examinations. There will be a final exam (covering the e rformance of your program with the theoretical predic-
material of the entire semester) and a midterm (at the be- gained through analysis.

ginning of October), You may want to freshen up your
math skills before going into this course. The weighting
of exams and homework used to determine your grades is

The book focuses on fundamental data structures and
graph algorithms, and additional topics covered in the
course can be found in the lecture notes or other texts in
algorithms such as

homework 35%,
midterm 25%,
final 40%.

Homework. We have seven homeworks scheduled
throughout this semester, one per main topic covered in
the course. The solutions to each homework are due one
and a half weeks after the assignment. More precisely,
they are due at the beginning of the third lecture after the
assignment. The seventh homework may help you prepare
for the final exam and solutions will not be collected.

Rule 1. The solution to any one homework question must
fit on a single page (together with the statement of the
problem).

Rule 2. The discussion of questions and solutions before
the due date is not discouraged, but you must formu-
late your own solution.

Rule 3. The deadline for turning in solutions is 10 min-
utes after the beginning of the lecture on the due date.



| DESIGN TECHNIQUES

a b~ wWN

Divide-and-Conquer
Prune-and-Search

Dynamic Programming
Greedy Algorithms

First Homework Assignment



2 Divide-and-Conquer

We use quicksort as an example for an algorithm that fol- iT T T T T . q‘ ‘i
lows the divide-and-conquer paradigm. It has the repu-

tation of being the fasted comparison-based sorting algo- 3 5 4 2 1 4 E
rithm. Indeed it is very fast on the average but can be slow iT T T‘ T‘j

for some input, unless precautions are taken.

The algorithm. Quicksort follows the general paradigm Tm

of divide-and-conquer, which meansdivides the un-

sorted array into two, itecurseson the two pieces, and it Figure 1: First,i and; stop at items 9 and 1, which are then
finally combinesthe two sorted pieces to obtain the sorted swapped. Secondand; cross and the pivot, 7, is swapped with
array. An interesting feature of quicksort is that the dévid  item 2.

step separates small from large items. As a consequence,

combining the sorted pieces happens automatically with-

out doing anything extra. Special cases (i) and (iii) are ok but case (ii) requires a

stopper atd[r + 1]. This stopper must be an item at least
as large ag. If r < n — 1 this stopper is automatically
given. Forr = n — 1, we create such a stopper by setting
Aln] = 4o0.

voi d QUICKSORT(i nt £,7)
if ¢<rthenm=SpLT((r);
QUICKSORT(¢,m — 1);
QUICKSORT(m + 1,7)

endi f. Running time. The actions taken by quicksort can be

expressed using a binary tree: each (internal) node repre-
sents a call and displays the length of the subarray; see
Figure 2. The worst case occurs whéris already sorted.

We assume the items are storeddift)..n — 1]. The array
is sorted by calling QICKSORT(0, — 1).

Splitting. The performance of quicksort depends heav- |
ily on the performance of the split operation. The effect of |

CT T 1T 11 [J
splitting from/ to r is: O LT T
CT 1 1T
e 1 = A[{] is moved to its correct location at[m]; I I

e noiteminA[l..m — 1] is larger thany;

e noiteminA[m + 1..r] is smaller than. Figure 2: The total amount of time is proportional to the sum
of lengths, which are the numbers of nodes in the correspgndi
Figure 1 illustrates the process with an example. The nine subtrees. In the displayed case this sum is 29.
items are split by moving a pointerfrom left to right
and another pointer from right to left. The process stops  In this case the tree degenerates to a list without branch-
wheni andj cross. To get splitting right is a bit delicate, ing. The sum of lengths can be described by the following
in particular in special cases. Make sure the algorithm is recurrence relation:
correct for (i)« is smallest item, (i) is largest item, (iii) " +1
all items are the same. — _1) = N
T(n) = n+T(n—-1) = ;z = ( 5 )
int SPLIT(int ¢,7)
z=A[l); i=¢ j=r+1; The running time in the worst case is therefore im®).
repeat repeat i++until = < A[i;
repeat j-- until = > A[j];
i f i<jthenSwapr(i,j)endif
until 7> j; n—1
SWAP(Z,5); return j. I(n) = ”+2'T( B )

In the best case the tree is completely balanced and the
sum of lengths is described by the recurrence relation




If we assume: = 2¥ — 1 we can rewrite the relation as By assumption on functiorSpLIT, the probability for
eachm € [0,n — 1] is L. Therefore the average sum

Uk) = F—1D+2.Uk-1) of array lengths split by QICKSORT is
= P 4+20@ -1 +...+212-1)
b1 1 n—1
_ k_2k_22i T(n) = n—l—ﬁ-Z(T(m)—i—T(n—m—l)).
i=0 m=0
= 2" k(2" -1) N : , : )
To simplify, we multiply withn and obtain a second rela
= (n+1)-logy(n+1)—n. tion by substitutingz — 1 for n:
The running time in the best case is therefore in n—1
O(nlogn). n-T(n) = n?+2-% T(i), (1)
=0
n—2
Randomization. One of the drawbacks of quicksort, as (n—1)-Tn-1) = (n—1)2+2. Z T(3). (2)
described until now, is that it is slow on rather common i=0

almost sorted sequences. The reason are pivots that tend

to create unbalanced splittings. Such pivots tend to oc- Next we subtract (2) from (1), we divide by(n + 1), we
cur in practice more often than one might expect. Hu- use repeated substitution to exprdgs) as a sum, and
man and often also machine generated data is frequentlyfinally split the sum in two:

biased towards certain distributions (in this case, peamut

tions), and it has been said that 80% of the time or more, T(n) T(n—1) on—1
sorting is done on either already sorted or almost sorted n+1 n n(n+1)
files. Such situations can often be helped by transferring T(n—2) o — 3 o —1

the algorithm’s dependence on the input data to internally =
made random choices. In this particular case, we use ran- .
domization to make the choice of the pivot independent of - Z 2i—1

n—1 +(n—1)n+n(n+1)

the input data. AssumeARIDOM (4, ) returns an integer —~i(i+1)
p € [¢,r] with uniform probability: - ) " )
1 B 2'Zi+1_zi(z‘+1)‘
ProgRANDOM (¢, 1) = p] = ——— i=1 i=1

r—f0+1

for each? < p < r. In other words, each € [(,7] is . . .
equally likely. The following algorithm splits the array Bounding the sums. The second sum is solved directly

with a random pivot: by transformation to a telescoping series:

i nt RSPLIT(i Nt £, 7) i 1 _ zn: (1 1 )
p = RANDOM (¢, 1); SWAP(Z, p); P i(i+1) —~\i i+l
return SPLIT(L, ). 1

=1 n+1

We get arandomizedimplementation by substituting

RSPLIT for SPLIT. The behavior of this version of quick-  The first sum is bounded from above by the integral-of
sort depends op, which is produced by a random number  for ; ranging from 1 ton + 1; see Figure 3. The sum
generator. of HLl is the sum of areas of the shaded rectangles, and

because all rectangles lie below the grapi’%ofve get a

Average analysis. We assume that the items.i{0..n — bound for the total rectangle area:

1] are pairwise different. The pivot split$ into

n

1 " dy
Z. < / — = In(n+1).
Al0.m —1], Alm], Alm+ 1l.n—1]. 1+ 1 1 x

=1




1/x

1 2 3 4

Figure 3: The areas of the rectangles are the terms in the sum,
and the total rectangle area is bounded by the integral from 1
throughn + 1.

We plug this bound back into the expression for the aver-
age running time:

n

T(n) < (n+1)-zz_i1
< 2-(n—|—1)_-1n(n+1)

“(n+1)-logy(n+1).

log, e

In words, the running time of quicksort in the average case
is only a factor of abou/ log, e = 1.386 . . . slower than

Summary. Quicksort incorporates two design tech-
niques to efficiently sort. numbers: divide-and-conquer
for reducing large to small problems and randomization
for avoiding the sensitivity to worst-case inputs. The av-
erage running time of quicksort is in(@logn) and the
extra amount of memory it requires is in(Iogn). For
the deterministic version, the average is overrallper-
mutations of the input items. For the randomized version
the average is the expected running time dgeryinput
sequence.

in the best case. This also implies that the worst case can-

not happen very often, for else the average performance

would be slower.

Stack size. Another drawback of quicksort is the recur-
sion stack, which can reach a sizeofn) entries. This
can be improved by always first sorting the smaller side
and simultaneously removing the tail-recursion:

voi d QUICKSORT(i nt £,7)
i=4 j=r,
whilei<jdo
m = RSPLIT(4,7);
ifm—i<j—m
t hen QUICKSORT(i,m —1);i=m+ 1
el se QUICKSORT(m + 1,j);j=m—1
endi f
endwhi | e.

In each recursive call to QCK SORT, the length of the ar-
ray is at most half the length of the array in the preceding
call. This implies that at any moment of time the stack
contains no more thah-+ log, n entries. Note that with-
out removal of the tail-recursion, the stack can re@¢h)
entries even if the smaller side is sorted first.



3 Prune-and-Search is even. The expected running time increases with increas-
ing number of itemsT'(k) < T'(m) if & < m. Hence,

We use two algorithms for selection as examples for the L&

prune-and-search paradigm. The problem is to find the T(n) < n+ — Z max{T'(m—1),T(n—m)}

i-smallest item in an unsorted collection ofitems. We "=

could first sort the list and then return the item in thi 9 X

position, but just finding the-th item can be done faster < nt— Z T(m—1).

than sorting the entire list. As a warm-up exercise consider m=5+1

i&llectl]ng the 1-st or smallest item in the unsorted array Assume inductively thal’(m) < em for m < n and

a sufficiently large positive constant Such a constant
) ¢ can certainly be found fom = 1, since for that case
mun = L the running time of the algorithm is only a constant. This
for j=2tondo S establishes the basis of the induction. The caseitgms

i f A[j] < A[min]thenmin = jendi f reduces to cases of < n items for which we can use the

endf or . induction hypothesis. We thus get
The index of the smallest item is found in— 1 com- 2 <

. . . . . < — —
parisons, which is optimal. Indeed, there is an adversary T(n) < n+ Z m—1

argument, that is, with fewer than— 1 comparisons we
can change the minimum without changing the outcomes = n+c-(n-1)—=- (_ + 1)
of the comparisons.

n 3c 3c

— n _—-n - —

4 2

Randomized selection. We return to finding thei- Assuminge > 4 we thus havel'(n) < cn as required.
smallest item for a fixed but arbitrary integers : < n, Note that we just proved that the expected running time of

which we call therank of that item. We can use the split-  zge| ecTis only a small constant times that RSPLIT.

ting function of quicksort also for selection. As in quick-  \jore precisely, that constant factor is no larger than four.
sort, we choose a random pivot and split the array, but we

recurse only for one of the two sides. We invoke the func- o _ . _
tion with the range of indices of the current subarray and Deterministic selection. The randomized selection al-
the rank of the desired iten, Initially, the range consists ~ gorithm takes time proportional to? in the worst case,

of all indices betwee = 1 andr = n, limits included. for example if each splitis as unbalanced as possible. It is
however possible to select in @)(time even in the worst
i nt RSELECT(i nt £, 7, %) case. Thenedianof the set plays a special role in this al-
q=RSPLIT(L,r);m=q— 0+ 1; gorithm. Itis defined as thesmallestitem where= 21
i f i <mthenreturnRSELECT((,q — 1,%) if nis odd and = %_or 242 if n is even. The determinis-
el seif i=mthenreturng tic algorithm takes five steps to select:
el sereturnRSELECT(¢+ 1,7,4— m) - ) ) )
endi f . Step 1. Partition then items into [g} groups of size

at most 5 each.

For small sets, the algorithm is relatively ineffective and Step 2. Find the median in each group.

its running time can be improved by switching over to step 3. Find the median of the medians recursively.

sorting when the size drops below some constant thresh—St ep 4. Splitthe array using the median of the medians
old. On the other hand, each recursive step makes some as the pivot

progress so that termination is guaranteed even without ) )
special treatment of small sets. St ep 5. Recurse on one side of the pivot.

It is convenient to definé = [%£] and to partition such
Expected running time. For eachl < m < n, the that each group consists of items that are multipleg of
probability that the array is split into subarrays of sizes positions apart. This is what is shown in Figure 4 provided

m—1andn—mis % For convenience we assume that ~ we arrange the items row by row in the array.



the array so we can safely use the deterministic version of

o o o O O 0o O O O o

O 0 0 0 0 0 0 0 0 splting.

© O O O @] O O O O]

o o o O | o o O O Worst-case running time. To simplify the analysis, we
o O O O |0 O O assume thah is a multiple of 5 and ignore ceiling and

floor functions. We begin by arguing that the number of

Figure 4: The 43 items are partitioned into seven groups oftb a items less than or equal to the median of medians is at least
two groups of 4, all drawn vertically. The shaded items age th ?{—8. These are the first three items in the sets with medians
medians and the dark shaded item is the median of medians.  less than or equal to the median of medians. In Figure 4,
these items are highlighted by the box to the left and above
but containing the median of medians. Symmetrically, the
number of items greater than or equal to the median of
medians is at Ieaﬁ%. The first recursion works on a set

of £ medians, and the second recursion works on a set of

5
at mostZ2 items. We have

Implementation with insertion sort. We use insertion
sort on each group to determine the medians. Specifically,
we sort the items in positiorts ¢+ k, £+ 2k, £+ 3k, £+ 4k

of array A, for each¢.

voi d ISORT(int ¢, k,n) n ™
Fn T(n) < ”*T(S)“F(E)'
whilej<ndoi=y;
whilei>¢and Afi] > Afi — k] do We proveT' (n) = O(n) by induction assuming’(m) <
SWAP(i,i — k), i=1i—k c-mform < n andc a large enough constant.
endwhi | e; .
j=J+k T(n) < Nt e n+—-n
endwhi | e. 5 10
(+5)
. ) o i = 1+— | -n
Although insertion sort takes quadratic time in the worst 10

case, it is very fast for small arrays, as in this applica-
tion. We can now combine the various pieces and write

the selection algorithm in pseudo-code. Starting with the littingl th Th tant is about tw d a half
code for the randomized algorithm, we first remove the spitiing the array. The constant 1S about two and a ha
times the one for the randomized selection algorithm.

randomization and second add code for Steps 1, 2, and 3.
Recall that is the rank of the desired item iA[(..r]. Af- A somewhat subtle issue is the presence of equal items
ter sorting the groups, we have their medians arranged inin the input collection. Such occurrences make the func-
the middle fifth of the arrayA[¢ 4 2k..¢ + 3k — 1], and we tion SPLIT unpredictable since they could occur on either
compute the median of the medians by recursive applica- side of the pivot. An easy way out of the dilemma is to

Assuminge > 10 we havel' (n) < cn, as required. Again
the running time is at most some constant times that of

tion of the function. make sure that the items that are equal to the pivot are
treated as if they were smaller than the pivot if they occur
i Nt SELECT(int ¢,7,4) in the first half of the array and they are treated as if they
k={[(r—¢+1)/5]; were larger than the pivot if they occur in the second half
for j=0tok—1do ISORT({ + j,k,r) endf or; of the array.

m’ = SELECT( + 2k, 0+ 3k — 1, [ (k+1)/2]);
SWAP(¢,m'); ¢ = SPLIT({,r); m=qg—L+1;
ifi<mthenreturn SELECT({, ¢ — 1,9)
elseif i=mthenreturng
el sereturn SELECT(q + 1,7,i — m)
endi f.

Summary. The idea of prune-and-search is very similar
to divide-and-conquer, which is perhaps the reason why
some textbooks make no distinction between the two. The
characteristic feature of prune-and-search is that therrec
sion covers only a constant fraction of the input set. As we
Observe that the algorithm makes progress as long as therglave_ seenin the analysis, this difference implies a better
are at least three items in the set, but we need special treatfUnning time.

ment of the cases of one or of two items. The role of the Itis interesting to compare the randomized with the de-
median of medians is to prevent an unbalanced split of terministic version of selection:



¢ the use of randomization leads to a simpler algorithm
but it requires a source of randomness;

e upon repeating the algorithm for the same data, the
deterministic version goes through the exact same
steps while the randomized version does not;

e we analyze the worst-case running time of the deter-
ministic version and the expected running time (for
the worst-case input) of the randomized version.

All three differences are fairly universal and apply to athe
algorithms for which we have the choice between a deter-
ministic and a randomized implementation.

10



4 Dynamic Programming anm-character string[1..m| and ann-character string
BJ[1..n]. Let E(i, j) be the edit distance between the pre-

Sometimes, divide-and-conquer leads to overlapping sub-fixes of lengthi andj, that s, betweerl[1..i] and B(1..j].
problems and thus to redundant computations. It is not The edit distance between the complete strings is therefore

uncommon that the redundancies accumulate and cause® (7, 7). A crucial step towards the development of this
an exponential amount of wasted time. We can avoid &lgorithm is the following observation about the gap rep-
the waste using a simple ideaplve each subproblem  fésentation of an optimal edit sequence.

only once To be able to do that, we have to add a cer-
tain amount of book-keeping to remember subproblems
we have already solved. The technical name for this de-
sign paradigm islynamic programming

PREFIX PROPERTY If we remove the last column of an
optimal edit sequence then the remaining columns
represent an optimal edit sequence for the remaining
substrings.

Edit distance. We illustrate dynamic programming us- We can easily prove this claim by contradiction: if the
ing the edit distance problem, which is motivated by ques- substrings had a shorter edit sequence, we could just glue
tions in genetics. We assume a finite setchfracters the last column back on and get a shorter edit sequence for
or letters X, which we refer to as thalphabet and we the original strings.

considesstringsor wordsformed by concatenating finitely
many characters from the alphabet. Tduit distancebe-
tween two words is the minimum number of letter inser-
tions, letter deletions, and letter substitutions recliie@
transform one word to the other. For example, the edit
distance betweeR00D andMONEY is at most four:

Recursive formulation. We use the Prefix Property to
develop a recurrence relation f@&f. The dynamic pro-
gramming algorithm will be a straightforward implemen-
tation of that relation. There are a couple of obvious base
cases:

FOOD — MOOD — MOND — MONED — MONEY ] _ _ _
e Erasing: we need deletions to erase ancharacter

A better way to display the editing process is tfap rep- string, £(i, 0) = .
resentatiorthat places the words one above the other, with o Creating: we need; insertions to create g-
a gap in the first word for every insertion and a gap in the character stringf (0, j) = j.

second word for every deletion:

In general, there are four possibilities for the last column

F 00 D in an optimal edit sequence.

M 0 N E Y

Columns with two different characters correspond to sub- ¢ IEns'er_uoE.Ethe.Ias{ entlry in the top row is empty,

stitutions. The number of editing steps is therefore the (4,5) = EG.j = 1) + 1.

number of columns that do not contain the same character ® Deletion: the last entry in the bottom row is empty,

twice. E(i,j)=E(—-1,j)+1

e Substitution: both rows have characters in the last
column that are differentf(i,j) = E(i — 1,5 —

1)+ 1.
e No action: both rows end in the same character,

Prefix property. It is not difficult to see that you cannot
get fromF00D to MONEY in less than four steps. However,
for longer examples it seems considerably more difficult
to find the minimum number of steps or to recognize an E(i,j) = E(i—1,j—1).

optimal edit sequence. Consider for example , . ) )
Let P be the logical propositioni[i] # B[j] and denote

T H M by | P|its indicator variable}P| = 1if PistrueandP| =
T I C 0 if P is false. We can now summarize and 105 > 0
get the edit distance as the smallest of the possibilities:

AAL G 0O R I
A L T R U I S

Is this optimal or, equivalently, is the edit distance bedtwe

ALGORITHM and ALTRUISTIC six? Instead of answering . | BG4
this specific question, we develop a dynamic program- E(i,j) = min E(’_ - 1,2) +1
ming algorithm that computes the edit distance between E(—1,j—-1)+|P|

11



The algorithm. If we turned this recurrence relation di- A L I R U I S 1 1 ¢C
rectly into a divide-and-conquer algorithm, we would have

the following recurrence for the running time: 0125345 6> 7—s B9 —10
1
T(m,n) = T(m,n—1)+T(m—1,n) A 1 1—2—5354—>556>7> 8> 9
+T(m—-1n-1)+1 L % 1 1—2—3—4— 5> 6 7— 8
_ _ _ o Il NN ON N N N N
The solution to this recurrence is exponentiahirandn, G 3 2|1 1—-2—3—-4—5—>6—>7—38
which is clearly not the way to go. Instead, let us build 0 }‘ % g\g\ 2> 3> 4> 5> 6> 7> 8
anm + 1 timesn + 1 table of possible values df(i, j). [N N N N N NN
We can start by filling in the base cases, the entries in the R 5 4 3 3 3245678
0-th row and column. To fill in any other entry, we need 1IN . E
. ) 6 5 4 4 3 3 4— 546 7
to know the values directly to the left, directly above, and Ll INVIN =
both to the left and above. If we fill the table fromtopto T 7 6 5 4 4 4 4 5 6
bottom and from left to right then whenever we reach an H }3 % % ‘ g\ 15\ ls\ 15\ 5 5> 6
entry, the entries it depends on are already available. [ A AN AN AN AN AN AN
M 9 8 7 6 6 6 6 6 6 6 6
i nt EDITDISTANCE(int m,n)
for i=0tomdo E[i,0] =iendfor; Figure 5: The table of edit distances between all prefixes of
for j=1tondo E[0,j] = jendfor; ALGORITHM and of ALTRUISTIC. The shaded area highlights the
fori=1tomdo optimal edit sequences, which are paths from the upperdeft t
for j=1tondo the lower right corner.
Eli,j] = min{E[i,j — 1]+ 1,E[i — 1,j] + 1,
o PEoLI=1+140 £ BGD Ll con 1 ToHu
endfor : AL T R U I S TTIC
return E[m,n]. AL GO R I T OH M

. L A L T R U I S T I C
Since there arén+1)(n+1) entries in the table and each

takes a constant time to compute, the total running time is They are easily recovered by tracing the paths backward,
in O(mn). from the end to the beginning. The following algorithm
recovers an optimal solution that also minimizes the num-

. ber of insertions and deletions. We call it with the lengths
Anexample. The table constructed for the conversionof - uf the strings as arguments(iR, n).

ALGORITHM to ALTRUISTIC is shown in Figure 5. Boxed
numbers indicate places where the two strings have equal
characters. The arrows indicate the predecessors that de-
fine the entries. Each direction of arrow corresponds to a
different edit operation: horizontal for insertion, vedil

for deletion, and diagonal for substitution. Dotted diago-
nal arrows indicate free substitutions of a letter for itsel

voi d R(int i, j)
ifi>00r 7>0then
swi t ch incoming arrow:
case \.: R(i—1,j—1);print (A[, B[j])
case |: R(i—1,j);print(A[i,-)
case —: R(i,j —1); print (-, B[j])-
endswi t ch
endi f.

Recovering the edit sequence. By construction, there

is at least one path from the upper left to the lower right _ o
corner, but often there will be several. Each such path Summary. The structure of dynamic programming is

describes an optimal edit sequence. For the example at29@in similar to divide-and-conquer, except that the sub-

hand, we have three optimal edit sequences: problems to be solved overlap. As a consequence, we get
different recursive paths to the same subproblems. To de-
AL G OUZRTI T H M velop a dynamic programming algorithm that avoids re-
AL TRUTIZ STTISC dundant solutions, we generally proceed in two steps:

12



1. We formulate the problem recursively. In other
words, we write down the answer to the whole prob-
lem as a combination of the answers to smaller sub-
problems.

2. We build solutions from bottom up. Starting with the
base cases, we work our way up to the final solution
and (usually) store intermediate solutions in a table.

For dynamic programming to be effective, we need a
structure that leads to at most some polynomial number
of different subproblems. Most commonly, we deal with
sequences, which have linearly many prefixes and suffixes
and quadratically many contiguous substrings.

13



5 Greedy Algorithms

The philosophy of being greedy is shortsightedness. Al-
ways go for the seemingly best next thing, always op-
timize the presence, without any regard for the future,
and never change your mind about the past. The greedy
paradigm is typically applied to optimization problems. In
this section, we first consider a scheduling problem and
second the construction of optimal codes.

A scheduling problem. Consider a set of activities
1,2,...,n. Activity i starts at times; and finishes
at time f; > s;. Two activities: and j overlap if

[si, fil N [s;, f;] # 0. The objective is to select a maxi-
mum number of pairwise non-overlapping activities. An
example is shown in Figure 6. The largest number of ac-

Cd[—} E?]f —

1

]
1

bt

L i
ar 1

gt

time

Figure 6: A best schedule ise, f, but there are also others of
the same size.

tivities can be scheduled by choosing activities with early
finish times first. We first sort and reindex such that j
implies f; < f;.

S ={1}; last =1,
fori=2tondo
i f flast < s;then
S =SuU{i};last =1
endi f
endf or.

The running time is Q¢logn) for sorting plus Of) for
the greedy collection of activities.

It is often difficult to determine how close to the opti-
mum the solutions found by a greedy algorithm really are.
However, for the above scheduling problem the greedy
algorithm always finds an optimum. For the proof let
1 =14 < iy < ... < i, be the greedy schedule con-
structed by the algorithm. Let < j» < ... < j, be any
other feasible schedule. Singe= 1 has the earliest finish
time of any activity, we have;, < f; . We can therefore
adds; to the feasible schedule and remove at most one ac-
tivity, namelyj;. Among the activities that do not overlap
i1, iz has the earliest finish time, henfgg < f;,. We can
again addi; to the feasible schedule and remove at most

14

one activity, namelyj (or possiblyj; if it was not re-
moved before). Eventually, we replace the entire feasible
schedule by the greedy schedule without decreasing the
number of activities. Since we could have started with a
maximum feasible schedule, we conclude that the greedy
schedule is also maximum.

Binary codes. Next we consider the problem of encod-
ing a text using a string of Os and 1s.biary codemaps
each letter in the alphabet of the text to a unique string
of Os and 1s. Suppose for example that the letter ‘t’ is
encoded as001’, ‘h’ is encoded as101’, and ‘e’ is en-
coded as01’. Then the word ‘the’ would be encoded as
the concatenation of codeword80110101’. This partic-
ular encoding is unambiguous because the cogeeifx-
free no codeword is prefix of another codeword. There is

Figure 7: Letters correspond to leaves and codewords qumes
to maximal paths. A left edge is read as ‘0’ and a right edge as
‘1. The tree to the right is full and improves the code.

a one-to-one correspondence between prefix-free binary
codes and binary trees where each leaf is a letter and the
corresponding codeword is the path from the root to that
leaf. Figure 7 illustrates the correspondence for the above
3-letter code. Being prefix-free corresponds to leaves not
having children. The tree in Figure 7 is not full because
three of its internal nodes have only one child. This is an
indication of waste. The code can be improved by replac-
ing each node with one child by its child. This changes
the above code t@0’ for ‘t’, * 1" for ‘h’, and ‘01’ for ‘e’.

Huffman trees. Letw; be the frequency of the lettey

in the given text. It will be convenient to refer to; as

the weightof ¢; or of its external node. To get an effi-
cient code, we choose short codewords for common let-
ters. Supposg; is the length of the codeword foy. Then

the number of bits for encoding the entire text is

P = Zwi-éi.

Sinced; is the depth of the leaf;, P is also known as the
weighted external path lengtif the corresponding tree.



TheHuffman tredor the ¢; minimizes the weighted ex- Tr ee HUFFMAN

ternal path length. To construct this tree, we start with | oop = EXTRACTMIN(N);

nodes, one for each letter. At each stage of the algorithm, if N=0thenreturnpuendif;
we greedily pick the two nodes with smallest weights and v = EXTRACTMIN(N);

make them the children of a new node with weight equal create node with childreny andv
to the sum of two weights. We repeat until only one node and weightw(x) = w(p) + w(v);
remains. The resulting tree for a collection of nine letters addx to N

with displayed weights is shown in Figure 8. Ties that forever.

Straightforward implementations use an array or a linked
list and take time Qf) for each operation involvingV.
There are fewer tha?n extractions of the minimum and
fewer thann additions, which implies that the total run-
ning time is O¢2). We will see later that there are better
ways to implementV leading to running time O(log n).

An inequality. We prepare the proof that the Huffman
tree indeed minimizes the weighted external path length.
Figure 8: The numbers in the external nodes (squares) are the| et 7 be a full binary tree with weighted external path
weights (_)f the correspond_ing letters, and the ones in thegriat length P(T'). Let A(T') be the set of leaves and letand
rlodes (circles) are the weights of these nodes. The Huffrean t v be any two leaves with smallest weights. Then we can
is full by construction. construct a new treg&” with

(1) setofleaved(7") = (A(T) — {u,v}) U {x},

(2) w(r) = w(p) +w),

(3) P(T") < P(T) — w(pn) — w(v), with equality if u
andv are siblings.

We now argue thdt” really exists. If, andv are siblings
then we construct” from T by removingu and v and
declaring their pareng;, as the new leaf. Then

Figure 9: The weighted external path length s+ 15 + 18 +
1245415424+ 27442 =173.

arise during the algorithm are broken arbitrarily. We re-
draw the tree and order the children of a node as left and
right child arbitrarily, as shown in Figure 9.

Figure 10: The increase in the depthiofs compensated by the
decrease in depth of the leaves in the subtree. of

The algorithm works with a collectionV of nodes
which are the roots of the trees constructed so far. Ini- P(T’) = P(T)—w(u)d —w)d +w(k)(d —1)
tially, each leaf is a tree by itself. We denote the weight = P(T)—w(p) —w(v)
of a node byw(x) and use a function ErRACTMIN that
returns the node with the smallest weight and, at the samewhered = 6(u) = 6(v) = §(x) + 1 is the common depth
time, removes this node from the collection. of u andv. Otherwise, assumg 1) > 6(v) and leto be

)

15



the sibling ofu, which may or may not be a leaf. Exchange

v ando. Since the length of the path from the rootdo

is at least as long as the path/pthe weighted external
path length can only decrease; see Figure 10. Then do the
same as in the other case.

Proof of optimality.  The optimality of the Huffman tree
can now be proved by induction.

HUFFMAN TREE THEOREM. LetT be the Huffman tree
and X another tree with the same set of leaves and
weights. TherP(T) < P(X).

PRrROOE If there are only two leaves then the claim is obvi-
ous. Otherwise, let. andv be the two leaves selected by
the algorithm. Construct treds’ and X’ with

T’ is the Huffman tree for, — 1 leaves so we can use the
inductive assumption and g&{(7") < P(X"). It follows
that

P(T) = P(T)+wu)+wy)
P(X') 4+ w(p) +w(v)
P(X).

IAIA

Huffman codesare binary codes that correspond to
Huffman trees as described. They are commonly used to
compress text and other information. Although Huffman
codes are optimal in the sense defined above, there are
other codes that are also sensitive to the frequency of se-
guences of letters and this way outperform Huffman codes
for general text.

Summary. The greedy algorithm for constructing Huff-
man trees works bottom-up by stepwise merging, rather
than top-down by stepwise partitioning. If we run the
greedy algorithm backwards, it becomes very similar to
dynamic programming, except that it pursues only one of
many possible partitions. Often this implies that it leads
to suboptimal solutions. Nevertheless, there are problems
that exhibit enough structure that the greedy algorithm
succeeds in finding an optimum, and the scheduling and
coding problems described above are two such examples.

16



First Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is September 18.

Problem 1. (20 points). Consider two sums{ = x; +
To+...+xp,andY =y +y2 + ...+ ym. Givean
algorithm that finds indices and; such that swap-
ping x; with y; makes the two sums equal, that is,
X —z+y; =Y —y; + ay, if they exist. Analyze
your algorithm. (You can use sorting as a subroutine.
The amount of credit depends on the correctness of
the analysis and the running time of your algorithm.)

Problem 2. (20 10 + 10 points). Consider dis-
tinct items x1,xz9,...,2, with positive weights
w1, Wwa, ..., w, such thatd " ,w; = 1.0. The
weighted mediars the itemax, that satisfies

> w; <05 and > w; <05

T, <Tg Tj>Tg

(@) Show how to compute the weighted median
of n items in worst-case time @(ogn) using
sorting.

(b) Show how to compute the weighted median in
worst-case time Q) using a linear-time me-
dian algorithm.

Problem 3. (20 = 6 + 14 points). A game-board has
columns, each consisting of a top number, the cost of
visiting the column, and a bottom number, the maxi-
mum number of columns you are allowed to jump to
the right. The top number can be any positive integer,
while the bottom number is either 1, 2, or 3. The ob-
jective is to travel from the first column off the board,
to the right of thenth column. The cost of a game is
the sum of the costs of the visited columns.

Assuming the board is represented in a two-
dimensional arrayB|[2,n], the following recursive
procedure computes the cost of the cheapest game:

i nt CHEAPEST(i nt ¢)
ifi>nthenreturnOendif;

x = BJ[l,i] + CHEAPEST(i + 1);
y = B[1,i] + CHEAPEST(i + 2);
z = B[1,i] + CHEAPEST(i + 3);
case B[2,i|=1:returnux;
B[2,i] = 2: retur n min{z, y};
B[2,i] = 3: retur n min{z,y, z}
endcase.

17

(a) Analyze the asymptotic running time of the pro-
cedure.

(b) Describe and analyze a more efficient algorithm
for finding the cheapest game.

Problem 4. (20 = 10 + 10 points). Consider a set of
intervals|a;, b;] that cover the unit interval, that is,
[0, 1] is contained in the union of the intervals.

(a) Describe an algorithm that computes a mini-
mum subset of the intervals that also covers
[0, 1].

(b) Analyze the running time of your algorithm.

(For question (b) you get credit for the correctness of
your analysis but also for the running time of your

algorithm. In other words, a fast algorithm earns you
more points than a slow algorithm.)

Problem 5. (20 = 7 + 7 + 6 points). LetA[l..m] and
BJ[1..n] be two strings.

(&) Modify the dynamic programming algorithm
for computing the edit distance betwedrand
B for the case in which there are only two al-
lowed operations, insertions and deletions of in-
dividual letters.

(b) A (not necessarily contiguousyibsequencef

A is defined by the increasing sequence of its
indices,1 < i1 < 1o < ... < i < m. Use
dynamic programming to find the longest com-
mon subsequence of and B and analyze its

running time.

(c) What is the relationship between the edit dis-
tance defined in (a) and the longest common

subsequence computed in (b)?



© 00 ~NO®

SEARCHING

Binary Search Trees

Red-black Trees

Amortized Analysis

Splay Trees

Second Homework Assignment

18



6 Binary Search Trees of edges. For every node, there is a unique path from
the root tou. The length of that path is théepthof ..

One of the purposes of sorting is to facilitate fast search- Theheightof the tree is the maximum depth of any node.

ing. However, while a sorted sequence stored in a lin- Thepath lengthis the sum of depths over all nodes, and

ear array is good for searching, it is expensive to add and the external path lengtls the same sum restricted to the

delete items. Binary search trees give you the best of both!€aves in the tree.

worlds: fast search and fast update.

Searching. A binary search treés a sorted binary tree.
Definitions and terminology. We beginwith arecursive Ve assume each node is a record storing an item and point-
definition of the most common type of tree used in algo- €rs to two children:
rithms. A (rooted) binary treds either empty or a node _
(theroot) with a binary tree as left subtree and binary tree ~ Struct Node{i t eminfo; Node x £, xr};
as right subtree. We store items in the nodes of the tree. ~ typedef Node «Tree.
It is often convenient to say the itenase the nodes. A ) o ) )
binary tree is sorted if each item is between the smaller or SOmetimes it is convenient to also store a pointer to the
equal items in the left subtree and the larger or equal items Parent, but for now we will do without. We can search in
in the right subtree. For example, the tree illustrated in & binary search tree by tracing a path starting at the root.
Figure 11 is sorted assuming the usual ordering of English )
characters. Terms for relations between family members Node # SEARCH(Tr ee o, i t emz)

such aschild, parent sibling are also used for nodes in a case o= NULL:returnNULL;

tree. Every node has one parent, except the root which has x < ¢ — info: return SEARCH(¢ — £, z);

no parent. Aleaf or external nodés one without children; T = — info:return g

all other nodes arimternal. A nodev is adescendertf . x> @ — info: T €t urn SEARCH(¢ — 7, )

if v = p orvis a descendent of a child pf Symmetri- endcase.

cally, 11 is anancestorof v if v is a descendent ¢f. The o )
subtreeof ;1 consists of all descendentsof An edgeis a The running tlme_depends on the length of th_e path, which
parent-child pair. is at most the height of the tree. Letbe the size. In the

worst case the tree is a linked list and searching takes time
O(n). In the best case the tree is perfectly balanced and
searching takes only time(@gn).

Insert. To add a new item is similarly straightforward:
follow a path from the root to a leaf and replace that leaf
by a new node storing the item. Figure 12 shows the tree
obtained after adding to the tree in Figure 11. The run-

Figure 11: The parent, sibling and two children of the darleo
are shaded. The internal nodes are drawn as circles while the
leaves are drawn as squares.

The sizeof the tree is the number of nodes. A binary
tree isfull if every internal node has two children. Every
full binary tree has one more leaf than internal node. To
count its edges, we can either count 2 for each internal
node or 1 for every node other than the root. Either way, Figure 12: The shaded nodes indicate the path from the root we
the total number of edges is one less than the size of theygyerse when we insett into the sorted tree.
tree. Apathis a sequence of contiguous edges without
repetitions. Usually we only consider paths that descend ning time depends again on the length of the path. If the
or paths that ascend. Thengthof a path is the number insertions come in a random order then the tree is usually

19



close to being perfectly balanced. Indeed, the tree is thethen items is
same as the one that arises in the analysis of quicksort.
The expected number of comparisons for a (successful)
search is one-th of the expected running time of quick-

L+CO(T) = Y pi- (6 +1)
sort, which is roughly2 In n. =

= 1+ pi-6;
i=1

whered; is the depth of the node that stores C(T)

is theweighted path lengtlor the costof 7. We study
the problem of constructing a tree that minimizes the cost.
) ) To develop an example, let = 3 andp; = % P2 =
Case 1. v hasnointernal node as a child. Remave 1 py = L. Figure 14 shows the five binary trees with

three nodes and states their costs. It can be shown that the

Delete. The main idea for deleting an item is the same
as for inserting: follow the path from the root to the node
v that stores the item.

Case 2. v has one internal child. Make that child the

child of the parent of. @ @ ‘ @ @
Case 3. v hastwo internal children. Find the rightmost @ @ @
internal node in the left subtree, remove it, and sub- @ @ @ @

stitute it forv, as shown in Figure 13.
Figure 14: There are five different binary trees of three sode

From left to right their costs aré, 3, 2, Z 2. The first tree and
the third tree are both optimal.

- number of different binary trees with nodes is— (*),
which is exponential im. This is far too large to try all
possibilities, so we need to look for a more efficient way

to construct an optimum tree.
Figure 13: Store/ in v and delete the node that used to stdre

Dynamic programming. We write Tz.j for the optimum

The analysis of the expected search time in a binary searchwe'ghted binary search tree of, ai11, ..., aj, C; forits

tree constructed by a random sequence of insertions and®0St @ndr; = 37;_; pi. for the total probability of the
deletions is considerably more challenging than if no dele- items in7;.  Suppose we know that the optimum tree
tions are present. Even the definition of a random se- Stores itemay in its root. Then the left subtree B!
quence is ambiguous in this case. and the right subtree i%] ,. The cost of the optimum
tree is therefor€? = C#~' + CJ, | + p] — pi.. Since we
do not know which item is in the root, we try all possibili-

Optimal binary search trees. Instead of hoping the in-  ies and find the minimum:

cremental construction yields a shallow tree, we can con- i ) b1 ; ;

struct the tree that minimizes the search time. We con- i iLn,jEj{Ci + Oy + 97— Pr)-

sider the common problem in which items have different

probabilities to be the target of a search. For example, This formula can be translated directly into a dynamic pro-
some words in the English dictionary are more commonly gramming algorithm. We use three two-dimensional ar-
searched than others and are therefore assigned a higherays, one for the sums of probabilitigg, one for the costs
probability. Leta; < az < ... < a, be the items and  of optimum trees(?, and one for the indices of the items
pi the corresponding probabilities. To simplify the discus- stored in their rootsR’. We assume that the first array has
sion, we only consider successful searches and thus asalready been computed. We initialize the other two arrays
sume)_ ., p; = 1. The expected number of comparisons along the main diagonal and add one dummy diagonal for
for a successful search in a binary search frestoring the cost.

20



for k=1tondo

Clk,k —1)=Clk,k] =0; Rk, k] =k
endf or;
Cin+1,n]=0.

We fill the rest of the two arrays one diagonal at a time.

for /=2tondo
fori=1ton—-{¢+1do
j=i+L—1; C[i,j] = oc;
for k=itojdo
cost= C[i, k — 1] + C[k + 1, j]
—l—p[i,j]—p[k},k];
i f cost< CJi,j]then
Cli, j] = cost R[i,j] =k
endi f
endf or
endf or
endf or.

The main part of the algorithm consists of three nested
loops each iterating through at mestalues. The running
time is therefore in @h?).

Example. Table 1 shows the partial sums of probabil-
ities for the data in the earlier example. Table 2 shows

Table 1: Six times the partial sums of probabilities usedHzy t
dynamic programming algorithm.

the costs and the indices of the roots of the optimum trees
computed for all contiguous subsequences. The optimum

(6cfl1[2]3] [R]1]2]3]
TJ0[2]4 T[[1]1]1
2 01 2 22
3 0 3 3

Table 2: Six times the costs and the roots of the optimum trees

tree can be constructed fromas follows. The root stores
the item with indexR[1, 3] = 1. The left subtree is there-
fore empty and the right subtree stores as. The root

of the optimum right subtree stores the item with index
RJ[2,3] = 2. Again the left subtree is empty and the right
subtree consists of a single node storing

21

Improved running time.  Notice that the array? in Ta-

ble 2 is monotonic, both along rows and along columns.
Indeed itis possible to prové’ ' < R in every row and

R} < R/, in every column. We omit the proof and show
how the two inequalities can be used to improve the dy-
namic programming algorithm. Instead of trying all roots
from i throughj we restrict the innermostor -loop to

for k=R[i,j—1]to R[i +1,5]do
The monotonicity property implies that this change does

not alter the result of the algorithm. The running time of a
single iteration of the outdror -loop is now

n—~+1
§ : J
(Ri+1
=1

Recall thatj = i + ¢ — 1 and note that most terms cancel,
giving

Us(n) — RN 41).

Ug(n)

n e — R (=04 1)
2n.

<

In words, each iteration of the outépr -loop takes only
time O(), which implies that the entire algorithm takes
only time O@?).



7 Red-Black Trees

NS
Binary search trees are an elegant implementation of the (b (a)
dictionarydata type, which requires support for
i tem SEARCH (i t en), 0
voi d INSERT(i t en), ab c .
voi d DELETE(i t em), (@ (o)

and possible additional operations. Their main disadvan-
tage is the worst case time(n) for a single operation. Figure 16: Transforming a 2-3-4 tree into a binary tree. Bold
The reasons are insertions and deletions that tend to getedges are called red and the others are called black.

the tree unbalanced. It is possible to counteract this ten-
dency with occasional local restructuring operations and

to guarantee logarithmic time per operation. The number of black edges on a maximal descending path

is theblack heightdenoted a$h (o). When we transform

a 2-3-4 tree into a binary tree as in Figure 16, we get a red-
2-3-4 trees. A special type of balanced tree is the 2-3-4 black tree. The result of transforming the tree in Figure 15
tree. Each internal node stores one, two, or three items
and has two, three, or four children. Each leaf has the
same depth. As shown in Figure 15, the items in the in-
ternal nodes separate the items stored in the subtrees and
thus facilitate fast searching. In the smallest 2-3-4 tree o

Figure 17: A red-black tree obtained from the 2-3-4 tree ig-Fi
ure 15.

is shown in Figure 17.

Figure 15: A 2-3-4 tree of height two. All items are stored in

internal nodes. HEIGHT LEMMA. A red-black tree with: internal nodes

has height at mogtlog,(n + 1).
heighth, every internal node has exactly two children, so
we have2” leaves an@” — 1 internal nodes. Inthe largest PrRooE The number of leaves is + 1. Contract each
2-3-4 tree of height, every internal node has four chil-  red edge to get a 2-3-4 tree with+ 1 leaves. Its height

dren, so we have” leaves and4”" — 1)/3 internal nodes.  is h < log,(n + 1). We havebh(p) = h, and by Rule
We can store a 2-3-4 tree in a binary tree by expanding a (1) the height of the red-black tree is at masti(o) <
node withi > 1 items and: + 1 childrenintoi nodes each  2log,(n + 1).

with one item, as shown in Figure 16.

. Rotations. Restructuring a red-black tree can be done
Red-black trees. Suppose we color each edge of a bi- it only one operation (and its symmetric version)oa
nary search tree either red or black. The color is conve- (a4 that moves a subtree from one side to another, as

niently stored in the lower node of the edge. Such a edge-ghown in Figure 18. The ordered sequence of nodes in the
colored tree is aed-black treaf left tree of Figure 18 is

(1) there are no two consecutive red edges on any de- ordex(A), v, orde( B), 11, ordeC)
scending path and every maximal such path ends with Y o o Y
a black edge; and this is also the ordered sequence of nodes in the right

(2) all maximal descending paths have the same numbertree. In other words, a rotation maintains the ordering.
of black edges. Function 4G below implements the right rotation:

22



2, we repair the two red edges in sequence by a single ro-
tation of 7 (B). After adding 5, we promote 4 (C), and after
adding 6, we do a double rotation of 7 (D).

Zig
right rotation

left rotation
Zag

Figure 18: From left to right a right rotation and from riglat t
left a left rotation.

Node * ZiG(Node x )
assert p # NULL and v =y — £ # NULL;
w—0=v—r, v—r=up returnuv.

Function ZaG is symmetric and performs a left rotation.
Occasionally, it is necessary to perform two rotations in
sequence, and it is convenient to combine them into a sin-
gle operation referred to asdouble rotation as shown Figure 20: Sequence of red-black trees generated by ingerti
in Figure 19. We use a functioni@ZAG to implementa  theitems 10, 7, 13, 4, 2, 5, 6 in this sequence.

An item x is added by substituting a new internal node
for a leaf at the appropriate position. To satisfy Rule (2)
of the red-black tree definition, color the incoming edge
of the new node red, as shown in Figure 21. Start the

double
right rotation

ZigZag
\Y \Y
Figure 19: The double right rotation atis the concatenation of
a single left rotation at and a single right rotation at.
double right rotation and the symmetric functioa@Z1G Figure 21: The incoming edge of a newly added node is always
to implement a double left rotation. red.
Node * ZicZac(Node 1) adjustment of color and structure at the pareof the new

node. We state the properties maintained by the insertion
algorithm as invariants that apply to a nad&raced by the
algorithm.

w— €=2ZAG(u — £); return ZIG(u).

The double right rotation is the composition of two single
rotations: 2GZAG(u) = ZIG(u) o ZAG(v). Remember
that the composition of functions is written from right to
left, so the single left rotation of precedes the single right
rotation of u. Single rotations preserve the ordering of
nodes and so do double rotations.

INVARIANT |. The only possible violation of the red-
black tree properties is that of Rule (1) at the node
v, and if v has a red incoming edge then it has ex-
actly one red outgoing edge.

Observe that Invariant | holds right after addimg We
Insertion. Before studying the details of the restructur- continue with the analysis of all the cases that may arise.
ing algorithms for red-black trees, we look at the trees that The local adjustment operations depend on the neighbor-
arise in a short insertion sequence, as shown in Figure 20.hood ofv.
After adding 10, 7, 13, 4, we have two red edges in se-
guence and repair this by promoting 10 (A). After adding Case 1. The incoming edge af is black. Done.

23



Case 2. Theincoming edge of is red. Letu be the
parent ofy and assume is left child of ..

Case 2. 1. Both outgoing edges ai are red, as
in Figure 22. Promotg. Letv be the parent of
1 and recurse.

% ’
S
Figure 22: Promotion ofi. (The colors of the outgoing edges of
v may be the other way round).

Case 2.2. Only one outgoing edge qf is red,
namely the one from to v.

Case 2.2.1. Theleft outgoing edge of is
red, as in Figure 23 to the left. Right rotate
. Done.

R

Figure 23: Right rotation of; to the left and double right rotation
of u to the right.

Case 2.2.2. The right outgoing edge of
is red, as in Figure 23 to the right. Double
right rotateu. Done.

Case 2 has a symmetric case where left and right are in-
terchanged. An insertion may cause logarithmically many
promotions but at most two rotations.

Deletion. First find the noder that is to be removed. If
necessary, we substitute the inorder successor frwe
can assume that both childrenofare leaves. Ifr is last

in inorder we substitute symmetrically. Replacéiy a
leafr, as shown in Figure 24. If the incoming edgerab

red then change it to black. Otherwise, remember the in-
coming edge of as ‘double-black’, which counts as two
black edges. Similar to insertions, it helps to understand
the deletion algorithm in terms of a property it maintains.

INVARIANT D. The only possible violation of the red-

black tree properties is a double-black incoming edge
of v.

24

F—

Figure 24: Deletion of node. The dashed edge counts as two
black edges when we compute the black depth.

Note that Invariant D holds right after we remowe We

now present the analysis of all the possible cases. The ad-
justment operation is chosen depending on the local neigh-
borhood ofv.

Case 1. Theincoming edge af is black. Done.

Case 2. Theincoming edge of is double-black. Let
1 be the parent and the sibling ofv. Assumev is
left child of . and note thak is internal.

Case 2.1. The edge fromu to x is black.

Case 2.1.1. Both outgoing edges of are
black, as in Figure 25. Demote Recurse
forv = p.

Figure 25: Demotion of:.

Case 2.1.2. The right outgoing edge of
is red, as in Figure 26 to the left. Change
the color of that edge to black and left ro-
tateu. Done.

\Y // K o M
7\ .

Figure 26: Left rotation ofs to the left and double left rotation
of 1 to the right.

Case 2.1.3. The right outgoing edge of
K is black, as in Figure 26 to the right.
Change the color of the left outgoing edge
to black and double left rotaje. Done.

Case 2.2. The edge fromutox isred, asin Fig-
ure 27. Left rotatg.. Recurse fow.



Figure 27: Left rotation of..

Case 2 has a symmetric case in whidh the right child of

1. Case 2.2 seems problematic because it recurses without
movingr any closer to the root. However, the configura-
tion excludes the possibility of Case 2.2 occurring again.
If we enter Cases 2.1.2 or 2.1.3 then the termination is im-
mediate. If we enter Case 2.1.1 then the termination fol-
lows because the incoming edge;ois red. The deletion
may cause logarithmically many demotions but at most
three rotations.

Summary. The red-black tree is an implementation
of the dictionary data type and supports the operations
search, insert, delete in logarithmic time each. An inser-
tion or deletion requires the equivalent of at most three
single rotations. The red-black tree also supports finding
the minimum, maximum and the inorder successor, prede-
cessor of a given node in logarithmic time each.

25



8 Amortized Analysis

Amortization is an analysis technique that can influence
the design of algorithms in a profound way. Later in this

course, we will encounter data structures that owe their
very existence to the insight gained in performance due to

amortized analysis.

Binary counting. We illustrate the idea of amortization
by analyzing the cost of counting in binary. Think of an
integer as a linear array of bits, = >, A[i] - 2°. The
following loop keeps incrementing the integer storediin

| oopi=0;
whi | e A[i] = 1do A[{] = 0; i++ endwhi | e;
Alil = 1.

forever.

We define thecostof counting as the total number of bit

total number of bit changes is therefore

n—1 .
Tn) = S (t;i+1) = (n+1) ZQJ_J.
i=0 j=1

We use index transformation to show that the sum on the
rightis less than 2:

) —1
DOE D PE =
§>1 j>1
J
= 2.25_22]._1
jz1 jz1
= 2.

Hence the cost i¥'(n) < 2(n + 1). Theamortized cost
per operation isTEl—”), which is about 2.

changes that are needed to increment the number one by

one. What is the cost to count from O & Figure 28

shows that counting from 0 to 15 requires 26 bit changes.

Sincen takes onlyl + |log, n| bits or positions inA,

5 0000000000000000
4 0000000000000000
s 0000000f1111111
2 121/f000[8111d
1 110 110 o !
0 @ [o]1 @ @

Figure 28: The numbers are written vertically from top to-bot
tom. The boxed bits change when the number is incremented.

a single increment does at mast- log, n steps. This
implies that the cost of counting from O tois at most
nlog, n+ 2n. Even though the upper bound®#-log, n

is almost tight for the worst single step, we can show that
the total cost is much less thantimes that. We do this
with two slightly different amortization methods referred
to as aggregation and accounting.

Aggregation. The aggregation method takes a global
view of the problem. The pattern in Figure 28 suggests
we defineb; equal to the number of 1s ang equal to
the number of trailing 1s in the binary notationofEv-
ery other number has no trailing 1, every other number
of the remaining ones has one trailing 1, etc. Assuming
n = 2F — 1, we therefore have exactly— 1 trailing 1s
for 287 = (n+1)/27 integers between 0 and— 1. The

26

Accounting. The idea of the accounting method is to
charge each operation what we think its amortized cost is.
If the amortized cost exceeds the actual cost, then the sur-
plus remains as a credit associated with the data structure.
If the amortized cost is less than the actual cost, the accu-
mulated credit is used to pay for the cost overflow. Define
the amortized cost of a bit change— 1 as $2 and that

of 1 — 0 as $0. When we change 0 to 1 we pay $1 for
the actual expense and $1 stays with the bit, which is now
1. This $1 pays for the (later) cost of changing the 1 to 0.
Each increment has amortized cost $2, and together with
the money in the system, this is enough to pay for all the
bit changes. The cost is therefore at most

We see how a little trick, like making thie— 1 changes
pay forthel — 0 changes, leads to a very simple analysis
that is even more accurate than the one obtained by aggre-
gation.

Potential functions. We can further formalize the amor-
tized analysis by using a potential function. The idea is
similar to accounting, except there is no explicit credit
saved anywhere. The accumulated credit is an expres-
sion of the well-being or potential of the data structure.
Let ¢; be the actual cost of theth operation and); the
data structure after theth operation. Let®; = ®(D;)

be the potential ofD;, which is some numerical value
depending on the concrete application. Then we define
a; = ¢; + ®; — ®;_1 as theamortized cosbdf the i-th



operation. The sum of amortized costswobperations is Case 1. v has five children and a non-saturated sibling
. . to its left or right. Move one child fromv to that

Z a = Z(Ci TP — ) sibling, as in Figure 29.

i=1 i=1

= > ci+®, — D $6 i \[$1 $3 ]/ E $0
i=1 —
We aim at choosing the potential such tidgt = 0 and

®,, > 0 because then we g&t a; > > ¢;. In words,

the sum of amortized costs covers the sum of actual costs.Figure 29: The overflowing node gives one child to a non-
To apply the method to binary counting we define the po- saturated sibling.

tential equal to the number of 1s in the binary notation,

®; = b;. It follows that Case 2. v has five children and no non-saturated sib-
- ling. Splitv into two nodes and recurse for the parent
O, —D; 1 = b —bi A
of v, as in Figure 30. I has no parent then create a
(bi-1 —tica +1) = bi new root whose only children are the two nodes ob-
1—t_1. tained fromv.

The actual cost of theé-th operation isc; = 1 + t;_1,

and the amortized cost is; = ¢; + ¢, — ®,_1 = 2. $3 %6
We have®, = 0 and®,, > 0 as desired, and therefore $6 $0 $
> e <37 a; = 2n, which is consistent with the analysis -

of binary counting with the aggregation and the account-

ing methods.

Figure 30: The overflowing node is split into two and the paren
2-3-4trees. As amore complicated application of amor- is treated recursively.
tization we consider 2-3-4 trees and the cost of restructur-
ing them under insertions and deletions. We have seen
2-3-4 trees earlier when we talked about red-black trees. Deleting a key is done is a similar fashion, although there
A set of keys is stored in sorted order in the internal nodes We have to battle with nodesthat have too few children
of a 2-3-4 tree, which is characterized by the following rather than too many. Lethave only one child. We repair
rules: Rule (1) by adopting a child from a sibling or by merging
v with a sibling. In the latter case the parentolboses a

(1) each internal node has< d < 4 children and stores child and needs to be visited recursively. The two opera-
d — 1 keys; tions are illustrated in Figures 31 and 32.

(2) all leaves have the same depth.

As for binary trees, being sorted means that the left-to- $3 $4 $0 $1
right order of the keys is sorted. The only meaningful def-
inition of this ordering is the ordered sequence of the first
subtree followed by the first key stored in the root followed
by the ordered sequence of the second subtree followed byFigure 31: The underflowing node receives one child from a sib
the second key, etc. ling.

To insert a new key, we attach a new leaf and add the key
to the parent of that leaf. All is fine unlesg overflows
because it now has five children. If it does, we repair the Amortized analysis. The worst case for inserting a new
violation of Rule (1) by climbing the tree one node at a key occurs when all internal nodes are saturated. The in-
time. We call an internal noden-saturatedf it has fewer sertion then triggers logarithmically many splits. Sym-
than four children. metrically, the worst case for a deletion occurs when all

27



$0 $1

Figure 32: The underflowing node is merged with a sibling and
the parent is treated recursively.

internal nodes have only two children. The deletion then
triggers logarithmically many mergers. Nevertheless, we
can show that in the amortized sense there are at most a
constant number of split and merge operations per inser-
tion and deletion.

We use the accounting method and store money in the
internal nodes. The best internal nodes have three children
because then they are flexible in both directions. They
require no money, but all other nodes are given a posi-
tive amount to pay for future expenses caused by split and
merge operations. Specifically, we store $4, $1, $0, $3,
$6 in each internal node with 1, 2, 3, 4, 5 children. As il-
lustrated in Figures 29 and 31, an adoption moves money
only from v to its sibling. The operation keeps the total
amount the same or decreases it, which is even better. As
shown in Figure 30, a split frees up $5 framand spends
at most $3 on the parent. The extra $2 pay for the split
operation. Similarly, a merger frees $5 from the two af-
fected nodes and spends at most $3 on the parent. This
is illustrated in Figure 32. An insertion makes an initial
investment of at most $3 to pay for creating a new leaf.
Similarly, a deletion makes an initial investment of at most
$3 for destroying a leaf. If we chardge for each split and
each merge operation, the money in the system suffices to
cover the expenses. This implies that foinsertions and
deletions we get a total of at mo%t splitand merge oper-
ations. In other words, the amortized number of split and
merge operations is at mo°§t

Recall that there is a one-to-one correspondence be-
tween 2-3-4 tree and red-black trees. We can thus trans-
late the above update procedure and get an algorithm for
red-black trees with an amortized constant restructuring
cost per insertion and deletion. We already proved that for
red-black trees the number of rotations per insertion and
deletion is at most a constant. The above argument im-
plies that also the number of promotions and demotions is
at most a constant, although in the amortized and not in
the worst-case sense as for the rotations.

28



9 Splay Trees Function $LAY for the case the search itemrs less than
the item in the root.

Splay trees are similar to red-black trees except that they
guarantee good shape (small height) only on the average.
They are simpler to code than red-black trees and have the
additional advantage of giving faster access to items that
are more frequently searched. The reason for both is that
splay trees are self-adjusting.

ifx<o—infothen pu=p—¢
if x<pu—infothen
p— £ = SPLAY (u — £, x);
return ZIGZIG(p)
el seif x > pu —infot hen

p— 1 = SPLAY (1 — 7, 2);

return ZIGZAG(o)
Self-adjusting binary search trees. Instead of explic- el se
itly maintaining the balance using additional information return Zic(o)
(such as the color of edges in the red-black tree), splay endif.
trees maintain balance implicitly through a self-adjugtin
mechanism. Good shape is a side-effect of the operations!f « is stored in one of the children efthen it is moved
that are app“ed These Operations are app“ed prjlay- to the root by a Single rotation. OtherWise, it is Splayed
ing a node, which means moving it up to the root of the recursively to the third level and moved to the root either
tree, as illustrated in Figure 33. A detailed analysis will by @ double or a roller-coaster rotation. The number of
rotation depends on the length of the path frono .
Specifically, if the path i$ edges long then is splayed in
|2/2| double and roller-coaster rotations and zero or one
single rotation. In the worst case, a single splay operation
takes almost as many rotations as there are nodes in the
tree. We will see shortly that the amortized number of
rotations is at most logarithmic in the number of nodes.

Figure 33: The node storing 1 is splayed using three sind& ro

tions Amortized cost. Recall that the amortized cost of an op-

eration is the actual cost minus the cost for work put into
improving the data structure. To analyze the cost, we use a
potential function that measures the well-being of the data
structure. We need definitions:

reveal that single rotations do not imply good amortized
performance but combinations of single rotations in pairs
do. Aside from double rotations, we usaller-coaster
rotationsthat compose two single left or two single right
rotations, as shown in Figure 35. The sequence of the two
single rotations is important, namely first the higher then
the lower node. Recall thatiZ (k) performs a single right ~ thebalances(v) is twice the floor of the binary logarithm

thesizes(v) is the number of descendents of noden-
cludingv,

rotation and returns the new root of the rotated subtree. of the size 5(v) = 2|log;, s(v) ],
The roller-coaster rotation to the right is then thepotential® of a tree or a collection of trees is the sum
of balances over all node®,= % 3(v),
Node +ZIGZIG(Node x ) theactual coste; of thei-th splay operation is 1 plus the
returnZiG(ZiG(x)). number of single rotations (counting a double or

roller-coaster rotation as two single rotations).

theamortized cost,; of thei-th splay operation is; =
ci + (I)z — (I)i—l-

Function ZAGZAG is symmetric, exchanging left and
right, and functions -5ZAG and ZAGZIG are the two
double rotations already used for red-black trees.

We haved, = 0 for the empty tree ané,; > 0 in general.

Splay. A splay operation finds an item and uses rotations This implie_s that the total actual cost does not exceed the
to move the corresponding node up to the root position. total amortized cosf_ ¢; = 3 ai — ®n + o < 3 ai-
Whenever possible, a double rotation or a roller-coaster To get a feeling for the potential, we compubefor
rotation is used. We dispense with special cases and showthe two extreme cases. Note first that the integral of the

29



natural logarithm is/ Inz = zlnz — 2 and therefore  Single rotation. The amortized cost of a single rotation
Jlogox = xlogy,z — x/In2. In the extreme unbal-  shown in Figure 34 is 1 for performing the rotation plus
anced case, the balance of théh node from the bottom  the change in the potential:

is 2|log, ¢] and the potential is L4 8() + B () — B — B()
< 143[F'(v) - BW)
becauses’(n) < B(n) andB(v) < B'(v).

a

o = 2 Z |logoi| = 2nlogyn — O(n).
i=1

In the balanced case, we bouftdrom above by2U (n),
whereU (n) = 2U(%)+log, n. We prove that/ (n) < 2n
for the case when = 2. Consider the perfectly balanced
tree withn leaves. The height of the tree is= log, n.
We encode the terrvg, n of the recurrence relation by
drawing the hook-like path from the root to the right child
and then following left edges until we reach the leaf level. Figure 34: The size of: decreases and that efincreases from
Each internal node encodes one of the recursively surfac-before to after the rotation.

ing log-terms by a hook-like path starting at that node. The

paths are pairwise edge-disjoint, which implies that their

total length is at most the number of edges in the tree, Roller-coaster rotation. The amortized cost of a roller-

n v

which is2n — 2. coaster rotation shown in Figure 35 is
a = 2+3v)+ 08+ 8(k)
Investment. The main part of the amortized time analy- — B(v) — Bp) — B(kK)

sis is a detailed study of the three types of rotations: sin- /
gle, roller-coaster, and double. We writi¢) for the bal- 2428 () = )]

ance of a node before the rotation and’ (v) for the bal- because’ (k) < B(k), 8/ (u) < B (v), andB(v) < B(p).
ance after the rotation. Letbe the lowest node involved  We distinguish two cases to prove thais bounded from
in the rotation. The goal is to prove that the amortized above by3[5'(v) — 5(v)]. In both cases, the drop in the
cost of a roller-coaster and a double rotation is at most

3[6'(v) — B(v)] each, and that of a single rotation is at K W v

mostl + 3[4’ (v) — B(v)]. Summing these terms over the W v K W

rotations of a splay operation gives a telescoping series in v
which all terms cancel except the first and the last. To this

we add 1 for the at most one single rotation and another 1

for the constant cost in definition of actual cost.

IN

_ _ Figure 35: If in the middle tree the balanceofs the same as
INVESTMENT LEMMA. The amortized cost of splaying a the balance of: then by the Balance Lemma the balance: o
nodevr in atreep is at most + 3[5(e) — B(v)]. less than that common balance.

Before looking at the details of the three types of rota- potential pays for the two single rotations.

:lr:)ns,txve_ prove that if twotsLbllngsl have tgel same léalance Case ('(v) > (v). The difference between the balance
b Ein €ir common .p?ren tis' a larger tha ??ﬁe‘b lecausef of v before and after the roller-coaster rotation is at
alances are even integers this means that the balance o least 2. Hence < 3[3'(v) — B(v)].

the parent exceeds the balance of its children by at least 2.
Case ('(v) = B(v) = (3. Then the balances of nodes

BALANCE LEMMA. If 1 has childrenv, x and 3(v) = andy in the middle tree in Figure 35 are also equal
B(k) = BthenB(p) > 3 + 2. to 3. The Balance Lemma thus implies that the bal-
ance ofx in that middle tree is at most — 2. But
PROOF. By definition3() = 2|log, s(v)| and therefore since the balance of after the roller-coaster rotation
s(v) > 2072 We haves(p) = 1+ s(v) + s(k) > 2115/2, is the same as in the middle tree, we halg:) < 3.
and therefores(u) > 8 + 2. Hencea < 0 = 3[5'(v) — B(v)].

30



Double rotation. The amortized cost of a double rota- the increase in the potential, which we denotebas- @.

tion shown in Figure 36 is Recall that the potential of a collection of trees is the sum
of the balances of all nodes. Splitting the tree decreases
a = 240 w)+ B )+ (k) the number of descendents and therefore the balance of
- Bv) — Bu) — B(k) the root, which implies thad’ — & < 0. It follows that
< 24 [0 W) - W) the amortized cost of a split operation is less than that of a
- splay operation and therefore i @o)).
becauses’(r) < B(x) and' (1) < B(n). We again dis- Two splay trees can beined into one if all items in

tinguish two cases to prove thais bounded from above  gne tree are smaller than all items in the other tree, as il-

by 3[4’ (v) — B(v)]. In both cases, the drop in the potential |ystrated in Figure 38. The cost for splaying the maximum
pays for the two single rotations.

Case ('(v) > B(v). The difference is at least 2, which & (3
impliesa < 3[p'(v) — B(v)], as before. A A — A A
Case §'(v) = A(v) = . Thenf(u) = B(x) = f. We

haves' (1) < 8'(v) or 5'(k) < (3'(v) by the Balance
Lemrélasulzengéi) 0 é g?gi’(uijﬁ(yg] Figure 38: We first splay the maximum in the tree with the
' = ' smaller items and then link the two trees.

« v in the first tree is @5(o1)). The potential increase caused
by linking the two trees is

-3 < 2[logy(s(er) + s(02))]
< 2log, s(o1) + 21ogy s(02)-

The amortized cost of joining is thus(@(o1) + 8(02)).

Figure 36: In a double rotation, the sizes;ofand x decrease

; To insert a new item,z, we split the tree. Ifr is al-
from before to after the operation.

ready in the tree, we undo the split operation by linking
the two trees. Otherwise, we make the two trees the left
and right subtrees of a new node storingThe amortized

Dictionary operations.  Insummary, we showed thatthe  ¢ost for splaying is Of(0)). The potentialincrease caused
amortized cost of splaying a noden a binary searchtree  py jinking is

with root g is at mostl + 3[3(e) — 5(v)]. We now use this
result to show that splay trees have good amortized perfor- ' — & < 2[logy(s(o1) + s(02) +1)]
mance for all standard dictionary operations and more. = Blo).

To accessan item we first splay it to the root and return
the root even if it does not contain The amortized cost
is O(5(0)). To deletean item, we splay it to the root, remove the
root, and join the two subtrees. Removingecreases the
potential, and the amortized cost of joining the two sub-
trees is at most Q{(p)). This implies that the amortized
cost of a deletion is at most(B(o)).

The amortized cost of an insertion is thu§d0o)).

Given an itemx, we cansplit a splay tree into two,
one containing all items smaller than or equattand the
other all items larger tham, as illustrated in Figure 37.
The amortized cost is the amortized cost for splaying plus

Weighted search. A nice property of splay trees not
shared by most other balanced trees is that they automat-
- A ically adapt to biased search probabilities. It is platesibl
that this would be the case because items that are often
accessed tend to live at or near the root of the tree. The
Figure 37: After splayinge to the root, we split the tree by un-  analysis is somewhat involved and we only state the re-
linking the right subtree. sult. Each item or node has a positive weighty) > 0,

31



and we defind?V = 3 w(v). We have the following
generalization of the Investment Lemma, which we state
without proof.

WEIGHTED INVESTMENT LEMMA. The amortized cost
of splaying a node’ in a tree with total weightV
is at most + 3 log, (W/w(v)).

It can be shown that this result is asymptotically best pos-
sible. In other words, the amortized search time in a splay
tree is at most a constant times the optimum, which is
what we achieve with an optimum weighted binary search
tree. In contrast to splay trees, optimum trees are expen-
sive to construct and they require explicit knowledge of
the weights.

32



Second Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is October 02.

Problem 1. (20 = 12 + 8 points). Consider an array
A[l..n] for which we know thatA[1] > A[2] and
Aln —1] < A[n]. We say that is alocal minimumif
Ali — 1] > A[i] < A[i + 1]. Note thatA has at least
one local minimum.

(a) We can obviously find a local minimum in time
O(n). Describe a more efficient algorithm that
does the same.

(b) Analyze your algorithm.

Problem 2. (20 points). Avertex covefor a tree is a sub-
setV of its vertices such that each edge has at least
one endpointii/. It is minimumif there is no other
vertex cover with a smaller number of vertices. Given
a tree withn vertices, describe an (@)-time algo-
rithm for finding a minimum vertex cover. (Hint: use
dynamic programming or the greedy method.)

Problem 3. (20 points). Consider a red-black tree formed
by the sequential insertion ef > 1 items. Argue that
the resulting tree has at least one red edge.

[Notice that we are talking about a red-black tree
formed by insertions. Without this assumption, the
tree could of course consist of black edges only.]

Problem 4. (20 points). Prove tha@n rotations suffice to
transform any binary search tree into any other binary
search tree storing the samétems.

Problem 5. (20 = 5+ 5 + 5 + 5 points). Consider a
collection of items, each consisting of a key and a
cost. The keys come from a totally ordered universe
and the costs are real numbers. Show how to maintain
a collection of items under the following operations:

() AbD(k, c): assuming no item in the collection
has keyk yet, add an item with key and cost
c to the collection;

(b) REMOVE(k): remove the item with ke from
the collection;

(c) MAX(ky,k2): assumingk; < ko, report the
maximum cost among all items with keyse
[kl, kQ]

33

(d) CouNT(cq,co): assuming:; < co, report the
number of items with cost € [c1, ¢2];

Each operation should take at mosi&(n) time in
the worst case, whereis the number of items in the
collection when the operation is performed.



Il PRIORITIZING

10 Heaps and Heapsort

11 Fibonacci Heaps

12 Solving Recurrence Relations
Third Homework Assignment

34



10 Heaps and Heapsort

to the ranks of both its children. As a consequence, the
root contains the item with smallest rank.

A heap is a data structure that stores a set and allows fast We store the nodes of the tree in a linear array, level

access to the item with highest priority. It is the basis of

a fast implementation of selection sort. On the average,

this algorithm is a little slower than quicksort but it is not
sensitive to the input ordering or to random bits and runs
about as fast in the worst case as on the average.

Priority queues. A data structure implements tipeior-
ity queueabstract data type if it supports at least the fol-
lowing operations:

voi d INSERT(i t en),
i tem FINDMIN (voi d),
voi d DELETEMIN (voi d).

The operations are applied to a set of items with priori-
ties. The priorities are totally ordered so any two can be
compared. To avoid any confusion, we will usually refer
to the priorities as ranks. We will always use integers as
priorities and follow the convention that smaller ranks-rep

resent higher priorities. In many applicationsNBEMIN

and DELETEMIN are combined:

voi d EXTRACTMIN(void)
r = FINDMIN; DELETEMIN; returnr.

Function XTRACTMIN removes and returns the item
with smallest rank.

Heap. A heap is a particularly compact priority queue.
We can think of it as a binary tree with items stored in the
internal nodes, as in Figure 39. Each level is full, except

Figure 39: Ranks increase or, more precisely, do not deereas
from top to bottom.

possibly the last, which is filled from left to right until
we run out of items. The items are storedhi@eap-order
every nodeu has a rank larger than or equal to the rank of
its parent. Symmetricallyy has a rank less than or equal

35

by level from top to bottom and each level from left to
right, as shown in Figure 40. The embedding saves ex-

1 2 3 4 5 6 7 8 9 10 11 12
[2[s]7]6]9] 819 8 7/1d1913

- o

Figure 40: The binary tree is layed out in a linear array. Tdw r
is placed inA[1], its children follow in A[2] and A[3], etc.

plicit pointers otherwise needed to establish parentdchil
relations. Specifically, we can find the children and par-
ent of a node by index computation: the left childAff]

is A[24], the right child isA[2: + 1], and the parent is
A[[#/2]]. The item with minimum rank is stored in the
first element:

i temFINDMIN(int n)
assert n>1; return A[l].

Since the index along a path at least doubles each step,
paths can have length at masg,, n.

Deleting the minimum. We first study the problem of
repairing the heap-order if it is violated at the root, as
shown in Figure 41. Let be the length of the array. We

Figure 41: The root is exchanged with the smaller of its two
children. The operation is repeated along a single path tinati
heap-order is repaired.

repair the heap-order by a sequence of swaps along a sin-
gle path. Each swap is between an item and the smaller of
its children:



voi d SIFT-DN(int 7, n)
if 2i<nthen
k = argmin{ A[2i], A[2i + 1]}
i f A[k] < Ali] t hen SwAP(i, k);
SIFT-DN(k, n)
endi f
endi f.

Here we assume that[n + 1] is defined and larger than
A[n]. Since a path has at mdsg, n» edges, the time to re-
pair the heap-order takes time at most€g n). To delete
the minimum we overwrite the root with the last element,
shorten the heap, and repair the heap-order:

voi d DELETEMIN(int *n)
A[1] = A[#n]; sn——; SIFT-DN(1, *n).

Instead of the variable that storeswe pass a pointer to

that variablexn, in order to use it as input and output
parameter.

Inserting. Consider repairing the heap-order if it is vio-

In the worst case, théth item moves up all the way to
the root. The number of exchanges is therefore at most
S logyi < nlog,n. The upper bound is asymptot-
ically tight because half the terms in the sum are at least
log, 5 = log, n—1. Itis also possible to construct the ini-
tial heap in time Of) by building it from bottom to top.
We modify the first step accordingly, and we implement
the second step to rearrange the items in sorted order:

voi d HEAPSORT(int n)
for ¢ =ndownt o 1do SIFT-DN(¢,n) endf or ;
for i =ndownto1ldo
SWAP(i,1); SIFT-DN(1,7 — 1)
endf or.

At each step of the firstor -loop, we consider the sub-
tree with rootA[i]. At this moment, the items in the left
and right subtrees rooted alt]2i] and A[2i + 1] are al-
ready heaps. We can therefore use one call to function
SIFT-DN to make the subtree with root[i] a heap. We
will prove shortly that this bottom-up construction of the
heap takes time only @j. Figure 42 shows the array
after each iteration of the secoffidbr -loop. Note how

lated at the last position of the heap. In this case, the item o heap gets smaller by one element each step. A sin-

moves up the heap until it reaches a position where its rank

is at least as large as that of its parent.

voi d SIFT-UP(int i)
ifi>2thenk=1i/2];
i f Afli] < A[k] t hen SwaP(i, k);
SIFT-UP(k)
endi f
endi f.

An item is added by first expanding the heap by one ele-
ment, placing the new item in the position that just opened
up, and repairing the heap-order.

voi d INSERT(int *n, i t emx)
s«n++; Alxn] = x; SIFT-UP(*n).

A heap supports IKDMIN in constant time andNSERT
and DELETEMIN in time O(log n) each.

Sorting. Priority queues can be used for sorting. The
first step throws all items into the priority queue, and the

2] 5] 7] 6] 9] 8[15] 8] 71017 13
®|6] 7@ 9] 815] 83[10]12] 2
©®|@] 7|(8] o] 8]15/¢2]13[10' 5
(@|@)] 7]a0] 9] 8[15/12]13] 6 5 2

N

(@] 8(8)10] 9]a3[15]12] 7 6 5 2
(®](9)] 8[10[a2]13]15] 7 7 6 5 2
(®] 9]a3]10]12/a5] 8 7 7 6 5 2
(@)a0]13]@B12]8 8 7 7 6 5 2
[o[a2[13]15] 9 8 8 7 7 6 5 2
(2]as[13/10 9 8 8 7 7 6 5 2

3[15/1210 9 8 8 7 7 6 5 2
45]131210 9 8 8 77 6 5 2

Figure 42: Each step moves the last heap element to the rdot an
thus shrinks the heap. The circles mark the items involveten

second step takes them out in order. Assuming the itemssift-down operation.

are already stored in the array, the first step can be done

by repeated heap repair:

for i=1tondo SIFT-UP(i) endf or .

36

gle sift-down operation takes time(log ), and in total
HEAPSORT takes time Qnlogn). In addition to the in-
put array, HHAPSORT uses a constant number of variables



and memory for the recursion stack used byTSDN.

We can save the memory for the stack by writing func-
tion SIFT-DN as an iteration. The sort can be changed to
non-decreasing order by reversing the order of items in the
heap.

Analysis of heap construction. We return to proving
that the bottom-up approach to constructing a heap takes
only O(n) time. Assuming the worst case, in which ev-
ery node sifts down all the way to the last level, we draw
the swaps as edges in a tree; see Figure 43. To avoid

e

Figure 43: Each node generates a path that shares no edges wit
the paths of the other nodes.

drawing any edge twice, we always first swap to the right
and then continue swapping to the left until we arrive at
the last level. This introduces only a small inaccuracy in
our estimate. The paths cover each edge once, except for
the edges on the leftmost path, which are not covered at
all. The number of edges in the treeris— 1, which im-
plies that the total number of swaps is less thafEquiv-
alently, the amortized number of swaps per item is less
than 1. There is a striking difference in time-complexity
to sorting, which takes an amortized number of about
log, n comparisons per item. The difference between 1
andlog, n may be interpreted as a measure of how far
from sorted a heap-ordered array still is.

37



heap but more complicated and asymptotically faster for
some operations. We first introduce binomial trees, which

are special heap-ordered trees, and then explain Fibonacckigure 45: Adding the shaded node to a binomial heap congisti
heaps as collections of heap-ordered trees. of three binomial trees.

11 Fibonacci Heaps @ ® @ o

The Fibonacci heap is a data structure implementing the ORRORO + @ = ORCRORRCO

priority queue abstract data type, just like the ordinary (12 (19 (1) (12 (19 (1) ©
19

Binomial trees. Thg bin(_)mial treeof h_eighth is a_tree binary notation of.. In the example, we ga011,+ 1, =

obtained from two binomial trees of height- 1, by link- 1100,. The new collection thus consists of two binomial

ing the root of one to the other. The binomial tree of height {rees with sizes 8 and 4. The size 8 tree is the old one, and

0 consists of a single node. Binomial trees of heights up e size 4 tree is obtained by first linking the two size 1

to 4 are shown in Figure 44. Each step in the construc- yees and then linking the resulting size 2 tree to the old
size 2 tree. All this is illustrated in Figure 45.

"
Fibonacci heaps. A Fibonacci heapis a collection of
heap-ordered trees. Ideally, we would like it to be a col-
lection of binomial trees, but we need more flexibility. It
will be important to understand how exactly the nodes of a

Fibonacci heap are connected by pointers. Siblings are or-
ganized in doubly-linked cyclic lists, and each node has a
Figure 44: Binomial trees of heights 0, 1, 2, 3, 4. Each tree is pointer to its parent and a pointer to one of its children, as

obtained by linking two copies of the previous tree. shown in Figure 46. Besides the pointers, each node stores
tion increases the height by one, increasegigree(the .

number of children) of the root by one, and doubles the m':L

size of the tree. It follows that a binomial tree of height § 72 4 @j

has root degreg and size2”. The root has the largest de- ‘

gree of any node in the binomial tree, which implies that oSN WR

every node in a binomial tree with nodes has degree at

mostlog, n.

To store any set of items with priorities, we use a small
collection of binomial trees. For an integer let n; be
the i-th bit in the binary notation, so we can write =
>0 ni2'. To storen items, we use a binomial tree of

size2’ for eachn; = 1. The total number of binomial trees  Figure 46: The Fibonacci heap representation of the firsecol

is thus the number of 1's in the binary notationgfwhich tion of heap-ordered trees in Figure 45.

is at mostlog,(n + 1). The collection is referred to as a

binomial heap The items in each binomial tree are stored a key, its degree, and a bit that can be used to mark or un-
in heap-order. There is no specific relationship between mark the node. The roots of the heap-ordered trees are
the items stored in different binomial trees. The item with doubly-linked in a cycle, and there is an explicit pointer to
minimum key is thus stored in one of the logarithmically the root that stores the item with the minimum key. Figure
many roots, but it is not prescribed ahead of time in which 47 illustrates a few basic operations we perform on a Fi-
one. An example is shown in Figure 45 whdrg, = bonacci heap. Given two heap-ordered treeslimkethem
10115 items are stored in three binomial trees with sizes by making the root with the bigger key the child of the
8, 2, and 1. In order to add a new item to the set, we createother root. Tounlink a heap-ordered tree or subtree, we
a new binomial tree of size 1 and we successively link remove its root from the doubly-linked cycle. Finally, to
binomial trees as dictated by the rules of adding 1 to the mergetwo cycles, we cut both open and connect them at

38



cO—0" O NO—0n
AYRAYAVAYA

unlinking

O—O0— -0y
YRV

merging

linking

Figure 47: Cartoons for linking two trees, unlinking a treed
merging two cycles.

their ends. Any one of these three operations takes only
constant time.

Potential function. A Fibonacci heap supports a vari-
ety of operations, including the standard ones for priority
gueues. We use a potential function to analyze their amor-
tized cost applied to an initially empty Fibonacci heap.
Letting r; be the number of roots in the root cycle and
m; the number of marked nodes, tpetential after the
i-th operation isb; = r; +2m,;. When we deal with a col-
lection of Fibonacci heaps, we define its potential as the
sum of individual potentials. The initial Fibonacci heap is
empty, so®, = 0. As usual, we let; be the actual cost
anda; = ¢; + ®; — ®,_; the amortized cost of theth
operation. Sinc&, = 0 and®; > 0 for all 7, the actual
cost is less than the amortized cost:

n
D a
i=1

For some of the operations, it is fairly easy to compute the
amortized cost. We get theinimum by returning the key

n

Zci <

i=1

= rn+2mn+iq.
i=1

in the marked root. This operation does not change the po-

tential and its amortized and actual costijs= ¢; = 1.

We meld two Fibonacci heapd{; and H-, by first merg-

ing the two root circles and second adjusting the pointer to
the minimum key. We have

’f‘i(H)

ri—1(Hy) +ric1(H2),
mi—1(H1) + mi—1(Ha),

which implies that there is no change in potential. The
amortized and actual cost is therefare= ¢; = 1. We
insert a key into a Fibonacci heap by first creating a new

Deletemin. Next we consider the somewhat more in-
volved operation of deleting the minimum key, which is
done in four steps:

Step 1. Remove the node with minimum key from the
root cycle.

Step 2. Merge the root cycle with the cycle of children
of the removed node.

Step 3. Aslong as there are two roots with the same
degree link them.

Step 4. Recompute the pointer to the minimum key.

For Step 3, we use a pointer arrdy Initially, R[]
NuLL for eachi. For each roop in the root cycle, we
execute the following iteration.

i = o — degree;
whi | e R[i] # NULL do
o' = R[i]; R[i] = NULL; o = LINK(p, ¢); i++
endwhi | e;
R[] = o.

To analyze the amortized cost for deleting the minimum,
let D(n) be the maximum possible degree of any node
in a Fibonacci heap of. nodes. The number of linking
operations in Step 3 is the number of roots we start with,
which is less tham;_, + D(n), minus the number of roots
we end up with, which ig;. After Step 3, all roots have
different degrees, which implies < D(n)+1. It follows
that the actual cost for the four steps is

1414 (ric1+D(n) —r;) + (D(n) +1)
34+2D(n) +ri—1 — 1.

¢ <

The potential change i8; —®; 1 = r; —r;_1. The amor-
tized cost is therefore; = ¢; + ®; — ;-1 < 2D(n) + 3.

We will prove next time that the maximum possible de-
gree is at most logarithmic in the size of the Fibonacci
heap,D(n) < 2logy(n + 1). This implies that deleting
the minimum has logarithmic amortized cost.

Decreasekey and delete. Besides deletemin, we also
have operations that delete an arbitrary item and that de-
crease the key of an item. Both change the structure of
the heap-ordered trees and are the reason why a Fibonacci
heap is not a collection of binomial trees but of more gen-
eral heap-ordered trees. Thlecreasekeyoperation re-

Fibonacci heap that stores only the new key and secondplaces the item with key stored in the node by x — A,

melding the two heaps. We have one more node in the
root cycle so the change in potentialds — ®; | = 1.
The amortized cost is therefosge = ¢; + 1 = 2.

39

whereA > 0. We will see that this can be done more effi-
ciently than to delete and to insertz — A. We decrease
the key in four steps.



Step 1. Unlink the tree rooted at.
Step 2. Decrease the key inby A.

Step 3. Add v to the root cycle and possibly update
the pointer to the minimum key.

Step 4. Do cascading cuts.

We will explain cascading cuts shortly, after explaining Figure 49: The effect of cascading after decreasing 10 to 7.
the four steps we take to delete a ned@efore we delete ~ Marked nodes are shaded.

a nodev, we check whether = min, and if it is then we

delete the minimum as explained above. Assume therel‘oreSummary analysis. As mentioned earlier, we will prove

thaty # min. D(n) < 2log,(n+1) nexttime. Assuming this bound, we

are able to compute the amortized cost of all operations.
Step 1. Unlink the tree rooted at. The actual cost of Step 4 in decreasekey or in delete is the
number of cutsg;. The potential changes because there
arec; new roots and; fewer marked nodes. Also, the last
cut may introduce a new mark. Thus

St ep 2. Merge the root-cycle with the cycle ofs chil-
dren.

Step 3. Dispose ofv.

. Qi —P®i1 = ri—rio1+2my; —2my
Step 4. Do cascading cuts.
< ¢ —2¢+2
= —C; + 2

Figure 48 illustrates the effect of decreasing a key and of
deleting a node. Both operations create trees that are NOtrhe amortized cost is therefote = ¢; + &; — &;_, <

¢i — (2 — ¢;) = 2. The first three steps of a decreasekey

(@) G) (@) g © operation take only a constant amount of actual time and

increase the potential by at most a constant amount. It

(ff @ & © follows that the amortized cost of decreasekey, including
219 W

(12 (13 (1)  decreasekey 12to the cascading cuts in Step 4, is only a constant. Similarly,

® y delete 4 the actual cost of a delete operation is at most a constant,
(9 (0 ©) ©) but Step 2 may increase the potential of the Fibonacci heap
g by as much a®(n). The rest is bounded from above by

a constant, which implies that the amortized cost of the
delete operation is Qfg n). We summarize the amortized

Figure 48: A Fibonacci heap initially consisting of threedi cost of the various operations supported by the Fibonacci

mial trees modified by a decreasekey and a delete operation.

heap:
binomial, and we use cascading cuts to make sure that the find the minimum 0(1)
shapes of these trees are not very different from the shapes meld two heaps 0(1)
of binomial trees. insert a new item 0(1)
delete the minimum Qg n)
decrease the key of a node 0o(1)
Cascading cuts. Letr be a node that becomes the child delete a node Qfg n)

of another node at time We markv when it loses its first

child after timet. Then we unmark;, unlink it, and add it~ We Wwill later see graph problems for which the difference
to the root-cycle when it loses its second child thereafter. in the amortized cost of the decreasekey and delete op-
We call this operation &ut, and it may cascade because e_rations implies a significant improvement in the running
one cut can cause another, and so on. Figure 49 illus-time.

trates the effect of cascading in a heap-ordered tree with

two marked nodes. The first step decreases key 10 to 7,

and the second step cuts first node 5 and then node 4.

40



12 Solving Recurrence Relations FACT. (L — k1)(L — k) ... (L — k,) annihilates all se-
quences of the fornie1 k + cakd + ... + ¢, kL).

Recurrence relations are perhaps the most important tool ] ] ] )

in the analysis of algorithms. We have encountered sev- Whatif k = £? To answer this question, we consider

eral _methods that can spmetimes b_e used to sqlve _such (L— k26K = (L— k)G + D)k — ikith)

relations, such as guessing the solution and proving it by i1

induction, or developing the relation into a sum for which (L — k) {E™)

we find a closed form expression. We now describe a new = (0).

method to solve recurrence relations and use it to settle

the remaining open question in the analysis of Fibonacci

heaps.

More generally, we have

FacT. (L — k)™ annihilates all sequences of the form
(p(i)k®), with p(i) a polynomial of degree — 1.

Annihilation of sequences. Suppose we are given an in-

finite sequence of numbers, = (ag, ay, as,...). We can Since operators annihilate only certain types of sequences

multiply with a constant, shift to the left and add another we can determine the sequence if we know the annihilating

sequence: operator. The general method works in five steps:

kA = (kao, ka1, kas,...), 1. Write down the annihilator for the recurrence.

LA = (a1,a2,a3...), 2. Factor the annihilator.

A+ B = (ap+bo,a1+bi,az+bs,...). 3. Determine what sequence each factor annihilates.
As an example, consider the sequence of powers of two, 4 Putthe sequences together.
a; = 2¢. Multiplying with 2 and shifting to the left give 5. Solve for the constants of the solution by using initial
the same result. Therefore, conditions.
LA—-24 = (0,0,0,...).

Fibonacci numbers. We putthe method to a test by con-
We writeLA — 2A = (L — 2)A and think ofL — 2 as an sidering the Fibonacci numbers defined recursively as fol-
operator thatnnihilatesthe sequence of powers of 2. In  lows:
generalL — k annihilates any sequence of the fo(ea®).

What doed. — & do to other sequencet = (c/*), when Fo =0,
0 #k? Fo= 1,
. — . . P> 9.
L—Kk)A = (cl,cl® cf®,..) — (ck,ckl,cke®, ..) Fj = Fia+Fo, forj =2
= (L—k)(c,cl,cl?,... Writing a few of the initial numbers, we get the sequence
(£ = k){c,cl,cl?,...)
= (L—kA. (0,1,1,2,3,5,8,...). We notice thal.> — L — 1 annihi-

lates the sequence because
We see that the operatbr— & annihilates only one type
of sequence and multiplies other similar sequences by a
constant.

(L —L—1)(F;) = L*F;)—L(F}) — (F))
= (Fjy2) — (Fjr1) — (F)
(0).

Multiple operators. Instead of just one, we can ap- |f we factor the operator into its roots, we get
ply several operators to a sequence. We may multiply

with two constantsk(¢A) = (kf)A, multiply and shift, LP-L-1 = (L-¢)(L-p),
L(kA) = k(LA), and shift twice,L(LA) = L2A. For

example,(L — k)(L — ¢) annihilates all sequences of the where

form (ck® + d¢*), where we assumie # ¢. IndeedL. — k 14++5

annihilates/ck’) and leaves behint(¢ — k)d¢?), which is v = —5— = L6138,
annihilated byl — ¢. Furthermore(L — k)(L — ¢) anni- 1-v5

hilates no other sequences. More generally, we have P =1l-¢ = 5 = —0618....

41



The first root is known as thgolden ratiobecause it repre-

For largerj, we gets; from s;_; by adding the size of a

sents the aspect ratio of a rectangular piece of paper fromminimum tree with root degreg-2, whichiss;_». Hence

which we may remove a square to leave a smaller rect-

angular piece of the same ratigz : 1 = 1 : ¢ — 1.
Thus we know thatL — ¢)(L — %) annihilates(F};) and
this means that thg-th Fibonacci number is of the form
F; = cp? + ¢/, We get the constant factors from the
initial conditions:

Fy
Iy

0 =
=1

¢ +e¢,
cp+<Cp.

Solving the two linear equations in two unknowns, we get
¢ =1/+/5 ande = —1/+/5. This implies that

poo (VB 1 (1Y
From this viewpoint, it seems surprising that turns out
to be an integer for alj. Note that/¢| > 1 and|p| < 1.
It follows that for growing exponent, ¢’/ goes to infinity
andp’ goes to zero. This implies that is approximately

¢’ /\/5, and that this approximation becomes more and
more accurate asgrows.

Maximum degree. Recall thatD(n) is the maximum

sj = Sj—1 + s;j—2, Which is the same recurrence relation
that defines the Fibonacci numbers. The initial values are
shifted two positions so we ge} = Fjj», as claimedd]

Consider a Fibonacci heap withnodes and let be a
node with maximum degre® = D(n). The Size Lemma
impliesn > Fp.,. The Fibonacci number with index
D + 2 is roughly oP+2 /y/5. Becausgs” 2 < /5, we
have

1

>
> \/590

After rearranging the terms and taking the logarithm to the
basep, we get

n D+2 1.

D < log, VE(n +1) —2.

Recall thatog,, = = log, 7/ log, ¢ and use the calculator
to verify thatlog, ¢ = 0.694... > 0.5 andlog,, V5 =
1.672... < 2. Hence

log,(n +1)

log, ¢
2logy(n + 1).

D +log, V5 -2

A

possible degree of any one node in a Fibonacci heap of Non-homogeneous terms. We now return to the anni-
sizen. We need two easy facts about the kind of trees that hilation method for solving recurrence relations and con-

arise in Fibonacci heaps in order to show tix) is at
most logarithmic inn. Let v be a node of degreg and
let y11, pi2, . . ., pu; be its children ordered by the time they
were linked tow.

DEGREELEMMA. The degree ofi; is at least — 2.

ProoF Recall that nodes are linked only during the

deletemin operation. Right before the linking happens, the
two nodes are roots and have the same degree. It follows

that the degree qgf; was at least — 1 at the time it was
linked tor. The degree ofi; might have been even higher
because it is possible thaiost some of the older children
after u; had been linked. After being linkeg, may have
lost at most one of its children, for else it would have been
cut. Its degree is therefore at least 2, as claimed.

Size LEMMA. The number of descendents:ofinclud-
ing v) is at leastF; .

PROOF. Let s; be the minimum number of descendents a
node of degreg can have. We have, = 1 ands; = 2.

42

sider

aj =

aj,1 —|— aj,g + 1

This is similar to the recurrence that defines Fibonacci
numbers and describes the minimum number of nodes in
anAVL tree also known aseight-balanced treelt is de-
fined by the requirement that the height of the two sub-
trees of a node differ by at most 1. The smallest tree
of heightj thus consists of the root, a subtree of height
j — 1 and another subtree of height- 2. We refer to the
terms involvinga; as thehomogeneouterms of the re-
lation and the others as tm®n-homogeneousrms. We
know thatL? — L — 1 annihilates the homogeneous part,
a; = a;_1 + aj_2. [fwe apply it to the entire relation we
get

(L? — L — 1)(a;) (ajt2) — (aj+1) — (aj)

(1,1,...).
The remaining sequence of 1s is annihilatedIby- 1.

In other words,(L — ¢)(L — @)(L — 1) annihilates(a,)
implying thata; = ¢/ + 2%’ + ¢/17. It remains to find



the constants, which we get from the boundary conditions The Master Theorem. It is sometimes more convenient

ap=1,a; = 2anday = 4: to look up the solution to a recurrence relation than play-
ing with different techniques to see whether any one can
c + c + Jd =1, make it to yield. Such a cookbook method for recurrence
pc + pe + ¢ = 2 relations of the form
o’c + P + ¢ 4.

T(n) = aT(n/b)+ f(n)
Noting thatp? = 0 +1,2> =%+ 1,andy — % = /5 . . .
we gete = (5+2v/5)/5,2 = (5 —2v/5)/5, andc’ = —1. is provided by the following theorem. Here we assume
The minimum number of nodes of a heigh&VL treeis ~ thata > 1 .andb > 1 are constants and thitis a well-
therefore roughly the constantimesy?. Conversely, the ~ behaved positive function.
maximum height of an AVL tree withh = ¢y’ nodes is
roughly j = log,(n/c) = 1.440...-logyn + O(1). In MASTERTHEOREM. Definec = log;, a and lete be an

words, the height-balancing condition implies logaritbmi arbitrarily small positive constant. Then
height. )
O(n°) if f(n) =O(n“*),
T(n) = O(nclogn) if f(n)=0(n°),
Transformations. We extend the set of recurrences we O(f(n)) if f(n) = Qnte).

can solve by employing transformations that produce rela-

tions amenable to the annihilation method. We demon- The last of the three cases also requires a usually satis-
strate this by considering mergesort, which is another fied technical condition, namely thatf (n/b) < df(n)
divide-and-conquer algorithm that can be used to sort a for some constant strictly less than 1. For example, this

list of n items: condition is satisfied ifi'(n) = 27°(n/2) + n? which im-
pliesT(n) = O(n?).

Step 1. Recursively sort the left half of the list. As another example consider the relati@tin) =

Step 2. Recursively sort the right half of the list. 2T(n/2) + n that describes the running time of merge-

) . sort. We have: = log,2 = 1 andf(n) = n = O(n°).
Step 3. Merge the two sorted lists by simultaneously The middle case of the Master Theorem applies and we
scanning both from beginning to end. getT'(n) = O(nlogn), as before.

The running time is described by the solution to the recur-
rence

T1) = 1,
T(n) = 2T(n/2)+n.

We have no way to work with terms Iiké&(n/2) yet.
However, we can transform the recurrence into a more
manageable form. Defining = 2 andt; = T'(2¢%) we

get

to = 1,
t; 2t 1 + 2%

The homogeneous part is annihilatediby- 2. Similarly,
non-homogeneous part is annihilated by- 2. Hence,

(L — 2)? annihilates the entire relation and we get=
(ci+7)2". Expressed in the original notation we thus have
T(n) = (cloggn +¢)n = O(nlogn). This result is of
course no surprise and reconfirms what we learned earlier
about sorting.

43



Third Homework Assignment (b) Explain how to insert a new item into the data
structure and analyze your algorithm, both in

Write the solution to each problem on a single page. The worst-case and in amortized time.

deadline for handing in solutions is October 14.
Problem 5. (20 = 10 + 10 points). Consider a full bi-

nary tree withn leaves. Thesizeof a nodes(v), is
the number of leaves in its subtree and thak is
the floor of the binary logarithm of the size(v) =

Problem 1. (20 = 10 + 10 points). Consider a lazy ver-
sion of heapsort in which each item in the heap is
either smaller than or equal to every other item in its

subtree, or the item is identified asicertified To [logz 5(v)]-

certify an item, we certify its children and then ex- (a) Is it true that every internal nodehas a child
change it with the smaller child provided it is smaller whose rank is strictly less than the rankusf

than the item itself. Supposé[1..n] is a lazy heap (b) Prove that there exists a leaf whose depth
with all items uncertified. (length of path to the root) is at mostg,, 7.

(a) How much time does it take to certif{{1]?

(b) Does certifyingA[1] turn A into a proper heap
in which every item satisfies the heap property?
(Justify your answer.)

Problem 2. (20 points). Recall that Fibonacci numbers
are defined recursively @ = 0, I} = 1, andF;,, =
F,,_1+ F,,_». Prove the square of theth Fibonacci
number differs from the product of the two adjacent
numbers by oneF? = F,,_ - F, 41 + (—=1)" L

Problem 3. (20 points). Professor Pinocchio claims that
the height of am-node Fibonacci heap is at most
some constant timelsg, n. Show that the Profes-
sor is mistaken by exhibiting, for any integer a
sequence of operations that create a Fibonacci heap
consisting of just one tree that is a linear chaimof
nodes.

Problem 4. (20 = 10 + 10 points). To search in a sorted
array takes time logarithmic in the size of the array,
but to insert a new items takes linear time. We can
improve the running time for insertions by storing the
items in several instead of just one sorted arrays. Let
n be the number of items, lét = [log,(n + 1)],
and writen = ng_1nk_o...ng in binary notation.
We usek sorted arraysd; (some possibly empty),
where A, storesn;2¢ items. Each item is stored ex-
actly once, and the total size of the arrays is indeed
Zf:o n;2" = n. Although each individual array is
sorted, there is no particular relationship between the
items in different arrays.

(a) Explain how to search in this data structure and
analyze your algorithm.

44



IV GRAPHALGORITHMS

13
14
15
16

Graph Search

Shortest Paths

Minimum Spanning Trees
Union-find

Fourth Homework Assignment

45



13 Graph Search the weight of the edge connectingnd;. The adjacency
matrix of the graph in Figure 50 is

We can think of graphs as generalizations of trees: they

consist of nodes and edges connecting nodes. The main 01 0 1 0

difference is that graphs do not in general represent hier- 1 0 1 0 0

archical organizations. A = 01 0 1 0 |,
1 01 0 1
000 10

Types of graphs. Different applications require differ-

ent types of graphs. The most basic type is siraple

undirected graphhat consists of a séf of verticesanda ~ Which is symmetric. Irrespective of the number of edges,
setE of edges Each edge is an unordered pair (a set) of

two vertices. We always assunieis finite, and we write

(1)
(0] (2)
(3

o Figure 51: The adjacency list representation of the grapgtign

. . . . . ure 50. Each edge is represented twice, once for each endpoin
Figure 50: A simple undirected graph with verticgsl, 2, 3, 4

and edgeg0, 1}, {1, 2}, {2, 3}, {3, 0}, {3,4}.

the adjacency matrix has® elements and thus requires a
(%) for the collection of all unordered pairs. HenEdsa  quadratic amount of space. Often, the number of edges
subset of( ;). Note that becausE is a set, each edge can s quite small, maybe not much larger than the number of
occur only once. Similarly, because each edge is a set (ofvertices. In these cases, the adjacency matrix wastes mem-
two vertices), it cannot connect to the same vertex twice. ory, and a better choice is a sparse matrix representation

Verticesu andv areadjacentif {u, v} € E. In this case referred to asadjacency listswhich is illustrated in Fig-
andv are callecheighbors Other types of graphs are ure 51. It consists of a linear array for the vertices and
) a list of neighbors for each vertex. For most algorithms,
directed ~ECV xV. we assume that vertices and edges are stored in structures
weighted  has a weighting functiow : £ — R. containing a small number of fields:
labeled has a labeling functioa: V — Z.

non-simple there are loops and multi-edges.
struct Vertex {i nt d, f, n; Edge *adj};
A loopis like an edge, except that it connects to the same st ruct Edge {i nt v; Edge *nexf.
vertex twice. Amulti-edgeconsists of two or more edges

connecting the same two vertices. _ ) o
Thed, f, fields will be used to store auxiliary informa-

tion used or created by the algorithms.
Representation. The two most popular data structures
for graphs are direct representations of adjacency. Let
V = {0,1,...,n — 1} be the set of vertices. Thad-

jacency matrixs then-by-n matrix A = (a;;) with Depth-first search. Since graphs are generally not or-

R dered, there are many sequences in which the vertices can

1 if{i,j} e E, - . . .
ai; = 0 if{ij} ¢E be visited. In fact, itis not entirely straightforward to kea
] ' sure that each vertex is visited once and only once. A use-

For undirected graphs, we hawg; = a;;, SOA is sym- ful method is depth-first search. It uses a global variable,
metric. For weighted graphs, we encode more informa- time which is incremented and used to leave time-stamps
tion than just the existence of an edge and defifjeas behind to avoid repeated visits.

46



voi d ViIsIT(i nt 4)
1 timet+; V[i].d =time
foral | outgoing edgesj do

2 if V[j].d=0then
3 Vijl.m = i; VISIT(j)
endi f
endf or;

4 timet+; V[i].f =time

The test in line 2 checks whether the neighpaf i has
already been visited. The assignment in line 3 records that ~ Figure 53: Tree edges are solid and back edges are dotted.
the vertex s visitedrom vertexi. A vertex s first stamped

in line 1 with the time at which it is encountered. A vertex
is second stamped in line 4 with the time at which its visit
has been completed. To prepare the search, we initialize
the global time variable to 0, label all vertices as not yet
visited, and call \¥sIT for all yet unvisited vertices.

stampsd are consistent with the preorder traversal of the
DFS forest. The time-stampsg are consistent with the
postorder traversal. The two stamps can be used to decide,
in constant time, whether two nodes in the forest live in
different subtrees or one is a descendent of the other.
time= 0; .

foral | verticesi do V[i|.d = 0 endf or ; NESTING L!E_MMA. Vertex j is a proper dgscendent of
forall verticesi do vertex: in the DFS forest iffi/[i].d < V[j].d as well

i f V]i].d=0then V[i].w = 0; VisIT(i) endi f asV[jl.f < VI[i.f.

endfor. o _
Similarly, if you have a tree and the preorder and postorder

numbers of the nodes, you can determine the relation be-

Letn be the number of vertices amadthe number of edges i X
tween any two nodes in constant time.

in the graph. Depth-first search visits every vertex once
and examines every edge twice, once for each endpoint.
The running time is therefore(@ + m), which is propor- pjrected graphs and relations. As mentioned earlier,
tional to the size of the graph and therefore optimal. we have adirected graphif all edges are directed. A
directed graph is a way to think and talk about a mathe-
matical relation. A typical problem where relations arise
is scheduling. Some tasks are in a definite order while
cothers are unrelated. An example is the scheduling of
undergraduate computer science courses, as illustrated in
Figure 54. Abstractly, aelation is a pair(V, E), where

DFS forest. Figure 52 illustrates depth-first search by
showing the time-stamps and f and the pointers in-
dicating the predecessors in the traversal. We call an edg
{i,j} € F atree edgéf i = V[j].m orj = V[i].w and a
back edgeotherwise. The tree edges form theS forest

Comput. Org.  Operating Distributed
and Programm.  Systems Inform. Syst.

104 H 110 H 212

Program Design Program Design
and Analysis | and Analysis Il

006 = 100

Figure 52: The traversal starts at the vertex with time-gtam e
Each node is stamped twice, once when it is first encountered
and another time when its visit is complete. Figure 54: A subgraph of the CPS course offering. The courses

CPS104 and CPS108 are incomparable, CPS104 is a predecessor
of the graph. The forest is a tree if the graph is connected of CPS110, and so on.

and a collection of two or more trees if it is not connected.
Figure 53 shows the DFS forest of the graph in Figure 52 V' = {0,1,...,n — 1} is a finite set of elements and
which, in this case, consists of a single tree. The time- £ C V x V is a finite set of ordered pairs. Instead of

47



(i,j) € E we writei < j and instead ofV, E') we write whi | e queue is non-emptyo

(V,<). If i < j theni is apredecessoof j andj is asuc- s = DEQUEUE
cessorof 7. The terms relation, directed graph, digraph, foral | successorgof s do
and network are all synonymous. V0jl.d--;
i f V[j].d =0then ENQUEUE(j) endi f
endf or

Directed acyclic graphs. A cyclein a relation is a se- endwhi | e.

iqsuznccféloe <Allilne:r é%.te:siékmi(lﬁog) Egeannl%r;erilr?g The running time is linear in the number of vertices and
' " . : edges, namel . What happens if there is a cycle
jo,j1,-- -, Jn—1 Of the elements that is consistent with the g y Ou+m) PP Y

in the digraph? We illustrate the above algorithm for the

relation. Formally this means that < j, impliesk < £. directed acyclic graph in Figure 55. The sequence of ver-

A directed graph without cycle isdirected acyclic graph

EXTENSIONLEMMA. (V, <) has a linear extension iff it
contains no cycle.

PROOF “="is obvious. We prove =" by induction.

A vertexs € V is called asourceif it has no predecessor.
Assuming(V, <) has no cycle, we can prove th&thas

a source by following edges against their direction. If we
return to a vertex that has already been visited, we have
a cycle and thus a contradiction. Otherwise we get stuck
at a vertexs, which can only happen becausehas no
predecessor, which meagss a source.

Figure 55: The numbers next to each vertex count the predeces
sors, which decreases during the algorithm.

tices added to the queue is also the linear extension com-

puted by the algorithm. If the process starts at vertex
LetU = V—{s} and note thatU, <) is arelationthatis  and if the successors of a vertex are ordered by name then

smaller than(V, <). Hence(U, <) has a linear extension  we geta, f,d, g, c, h, b, e, which we can check is indeed a

by induction hypothesis. Call this extensidghand note linear extension of the relation.
thats, X is a linear extension dfV/, <).

Topological sorting with DFS. Another algorithm that

can be used for topological sorting is depth-first search.
Topological sorting with queue. The problem of con-  We output a vertex when its visit has been completed, that
structing a linear extension is calleédpological sorting is, when all its successors and their successors and so on
A natural and fast algorithm follows the idea of the proof: have already been printed. The linear extension is there-

find a sources, print s, removes, and repeat. To expedite  fore generated from back to front. Figure 56 shows the
the first step of finding a source, each vertex maintains

its number of predecessors and a queue stores all sources.

. s .. R 15, 16 2,9 1,14
First, we initialize this information.

foral |l verticesj do Vj].d = 0 endf or;
foral | verticesi do
foral | successorgof i do V[j].d++ endf or

endf or; 4,5 6,7 11, 12
foral |l verticesj do

if V[j].d =0t hen ENQUEUE(j) endi f Figure 56: The numbers next to each vertex are the two time
endf or. stamps applied by the depth-first search algorithm. The first

number gives the time the vertex is encountered, and thendeco
when the visit has been completed.

Next, we compute the linear extension by repeated dele-

tion of a source. same digraph as Figure 55 and labels vertices with time

48



stamps. Consider the sequence of vertices in the order of
decreasing second time stamp:

a(16), f(14),g(13), h(12),d(9), c(8),e(7), b(5).

Although this sequence is different from the one computed
by the earlier algorithm, it is also a linear extension of the
relation.

49



14 Shortest Paths

One of the most common operations in graphs is finding

shortest paths between vertices. This section discusses

three algorithms for this problem: breadth-first search
for unweighted graphs, Dijkstra’s algorithm for weighted
graphs, and the Floyd-Warshall algorithm for computing
distances between all pairs of vertices.

Breadth-first search. We call a grapltonnectedf there
is a path between every pair of vertices. (¢onnected)
componenis a maximal connected subgraph. Breadth-
first search, or BFS, is a way to search a graph. It is sim-

A vertex is processed by adding its unvisited neighbors to
the queue. They will be processed in turn.

voi d SEARCH
whi | e queue is non-emptgo
i = DEQUEUE
foral | neighborsj ofi do
if V[jl.d=—-1then
Vijl.d=V[il.d+1; V[jl.m =1;
ENQUEUE())
endi f
endf or
endwhi | e.

ilar to depth-first search, but while DFS goes as deep asThe labelV [i].d assigned to vertexduring the traversal is
quickly as possible, BFS is more cautious and explores athe minimum number of edges of any path frero 7. In
broad neighborhood before venturing deeper. The starting other words )V [i].d is the length of the shortest path from

point is a vertexs. An example is shown in Figure 57. As

Figure 57: A sample graph with eight vertices and ten edges
labeled by breath-first search. The label increases fromtaxe
to its successors in the search.

before, we call and edgeteee edgdf it is traversed by the
algorithm. The tree edges define tAES tree which we

can use to redraw the graph in a hierarchical manner, as in
Figure 58. In the case of an undirected graph, no non-tree
edge can connect a vertex to an ancestor in the BFS tree.

Why? We use a queue to turn the idea into an algorithm.

Figure 58: The tree edges in the redrawing of the graph inrgigu
57 are solid, and the non-tree edges are dotted.

First, the graph and the queue are initialized.

forall verticesi do V[i].d = —1 endf or;
Vl]s].d = 0;

MAKEQUEUE; ENQUEUE(s); SEARCH.

50

sto4. The running time of BFS for a graph withvertices
andm edges is On + m).

Single-source shortest path. BFS can be used to find
shortest paths in unweighted graphs. We now extend the
algorithm to weighted graphs. Assumieand E are the
sets of vertices and edges of a simple, undirected graph
with a positive weighting functionv : £ — R,. The
length or weight of a path is the sum of the weights of
its edges. Thelistancebetween two vertices is the length
of the shortest path connecting them. For a given source
s € V, we study the problem of finding the distances and
shortest paths to all other vertices. Figure 59 illustrétes
problem by showing the shortest paths to the sourde

S
5 5 —~ 5

Figure 59: The bold edges form shortest paths and togetber th
shortest path tree with roat It differs by one edge from the
breadth-first tree shown in Figure 57.

the non-degenerate case, in which no two paths have the
same length, the union of all shortest paths ie a tree,
referred to as thehortest path treeln the degenerate case,
we can break ties such that the union of paths is a tree.

As before, we grow a tree starting from Instead of a
gueue, we use a priority queue to determine the next vertex
to be added to the tree. It stores all vertices not yet in the



tree and use¥ [i].d for the priority of vertexi. First, we — aggy n?i?; ;-gze;p
initialize the graph and the priority queue. DeontntKers | | o o

Vl[s].d = 0; V[s].m = —1; INSERT(s); Table 4: Running time of Dijkstra’s algorithm for three difent

forall verticesi # s do implementations of the priority queue holding the yet urkedr

Vi].d = oo; INSERT(i) vertices.
endf or.
o o . o Correctness. Itis not entirely obvious that Dijkstra’s al-

After initialization the priority queue storeswith priority gorithm indeed finds the shortest pathsitdlo show that
0 and all other vertices with priofitye. it does, we inductively prove that it maintains the follow-

ing two invariants.

Dijkstra’s algorithm.  We mark vertices in the tree to _
distinguish them from vertices that are not yet in the tree. (A) For every unmarked vertex V'[j].d is the length of
The priority queue stores all unmarked verti¢asith pri- the shortest path from to s that uses only marked
ority equal to the length of the shortest path that goes from vertices other thap.

17 in one edge to a marked vertex and them tasing only

marked vertices (B) For every marked vertex V[i].d is the length of the

shortest path fronito s.

whi | e priority queue is non-emptglo
1 = EXTRACTMIN; marki;
foral |l neighborsj of i do
i f jisunmarked hen

PROOF Invariant (A) is true at the beginning of Dijkstra’s
algorithm. To show that it is maintained throughout the
process, we need to make sure that shortest paths are com-

V[j].d = min{w(ij) + V[il.d, V[j].d} puted correctly. Specifically, if we assume Invariant (B)
endi f ’ for vertexi then the algorithm correctly updates the prior-
endf or ities V'[5].d of all neighbors;j of 7, and no other priorities
endwhi | e. change.

Table 3 illustrates the algorithm by showing the informa-
tion in the priority queue after each iteration of the while-
loop operating on the graph in Figure 59. The mark-

s 0 Q

a | o 5 5 /‘,

b| oo 10 10 9 9 i

c | oo 4 !

d | oo 5 5 5

e | oo oo oo 10 10 10

f |l oo oo oo 15 15 15 15

glo o oo o 15 15 15 15 Figure 60: The vertey is the last unmarked vertex on the hypo-

. thetically shortest, dashed path that connectss.
Table 3: Each column shows the contents of the priority queue

Time progresses from left to right. . T
prog g At the moment vertex is marked, it minimize$/[j].d

over all unmarked verticeg. Suppose that, at this mo-
ment,V[i].d is not the length of the shortest path froro

s. Because of Invariant (A), there is at least one other un-
marked vertex on the shortest path. Let the last such vertex
bey, as shown in Figure 60. But thén[y].d < V[i].d,
which is a contradiction to the choice of

ing mechanism is not necessary but clarifies the process.
The algorithm performs EXTRACTMIN operations and

at mostm DECREASEKEY operations. We compare the
running time under three different data structures used to
represent the priority queue. The first is a linear array, as
originally proposed by Dijkstra, the second is a heap, and
the third is a Fibonacci heap. The results are shown in  We used (B) to prove (A) and (A) to prove (B). To make
Table 4. We get the best result with Fibonacci heaps for sure we did not create a circular argument, we parametrize
which the total running time is @(logn + m). the two invariants with the numbér of vertices that are

51



marked and thus belong to the currently constructed por-
tion of the shortest path tree. To prove)Ave need (B)

and to prove (B) we need (A_1). Think of the two in-
variants as two recursive functions, and for each pair of
calls, the parameter decreases by one and thus eventually
becomes zero, which is when the argument arrives at the
base case.

All-pairs shortest paths. We can run Dijkstra’s algo-
rithm n times, once for each vertex as the source, and thus
get the distance between every pair of vertices. The run-
ning time is O¢? log n + nm) which, for dense graphs, is
the same as @f). Cubic running time can be achieved
with a much simpler algorithm using the adjacency matrix
to store distances. The idea is to iteratémes, and after
the k-th iteration, the computed distance between vertices
1 andj is the length of the shortest path franto j that,
other than andj, contains only vertices of indeor less.

for k=1tondo
fori=1tondo
for j=1tondo
endf or
endf or
endf or.

The only information needed to updatéi, j] during the
k-th iteration of the outer for-loop are its old value and
values in thek-th row and thek-th column of the prior
adjacency matrix. This row remains unchanged in this it-
eration and so does this column. We therefore do not have
to use two arrays, writing the new values right into the old
matrix. We illustrate the algorithm by showing the adja-
cency, or distance matrix before the algorithm in Figure
61 and after one iteration in Figure 62.

s a b c d e f g

s 5 10 4 5
a 0 4 5 10
b |10 4 ©

Cc

d |5 0 10
e 5

f 10

g 10 0

Figure 61: Adjacency, or distance matrix of the graph in Fégu
57. All blank entries storeo.

52

o/5 104 5 s|o][s[9]4 s5[10[2g
5(0 4/9]10 5 10 a|5/0/4 9 105 10
104 014/15 b [o]4]o0]13[14 of14
4/9/14/0 4 c |4]|9]13/0 4)14/19
5 10|15 4 10 d | 5|10/14 4 0|18 2¢10
5 0 e |10/ 5| 9|14/15 0
10 6 f |15/ 1014 19 29 6

10 0| 9 10 0
s ab c de f g s ab c de f g
0 5/9|4 5 10 15 s|0 5 9 5 10 15
5 0/4]/9 105 10 a|5 0 4/9/105 10
9 4/0|1314 9 14 | b |9 4 0|13 14 9 14
4 9|13 0 4 1419 | c |4 9 13/0|4 14 19
5 10/14 4 0 152010 d |5 10 14 4|0 15 2010
10 5[ 9(14 150 6 e |10 5 9|14/ 150 6
15 10[14/ 19 20 6 0O f ]1510 1419 206 ©

10 0| 9 10 0
s ab c de f g s a b c d e f |
0 59 4/5/10 1515 s |0 5 9 4 5|10 1515
5 0 4 9|10 5 10/20] a |5 0 4 9 10/ 5|10 20
9 4 0 1314 9 1424 b |9 4 0 13 14 9| 1424
4 9 130|4|14 1914 ¢ |4 9 130 4|14 1914
5 10 14 4| 0|15 2010 d |5 10 14 4 0] 1§ 2010
105 9 14180 6|25 e |10 5 9 14 1506 25
15 10 14 19 206 0|30 f |15 10 14 19 206 |0 30
15) 20 24 1410 25 3po| 9 |15 20 24 1410] 25 300
s ab c de f g s a b c d e f |
0 59 4 51015915 s |0 5 9 4 5 10 1515
5 0 4 9 105(1020 a |5 0 4 9 10 5 1020
9 4 0 1314 9/ 1424 b |9 4 0 13 14 9 1424
4 9 130 4 141914 ¢ |4 9 130 4 14 1914
510 14 4 0 15 2910 d |5 10 14 4 0 15 2010
105 9 14 150|6|25 e |10 5 9 14 150 6|25
15 10 14 19 20 6| 0|30 f |15 10 14 19 206 0|30
15 20 24 1410 2% 30p0| 9 |15 20 24 1410 25 300

Figure 62: Matrix after each iteration. Tleth row and colum
are shaded and the new, improved distances are high-lighted

The algorithm works for weighted undirected as well
as for weighted directed graphs. Its correctness is easily
verified inductively. The running time is @¢).



15 Minimum Spanning Trees

When a graph is connected, we may ask how many edges

we can delete before it stops being connected. Depending

on the edges we remove, this may happen sooner or later.

The slowest strategy is to remove edges until the graph

becomes a tree. Here we study the somewhat more dif-

ficult problem of removing edges with a maximum total

weight. The remaining graph is then a tree with minimum  gjqre 64: The bold edges form a spanning tree of welight-

total weight. Applications that motivate this questioncan 194113 4+14+11+12+ 1.6+ 1.9 = 10.6.

be found in life support systems modeled as graphs or net-

works, such as telephone, power supply, and sewer sys-

tems. more edges. Lefl C F be a subset of some MST of a
connected grapfl, E). An edgeuv € E — A is safe for
Aif AU {uv} is also subset of some MST. The generic

Free trees. An undirected graplU, T) is afree treeif algorithm adds safe edges until it arrives at an MST.
it is connected and contains no cycle. We could impose a

hierarchy by declaring any one vertex as the root and thus
obtain arooted tree Here, we have no use for a hierarchi-
cal organization and exclusively deal with free trees. The

A=10;

whi | e (V, A) is not a spanning trego
find a safe edgev; A =AU {uv}

endwhi | e.

As long asA is a proper subset of an MST there are safe

e edges. Specifically, ifV,T") is an MST and4 C T then

d all edges inT' — A are safe forA. The algorithm will
therefore succeed in constructing an MST. The only thing

that is not yet clear is how to find safe edges quickly.
g h i

Figure 63: Adding the edgéyg to the tree creates a single cycle

with verticesd, g, h, [, ¢, a. Cuts. To develop a mechanism for identifying safe

edges, we define eut, which is a partition of the vertex

: set into two complementary sel,= W U (V —W). Itis
number of edges of a free tree is always one less than thecrossed)y anedgew e Eif uc W ando € V-, and

number of vertices. Whenever we add a new edge (con—.t respectsan edae sefl if A contains no crossing edae
necting two old vertices) we create exactly one cycle. This ! pects ge sekl | ontal ing edge.
The definitions are illustrated in Figure 65.

cycle can be destroyed by deleting any one of its edges,
and we get a new free tree, as in Figure 63. (1&tF) be

a connected and undirected graphsébgraphis another
graph(U,T) with U C V andT C E. Itis aspanning
treeif it is a free tree withU = V.

Minimum spanning trees. For the remainder of this
section, we assume that we also have a weighting func-
tion, w : £ — R. Theweightof subgraph is then the
total weight of its edgesy(T) = > ., w(e). A mini-
mum spanning treeor MST of G is a spanning tree that
minimizes the weight. The definitions are illustrated in Figure 65: The vertices inside and outside the shaded region
Figure 64 which shows a graph of solid edges with a min- form a cut that respects the collection of solid edges. Thedo
imum spanning tree of bold edges. A generic algorithm ©dges cross the cut.

for constructing an MST grows a tree by adding more and

53



CuT LEMMA. Let A be subset of an MST and consider a
cutW U (V — W) that respectsl. If uv is a crossing
edge with minimum weight themw is safe forA.

PROOF Consider a minimum spanning tré&,7") with
A C T. If ww € T then we are done. Otherwise, let
T = TU{uv}. Becausel is a tree, there is a unique
path fromu tov in T'. We havew € W andv € V — W,

so the path switches at least once between the two sets.

Suppose it switches alongy, as in Figure 66. Edgey

Figure 66: Addinguv creates a cycle and deleting destroys
the cycle.

crosses the cut, and sindecontains no crossing edges we
havexy ¢ A. Becauseiv has minimum weight among
crossing edges we have(uv) < w(zy). DefineT” =
T — {zy}. Then(V,T") is a spanning tree and because

w(T") = w(T) —w(zy) + wluv) < w(T)
it is a minimum spanning tree. The claim follows because
AU{uv} CT".

A typical application of the Cut Lemma takes a compo-
nent of(V, A) and definedV as the set of vertices of that
component. The complementary $ét— W contains all

The main algorithm expands the tree by one edge at atime.
It uses marks to distinguish vertices in the tree from ver-
tices outside the tree.

whi | e priority queue is non-emptgo
i = EXTRACTMIN; marki;
foral | neighborsj ofido
i f jisunmarkedaind w(ij) < V[j].dthen
V{jl.d = w(ij); V]jlm =i
endi f
endf or
endwhi | e.

After running the algorithm, the MST can be recovered
from the 7-fields of the vertices. The algorithm together
with its initialization phase performs = |V| insertions
into the priority queuen extractmin operations, and at
mostm = |E| decreasekey operations. Using the Fi-
bonacci heap implementation, we get a running time of
O(nlogn + m), which is the same as for constructing the
shortest-path tree with Dijkstra’s algorithm.

Kruskal’s algorithm. Kruskal’s algorithm is another
implementation of the generic algorithm. It adds edges in
a sequence of non-decreasing weight. At any moment, the
chosen edges form a collection of trees. These trees merge
to form larger and fewer trees, until they eventually com-
bine into a single tree. The algorithm uses a priority queue
for the edges and a set system for the vertices. In this
context, the term ‘system’ is just another word for ‘set’,
but we will use it exclusively for sets whose elements are
themselves sets. Implementations of the set system will

other vertices, and crossing edges connect the componenbe discussed in the next lecture. Initially,= 0, the pri-

with its complement.

Prim’s algorithm.  Prim’s algorithm chooses safe edges

ority queue contains all edges, and the system contains a
singleton set for each vertek; = {{u} | u € V}. The
algorithm finds an edge with minimum weight that con-
nects two components defined By We setit equal to

to grow the tree as a single component from an arbitrary ihe vertex set of one component and use the Cut Lemma

first vertexs. Similar to Dijkstra’s algorithm, the vertices
that do not yet belong to the tree are stored in a priority
gueue. For each vertexoutside the tree, we define its
priority V'[i].d equal to the minimum weight of any edge
that connects to a vertex in the tree. If there is no such
edge ther/[i].d = co. In addition to the priority, we store
the index of the other endpoint of the minimum weight
edge. We first initialize this information.

V[s].d = 0; V[s].m = —1; INSERT(s);
foral |l verticesi # sdo

V[i].d = oo; INSERT(%)
endf or.

54

to show that this edge is safe fdr The edge is added to

A and the process is repeated. The algorithm halts when
only one tree is left, which is the case whdncontains
n—1=|V|—1edges.

A=10;
while|Al <n—1do
uv = EXTRACTMIN;
find P,Q € C' withu € P andv € Q;
if P#AQthen
A = AU {uv}; mergeP and@
endi f
endwhi | e.



The running time is On log m) for the priority queue op-
erations plus some time for maintaining There are two
operations for the set system, namely finding the set that
contains a given element, and merging two sets into one.

An example. We illustrate Kruskal's algorithm by ap-
plying it to the weighted graph in Figure 64. The sequence
of edges sorted by weight g, fi, fh, ad, ae, hi, de, ef,

ac, gh, dg, bf, eg, bi, ab. The evolution of the set system

3

. »

Figure 67: Eight union operations merge the nine single&is s
into one set.

is illustrated in Figure 67, and the MST computed with
Kruskal's algorithm and indicated with dotted edges is the
same as in Figure 64. The edges fi, fh, ad, ae are all
added to the tree. The next two ed@e,andde, are not
added because they each have both endpoints in the same
component, and adding either edge would create a cycle.
Edgeef is added to the tree giving rise to a set in the sys-
tem that contains all vertices other thamndb. Edgeac

is not addedgh is addedqg is not, and finally f is added

to the tree. At this moment the system consists of a single
set that contains all vertices of the graph.

As suggested by Figure 67, the evolution of the con-
struction can be interpreted as a hierarchical clusterfng o
the vertices. The specific method that corresponds to the
evolution created by Kruskal’s algorithm is referred to as
single-linkage clustering.

55



16 Union-Find

In this lecture, we present two data structures for the dis-
joint set system problem we encountered in the implemen-
tation of Kruskal’s algorithm for minimum spanning trees.

An interesting feature of the problem is thatoperations

can be executed in a time that is only ever so slightly more SRR L e e
than linear ifm. cset | 3|3|3|8|s8| 3|1 8 113114
C.size 5 4 3
CIneXth?“/UIOT.O.ﬂO
Abstract data type. A disjoint set systens an abstract o }
data type that represents a partitichof a set[n] = Figure 68: The system consists of three sets, each nameaby th
{1,2,...,n}. In other words(' is a set of pairwise dis-  bold element. Each element stores the name of its set, jpssib
joint subsets ofn] such that the union of all sets @ is the size of its set, and possibly a pointer to the next eleriment
[n]. The data type supports the same set.
set FIND(i): return P € C withi € P; voi d UNION(i nt P, Q)
voi d UNION(P, Q) 1 € = C —{P,Q}U{PUQ}. i f C[P].size< C[Q].sizet hen P — @ endi f;

C|P].size= C[P].size+ C[Q)].size
In most applications, the sets themselves are irrelevant,  second= C[P].next C[P].next=Q; t = Q;
and it is only important to know when two elements be- whil et #0do
long to the same set and when they belong to different sets Clt].set=P; u=t; t = C[t].next
in the system. For example, Kruskal’s algorithm executes ~ endwhi | e; C[u].next= second
the operations only in the following sequence:

In the worst case, a singleNJON operation takes time
©(n). The amortized performance is much better because

P =FIND(2); @ = FIND(7); .
(0: @ G) we spend time only on the elements of the smaller set.

if P+#QthenUNION(P,Q)endif.

WEIGHTED UNION LEMMA. n — 1 UNION operations
This is similar to many everyday situations where it is usu- applied to a system of. singleton sets take time
ally not important to know what it is as long as we recog- O(nlogn).
nize when two are the same and when they are different.

PROOF For an element;, we consider the cardinality of
the set that contains it;(i) = C[FIND(7)].size Each time
. : , , the name of the set that containshangesg (i) at least
Linked .|IS.tS. We construct a fa|rly S|mple and reason- . ples. After changing the nameimes, we have (i) >
ably efficient first solution using Ilnkeq lists for the sets. ok 4nd thereforg: < log, n. In other words; can be in
We use a table of length, and for each < [n], we store the smaller set of a NlON operation at mosbg, n times.

tEe nlame of th? iet that contaszurther:more, Wef“rr']k . The claim follows because aNJON operation takes time
the elements of the same set and use the name of the 1irs roportional to the cardinality of the smaller set.

element as the name of the set. Figure 68 shows a sampl
set system and its representation. It is convenient to also

store the size of the set with the first element. Up-trees. Thinking of names as pointers, the above data
To perform a WION operation, we need to change the structure stores each set in a tree of height one. We can

name for all elements in one of the two sets. To save time, use more general trees and get more efficientan op-

we do this only for the smaller set. To merge the two lists erations at the expense of sloweiNB operations. We

without traversing the longer one, we insert the shortér lis consider a class of algorithms with the following common-

between the first two elements of the longer list. alities:

56



e each set is a tree and the name of the set is the index i nt FIND(i nt 4)
of the root; if Clil.p#ithenreturnFIND(C[i].p) endi f;

e FIND traverses a path from a node to the root; returnc.

e UNION links two trees. voi d UNION(i nt i, j)

i f Cli].size< C[j].sizet heni < jendif;
It suffices to store only one pointer per node, namely the Cli).size= Cli].size+ C[j].size C[j].p = i.
pointer to the parent. This is why these trees are called

up-trees It is convenient to let the root point to itself.  The size of a subtree increases by at least a factor of 2 from
a node to its parent. The depth of a node can therefore not
exceedlog, n. It follows that AND takes at most time
O(logn). We formulate the result on the height for later
reference.

HEIGHT LEMMA. An up-tree created from singleton
nodes byn — 1 weighted union operations has height
at mostlog, n.

Path compression. We can further improve the time for
FIND operations by linking traversed nodes directly to the
Figure 69: The WiIoON operations create a tree by linking the rgot. This is the idea opath compressianThe UNION

root of the first set to the root of the second set. operation is implemented as before and there is only one
modification in the implementation of theNd operation:

1 2 3 4 5 6 7 8 9 10 11 12 i nt FIND(i nt z)
(o] wq [o ] wq ‘?ﬁ?@: [ T ‘j?%U?‘?, \ if Cli.p #.it hen C[i].p = FIND(C[i].p) endi f ;
‘ ‘ } - : return C[i].p.

well as names of elements and of sets. The white dot repsesent

Figure 70: The table stores indices which function as posrds 203
a pointer to itself. i

Figure 69 shows the up-tree generated by executing the

following eleven WNION operations on a system of twelve éj ? (2

singleton sets2 U3, 4U7,2U4,1U2,4U10, 9U 12, |

12U2,8U11,8U2,5U6, 6 U 1. Figure 70 shows the ® @O
®

embedding of the tree in a table.NLON takes constant
time and FND takes time proportional to the length of the
path, which can be as large as- 1.

204
1u6 @%
@R @ ®
4056 g @
@/@ i ® é@
7u3 e Ty 8/
Weighted union. The running time of IlND can be im- © ‘g z\®\.

proved by linking smaller to larger trees. This is the ide OACRONCRO

of weighted unioragain. Assume a field'[i].p for the @

index of the parent[:].p = i if i is a root), and a field

C'[i].sizefor the number of elements in the tree rooted. at Figure 71: The operations and up-trees develop from top to bo
We need the size field only for the roots and we need the om and within each row from left to right.

index to the parent field everywhere except for the roots.

The AND and UNION operations can now be implemented If 7 is not root then the recursion makes it the child of a
as follows: root, which is then returned. ifis a root, it returns itself

57



because in this casg[i].p = i, by convention. Figure 71

Note that if i is a proper descendent of another node

illustrates the algorithm by executing a sequence of eight » at some moment during the execution of the operation

operations U j, which is short for finding the sets that
contain; andj, and performing a ™ION operation if the
sets are different. At the beginning, every element forms
its own one-node tree. With path compression, it is diffi-
cult to imagine that long paths can develop at all.

Iterated logarithm.  We will prove shortly that the iter-
ated logarithm is an upper bound on the amortized time
for a FIND operation. We begin by defining the function
from its inverse. Let(0) = 1 andF'(i + 1) = 2, We
haveF(1) = 2, F(2) = 22, andF(3) = 22°. In general,
F(i) is the tower ofi 2s. Table 5 shows the values bf

for the first six arguments. Far< 3, F'is very small, but

i o112} 3 4 5
Fl1]2]4]16] 65536 | 26553

Table 5: Values of-.

for i = 5 it already exceeds the number of atoms in our
universe. Note that the binary logarithm of a tower @s

is atower ofi — 1 2s. Theiterated logarithms the number

of times we can take the binary logarithm before we drop
down to one or less. In other words, the iterated logarithm
is the inverse of",

min{i | F(i) > n}
min{i | log, log, ...logon < 1},

log*n

where the binary logarithm is takértimes. Asn goes to
infinity, log™ n goes to infinity, but very slowly.

Levels and groups. The analysis of the path com-

sequence thep is a proper descendent ofin T'. In this
case\(u) < A(v).

[
o
OFRPNMNNWWWWWWWWWwwWwwwhh

PNWAUITON©O

Figure 72: A schematic drawing of the tréebetween the col-
umn of level numbers on the left and the column of group num-
bers on the right. The tree is decomposed into five group$ eac
a sequences of contiguous levels.

Define thegroup numberof a nodep as the iterated
logarithm of the levelg(y) = log* A(11). Because the
level does not exceed we havey(i) < log” n, for every
nodey in T'. The definition ofg decomposes an up-tree
into at mostl + log™ n groups, as illustrated in Figure 72.
The number of levels in groupis F'(g) — F'(g—1), which
gets large very fast. On the other hand, because levels get
smaller at an exponential rate, the number of nodes in a
group is not much larger than the number of nodes in the
lowest level of that group.

GROUPCENSUSLEMMA. There are at mosin/F(g)
nodes with group number.

pression algorithm uses two Census Lemmas discussed

shortly. LetAq, Ao, ..., A, be a sequence ofldoN and
FIND operations, and IeT’ be the collection of up-trees
we get by executing the sequence, ithout path com-
pression. In other words, theiND operations have no
influence on the trees. THevel A\(x) of a nodey is its
height of its subtree ifi"’ plus one.

LEVEL CENSUSLEMMA. There are at most/2¢~!
nodes at levef.

PrRoOOF We use induction to show that a node at letel
has a subtree of at lea3t—! nodes. The claim follows

PrROOF Each node with group numbeghas level between
F(g—1)+1andF(g). We use the Level Census Lemma
to bound their number:

F(g)
Zg: n-(1+i+4+..)
-1 = 9F(g—1)
(=F(g—1)+1
_ 2n
F(g)’
as claimed.

because subtrees of nodes on the same level are disjointAnalysis. The analysis is based on the interplay between

58

the up-trees obtained with and without path compression.



The latter are constructed by the weighted union opera-
tions and eventually form a single tree, which we denote
asT. The former can be obtained from the latter by the
application of path compression. Note thaffinthe level
strictly increases from a node to its parent. Path compres-

Summary. We proved an upper bound on the time
needed form > n UNION and HND operations. The
bound is more than constant per operation, although for
all practical purposes it is constant. The™ n bound can

be improved to an even smaller function, usually referred

sion preserves this property, so levels also increase whento asa(n) or the inverse of the Ackermann function, that

we climb a path in the actual up-trees.

We now show that any sequencerof> n UNION and
FIND operations on a ground set] takes time at most
O(mlog" n) if weighted union and path compression is
used. We can focus on#D because eachNJON opera-
tion takes only constant time. For aN® operation4,, let
X, be the set of nodes along the traversed path. The total
time for executing all lND operations is proportional to

ro= > |Xi|.

2

Foru € X, letp;(u) be the parent during the execution of
A;. We partitionX; into the topmost two nodes, the nodes
just below boundaries between groups, and the rest:

Y; = {we X;|upisrootor child of roo},
Zi = {peXi=Yilg(p) <g(pin)}
W, = {neXi—Yilg(n) =gpin)}

Clearly,|Y;| < 2 and|Z;| < log* n. It remains to bound
the total size of théV;, w = 3", |W;|. Instead of count-
ing, for eachA4;, the nodes iV;, we count, for each node
i, the AND operationsd4; for which 4 € Wj. In other
words, we count how oftep can change parent until its
parent has a higher group number than Each timep

goes to infinity even slower than the iterated logarithm.
It can also be proved that (under some mild assumptions)
there is no algorithm that can execute general sequences
of UNION and HND operations in amortized time that is
asymptotically less than(n).

changes parent, the new parent has higher level than the

old parent. If follows that the number of changes is at
mostF (g(u)) — F(g(n) — 1). The number of nodes with
group numbey is at most2n/F'(g) by the Group Census
Lemma. Hence

log* n
2n

w < Z W'(F(g)_F(Q—l))

g=0
< 2n-(1+log"n).

This implies that

r < 2m+mlog"n+2n(1+log"n)

= O(mlog” n),

assumingn > n. This is an upper bound on the total time
it takes to execute: FIND operations. The amortized cost
per AND operation is therefore at most I0¢™ n), which
for all practical purposes is a constant.

59



Fourth Homework Assignment (b) Give a tight bound on the worst-case running
time of your algorithm.

Write the solution to each problem on a single page. The
deadline for handing in solutions is October 30.

Problem 1. (20 = 10 + 10 points). Consider a free tree
and letd(u,v) be the number of edges in the path
connectingu to v. The diameterof the tree is the
maximumd(u, v) over all pairs of vertices in the tree.

(a) Give an efficient algorithm to compute the di-
ameter of a tree.
(b) Analyze the running time of your algorithm.

Problem 2. (20 points). Design an efficient algorithm to
find a spanning tree for a connected, weighted, undi-
rected graph such that the weight of the maximum
weight edge in the spanning tree is minimized. Prove
the correctness of your algorithm.

Problem 3. (7 + 6 + 7 points). A weighted graplt’ =
(V, E) is anear-treeif it is connected and has at most
n + 8 edges, where is the number of vertices. Give
an Q(n)-time algorithm to find a minimum weight
spanning tree fot.

Problem 4. (10 + 10 points). Given an undirected
weighted graph and verticest, design an algorithm
that computes the number of shortest paths feaim
t in the case:

(a) All weights are positive numbers.
(b) All weights are real numbers.

Analyze your algorithm for both (a) and (b).

Problem 5. (20 = 10 + 10 points). Theoff-line mini-
mum problenis about maintaining a subset of] =
{1,2,...,n} under the operations’\6ERT and Ex-
TRACTMIN. Given an interleaved sequenceroin-
sertions andn min-extractions, the goal is to deter-
mine which key is returned by which min-extraction.
We assume that each element [n] is inserted ex-
actly once. Specifically, we wish to fill in an array
E[1..m] such thatE][i] is the key returned by the
th min-extraction. Note that the problema#f-line,
in the sense that we are allowed to process the entire
sequence of operations before determining any of the
returned keys.

(a) Describe how to use a union-find data structure
to solve the problem efficiently.

60



V TOPOLOGICALALGORITHMS

17 Geometric Graphs
18 Surfaces
19 Homology
Fifth Homework Assignment

61



17 Geometric Graphs

Inthe abstract notion of a graph, an edge is merely a pair of
vertices. The geometric (or topological) notion of a graph
is closer to our intuition in which we think of an edge as a
curve that connects two vertices.

Embeddings. Let G = (V, E) be a simple, undirected
graph and writeR? for the two-dimensional real plane.
A drawing maps every vertex € V to a pointe(v) in
R?, and it maps every edgg:, v} € E to a curve with
endpoints:(u) ande(v). The drawing is armbeddingf

1. different vertices map to different points;
. the curves have no self-intersections;

the only points of a curve that are images of vertices
are its endpoints;

4. two curves intersect at most in their endpoints.

We can always map the vertices to points and the edges

to curves inR? so they form an embedding. On the other
hand, not every graph has an embedding#n The graph

G is planar if it has an embedding ifR?. As illustrated

in Figure 73, a planar graph has many drawings, not all of
which are embeddings. straight-linedrawing or embed-

Figure 73: Three drawings df4, the complete graph with four
vertices. From left to right: a drawing that is not an embaddi
an embedding with one curved edge, a straight-line embgddin

ding is one in which each edge is mapped to a straight line
segment. It is uniquely determined by the mapping of the
verticesc : V — R2. We will see later that every planar
graph has a straight-line embedding.

Euler's formula. A faceof an embedding of G is a
component of the thus defined decompositioRéf We
write n = |V, m = |E|, and{ for the number of faces.
Euler's formula says these numbers satisfy a linear rela-
tion.

EULER'S FORMULA. If G is connected and is an em-
bedding ofG in R? thenn — m + £ = 2.

62

PROOF Choose a spanning tré®, T') of G = (V, E). It
hasn vertices,|T| = n — 1 edges, and one (unbounded)
face. We have, — (n — 1) + 1 = 2, which proves the for-
mula if G is a tree. Otherwise, draw the remaining edges,
one at a time. Each edge decomposes one face into two.
The number of vertices does not changejncreases by
one, and/ increases by one. Since the graph satisfies the
linear relation before drawing the edge, it satisfies the re-
lation also after drawing the edge.

A planar graph ismaximally connected adding any
one new edge violates planarity. Not surprisingly, a planar
graph of three or more vertices is maximally connected
iff every face in an embedding is bounded by three edges.
Indeed, suppose there is a face bounded by four or more
edges. Then we can find two vertices in its boundary that
are not yet connected and we can connect them by draw-
ing a curve that passes through the face; see Figure 74.
For obvious reasons, we call an embedding of a maxi-

Figure 74: Drawing the edge fromto ¢ decomposes the quad-
rangle into two triangles. Note that we cannot draw the edge
from b to d since it already exists outside the quadrangle.

mally connected planar graph with > 3 vertices atri-
angulation For such graphs, we have an additional linear
relation, namely3/ = 2m. We can thus rewrite Euler’s
formulaand get — m + 2 = 2andn — % + ¢ = 2 and
therefore

3n — 6;
2n — 4,

m

14

Every planar graph can be completed to a maximally con-
nected planar graph. Far> 3 this implies that the planar
graph has at mosin — 6 edges and at mo8i — 4 faces.

Forbidden subgraphs. We can use Euler’s relation to
prove that the complete graph of five vertices is not planar.
It hasn = 5 vertices andn = 10 edges, contradicting the
upper bound of at mostn — 6 = 9 edges. Indeed, every
drawing of K5 has at least two edges crossing; see Figure
75. Similarly, we can prove that the complete bipartite



O @

Figure 75: A drawing ofK’s on the left and of’s 3 on the right. Figure 76: A convex region on the left and a non-convex star-
convex region on the right.

graph with three plus three vertices is not planar. It has
n = 6 vertices andn = 9 edges. Every cycle in a bipartite  such points: is thekernelof R. Clearly, every convex re-

graph has an even number of edges. Hedéeg< 2m. gion is star-convex but not every star-convex region is con-
Plugging this into Euler’s formula, we get-m + % > 2 vex. Similarly, there are regions that are not star-convex,
and thereforen < 2n — 4 = 8, again a contradiction. even rather simple ones such as the hexagon in Figure 77.

In a sense,Ks and K 5 are the quintessential non- However, every pentagon is star-convex. Indeed, the pen-

planar graphs. To make this concrete, we still need an

operation that creates or removes deg?eertices. Two

graphs ardhomeomorphid@ one can be obtained from the

other by a sequence of operations, each deleting a d€gree-

vertex and replacing its two edges by the one that connects

its two neighbors, or the other way round. 2

KURATOWSKI'S THEOREM. A graphG is planar iff no Figure 77: A non-star-convex hexagon on the left and a star-

subgraph of7 is homeomorphic td(s or to K ;. convex pentagon on the right. The dark region inside the pen-
tagon is its kernel.

The proof of this result is a bit lengthy and omitted.
tagon can be decomposed into three triangles by drawing

two diagonals that share an endpoint. Extending the inci-
Pentagons are star-convex. Euler's formula can also be  dent sides into the pentagon gives locally the boundary of
used to show that every planar graph has a straight-line the kernel. It follows that the kernel is non-empty and has
embedding. Note that the sum of vertex degrees countsinterior points.
each edge twice, that i3, ., deg(v) = 2m. For planar
graphs, twice the number of edges is less tharwhich
implies that the average degree is less than six. It follows Fary’s construction. We construct a straight-line em-
that every planar graph has at least one vertex of degreebedding of a planar grap’ = (V, E) assumingG is
5 or less. This can be strengthened by saying that every maximally connected. Choose three vertices, ¢, con-
planar graph witm > 4 vertices has at least four vertices nected by three edges to form the outer triangle= Has
of degree at mosi each. To see this, assume the planar only n = 3 vertices we are done. Else it has at least one
graph is maximally connected and note that every vertex vertexu € V' = {a, b, c} with deg(u) < 5.
has degree at least The deficiency from degregis thus

at most3. The total deficiency in — 5,cy deg(v) = gtep 1. Removeu together with thé: = deg(u) edges
12 which implies that we have at least four vertices with incident tou. Add k — 3 edges to make the graph
positive deficiency. maximally connected again.

We need a little bit of geometry to prepare the construc-
tion of a straight-line embedding. A regidid C R? is
convexif z,y € R implies that the entire line segment
connectingrz andy is contained inR. Figure 76 shows Step 3. Remove the added — 3 edges and map to

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

regions of either kind. We calk star-convexof there is a pointe(u) in the interior of the kernel of the result-
a pointz € R such that for every point € R the line ing k-gon. Connect(u) with line segments to the
segment connectingwith z is contained ink. The set of vertices of thek-gon.

63



Figure 78 illustrates the recursive construction. It is
straightforward to implement but there are numerical is-
sues in the choice af(u) that limit the usefulness of this
construction.

recurse i

add backu

-

Figure 78: We fix the outer triangle, remove the degiaertex,
recursively construct a straight-line embedding of the, rasd
finally add the vertex back.

Tutte’s construction. A more useful construction of a
straight-line embedding goes back to the work of Tutte.
We begin with a definition. Given a finite set of points,
., x;, theaverages

J
1
— E ZTi.
n-

i=1

For j = 2, it is the midpoint of the edge and fgr= 3,

it is the centroid of the triangle. In general, the average
is a point somewhere between the LetG = (V, E)

be a maximally connected planar graph and, c three
vertices connected by three edges. We now follow Tutte’s
construction to get a mapping: V — R? so that the
straight-line drawing ot is a straight-line embedding.

T, T2, ..

x

Step 1. Mapa,b,cto pointse(a),e(b),e(c) spanning
atriangle inR2.

Step 2. Foreachvertex € V — {a,b,c}, let N,, be
the set of neighbors af. Mapw to the average of the
images of its neighbors, that is,

1
e(u) = ™ Z e(v).

VEN,,

64

The fact that the resulting mapping: V' — R? gives a
straight-line embedding off is known as Tutte’s Theo-
rem. It holds even if7 is not quite maximally connected
and if the points are not quite the averages of their neigh-
bors. The proofis a bit involved and omitted.

The points:(u) can be computed by solving a system of
linear equations. We illustrate this for the graph in Figure
78. We set(a) = (7}), e(b) = (1)), e(c) = (9). The
other five points are computed by solving the system of
linear equation®\v = 0, where

00 1 -5 1 1 1 1
0 0 1 1 -3 1 0 0
A = 1 1 1 1 1 -6 1 0
0 1 1 1 0 1 =5 1
0 0 1 1 0 0 1 -3

andv is the column vector of points(a) to £(y). There

are really two linear systems, one for the horizontal and
the other for the vertical coordinates. In each system, we
haven — 3 equations and a total @f — 3 unknowns. This
gives a unique solution provided the equations are linearly
independent. Proving that they are is part of the proof of
Tutte’s Theorem. Solving the linear equations is a numeri-
cal problem that is studies in detail in courses on numerical
analysis.



18 Surfaces Triangulations. A standard representation of a compact
2-manifold uses triangles that are glued to each other

Graphs may be drawn in two, three, or higher dimen- &long shared edges an_d ve.rti_ces. A_colIectIémf tri-
sions, but they are still intrinsically only-dimensional. ~ a@ngles, edges, and vertices igiangulationof a compact
One step up in dimensions, we find surfaces, which are 2-manifold if

2-dimensional.
I. for every triangle ink, its three edges belong 1@,

) ) ) ) and for every edge it, its two endpoints are ver-
Topological2-manifolds. The simplest kind of surfaces tices ink:

are the ones that on a small scale look like the real plane.
A spaceM is a 2-manifold if every pointaz € M is
locally homeomorphic tdR?. Specifically, there is an
open neighborhoodv of = and a continuous bijection
h: N — R2 whose inverse is also continuous. Such a An example is shown in Figure 81. To simplify language,
bicontinuous map is calledtomeomorphismExamples ~ We call each element df asimplex If we need to be spe-

of 2-manifolds are the open disk and the sphere. The for- cific, we add the dimension, calling a vertex-aimplex,

mer is not compact because it has covers that do not have2n €dge a-simplex, and a triangle a-simplex. Aface
finite subcovers. Figure 79 shows examples of compact ~ Of @ simplexr is a simplexs C 7. For example, a trian-
manifolds. If we add the boundary circle to the open disk 9l€ has seven faces, its three vertices, its two edges, and

itself. We can now state Condition | more succinctly: if
OED

o is a face ofr andr € K thenoc € K. To talk about
Figure 79: Three compaetmanifolds, the sphere, the torus, and
the double torus.

Il. every edge belongs to exactly two triangles and every
vertex belongs to a single ring of triangles.

we get a closed disk which is compact but not every point
is locally homeomorphic tR2. Specifically, a point on
the circle has an open neighborhood homeomorphic to the

closed haIf-pIan_e]HIQ = {(z1,22) € R? | 2 > 0} A Figure 81: A triangulation of the sphere. The eight triasgiee
space whose points have open neighborhoods homeomorgjyed to form the boundary of an octahedron which is homeo-
phic toR? or H? is called a2-manifolds with boundary morphic to the sphere.

see Figure 80 for examples. Theundaryis the subset

the inverse of the face relation, we define #tar of a

- simplexco as the set of simplices that contairas a face,
@ = Sto = {r € K | 0 C 7}. Sometimes we think of the
star as a set of simplices and sometimes as a set of points,

namely the union of interiors of the simplices in the star.
Figure 80: Three-mar?ifoldslwith boundary, the closed disk, the  With the latter interpretation, we can now express Condi-
cylinder, and the Mobius strip. tion 1l more succinctly: the star of every simplex it is

. . . . , homeomorphic tdR2.
of points with neighborhoods homeomorphicHS. It is

a 1-manifold (without boundary), that is, every point is

locally homeomorphic taR. There is only one type of  Data structure. When we store &-manifold, it is use-
compact, connectetmanifold, namely the closed curve. ful to keep track of which side we are facing and where
In topology, we do not distinguish spaces that are home- we are going so that we can move around efficiently.
omorphic to each other. Hence, every closed curve is like The core piece of our data structure is a representation
every other one and they are all homeomorphic to the unit of the symmetry group of a triangle. This group is iso-
circle,S' = {z e R? | ||lz| = 1}. morphic to the group of permutations of three elements,

65



the vertices of the triangle. We call each permutation
an ordered triangleand use cyclic shifts and transposi-

Mobious strip in Figure 80. There are also non-orientable,
compac®-manifolds (without boundary), as we can see in

tions to move between them; see Figure 82. We store Figure 83. We use the data structure to decide whether or

ENEXT

a b
ENEXT ENEXT
— —_—

2

ENEXT

Y-V %

Figure 82: The symmetry group of the triangle consists of six
ordered versions. Each ordered triangle has a lead verghaan
lead directed edge.

ENEXT

O

ENEXT

a b

‘ —
Figure 83: Two non-orientable, compaimanifolds, the pro-
jective plane on the left and the Klein bottle on the right.

not a2-manifold is orientable. Note that the cyclic shift
partitions the set of six ordered triangles into tanden-
tations each consisting of three triangles. We say two
neighboring triangles areonsistently oriented they dis-
agree on the direction of the shared edge, as in Figure 81.

graph, with arcs between neighboring triangles. Further-
more, we store the vertices in a linear arr&y]..n]. For

them consistently, if possible. At the first visit, we ori-
ent the triangle consistent with the preceding, neighlgprin

each ordered triangle, we store the index of the lead ver- friangle. At subsequence visits, we check for consistent
tex and a pointer to the neighboring triangle that shares orientation.

the same directed lead edge. A pointer in this context
is the address of a node together with a three-bit inte-
ger, ¢, that identifies the ordered version of the triangle
we refer to. Suppose for example that we identify the
ordered versionabc, bea, cab, bac, cba, acb of a triangle
with . = 0,1,2,4,5,6, in this sequence. Then we can
move between different ordered versions of the same tri-
angle using the following functions.

ordTri ENEXT(u,t)
ifo<2thenreturn (g, (:+1)mod3)
el sereturn (u, (¢t +1) mod 3+ 4)
endi f.

ordTri syM(u,e)
return (i, (¢ +4) mod8).

To get the index of the lead vertex, we use the integer func-
tion orRG(u, ¢) and to get the pointer to the neighboring
triangle, we USENEXT(u, ¢).

Orientability. A 2-manifold is orientableif it has two
distinct sides, that is, if we move around on one we stay

bool ean ISORNTBL (1, ¢)
i f pisunmarked hen
mark; choose the orientation that contains
b, = ISORNTBL(FNEXT(SYM(i, ¢)));
b, = ISORNTBL(FNEXT(ENEXT(SYM(1,¢))));
b. = ISORNTBL(FNEXT(ENEXT?(SYM(11,¢))));
returnb, and b, and b,
el se
r et ur n [orientation ofy, containg]
endi f.

There are two places where we return a boolean value. At
the second place, it indicates whether or not we have con-
sistent orientation in spite of the visited triangle beimg o
ented prior to the visit. At the first place, the boolean value
indicates whether or not we have found a contradiction to
orientablity so far. A value ofALSE anywhere during the
computation is propagated to the root of the search tree
telling us that the2-manifold is non-orientable. The run-
ning time is proportional to the number of triangles in the
triangulation of the2-manifold.

Classification. For the sphere and the torus, it is easy

there and never cross over to the other side. The one exam+io see how to make them out of a sheet of paper. Twist-

ple of a non-orientable manifold we have seen so far is the

66

ing the paper gives a non-orientallenanifold. Perhaps



most difficult to understand is the projective plane. It is
obtained by gluing each point of the sphere to its antipodal
point. This way, the entire northern hemisphere is glued

CLASSIFICATION THEOREM. The members of the fami-
lies S2, T2, T?#T2, ... andP?, P24P2, . .. are non-
homeomorphic and they exhaust the family of com-

to the southern hemisphere. This gives the disk except pact2-manifolds.
that we still need to glue points of the bounding circle (the

equator) in pairs, as shown in the third paper construction . ) ,
in Figure 84. The Klein bottle is easier to imagine as it EUler characteristic. Suppose we are given a triangula-

is obtained by twisting the paper just once, same as in the ioN: £, of @ compace-manifold, M. We already know
construction of the Mobius strip. how to decide whether or n®{l is orientable. To deter-

mine its type, we just need to find its genus, which we do
b a a a
a a a a

by counting simplices. ThEuler characteristids
Figure 84: From left to right: the sphere, the torus, the grtiye
plane, and the Klein bottle.

X #vertices— #edgest #triangles

Let us look at the orientable case first. We haviaon
which we triangulate. This is a planar graph with—

m + ¢ = 2. However2g edge are counted double, the
vertices of thelg-gon are all the same, and the outer face
is not a triangle ink. Hence,

There is a general method here that can be used to clas-
sify the compac®-manifolds. Given two of them, we con-
struct a new one by removing an open disk each and glu-
ing the 2-manifolds along the two circles. The resultis which is equal t® — 2¢. The same analysis can be used
called theconnected surof the two2-manifolds, denoted  jn the non-orientable case in which we get (n—2g+
asM#N. For example, the double torus is the connected 1) — (;, — ¢) + (¢ — 1) = 2 — g. To decide whether
sum of two tori,T*#T>. We can cut up thg-fold torus  two compac®-manifolds are homeomorphic it suffices to
into a flat sheet of paper, and the canonical way of doing determine whether they are both orientable or both non-
this gives alg-gon with edges identified in pairs as shown grientable and, if they are, whether they have the same

in Figure 85 on the left. The numbegiis called thegenus  Euler characteristic. This can be done in time linear in the
of the manifold. Similarly, we can get new non-orientable number of simplices in their triangulations.

(n—4g+1)—(m—2g9)+ (¢ —1)
(n—m+/1)—2g

X

This resultis in sharp contrast to the higher-dimensional
case. The classification of compaemanifolds has been
a longstanding open problem in Mathematics. Perhaps
the recent proof of the Poincaré conjecture by Perelman
brings us close to a resolution. Beyond three dimensions,
the situation is hopeless, that is, deciding whether or not
two triangulated compact manifolds of dimension four or
higher are homeomorphic is undecidable.

ag ai

ag aj

ay az

as az

az

as

Figure 85: The polygonal schema in standard form for the loub
torus and the double Klein bottle.

manifolds from the projective plan®2, by forming con-
nected sums. Cutting up thefold projective plane gives
a2g-gon with edges identified in pairs as shown in Figure
85 on the right. We note that the constructions of the pro-
jective plane and the Klein bottle in Figure 84 are both not
in standard form. A remarkable result which is now more
than a century old is that every compaetanifold can be
cut up to give a standard polygonal schema. This implies
a classification of the possibilities.

67



19 Homology spanning tree while the cyclomatic number is independent
of that choice.

In topology, the main focus is not on geometric size but

rather on how a space is connected. The most elementarygimpjicial complexes. We begin with a combinatorial
notion distinguishes whether we can go from one place representation of a topological space. Using a finite
to another. If not then there is a gap we cannot bridge. ground set of verticesy’, we call a subset C V an

Next we would ask whether there is a loop going around gpiract simplex Its dimensionis one less than the car-
an obstacle, or whether there is a void missing in the SPace.ginality, dim o — lo| — 1. A faceis a subset C o.

Homology is a formalization of these ideas. It gives a way

to define and count holes using algebra. DEFINITION. An abstract simplicial complegverV is a
systemK C 2" suchthav € K andr C o implies

The cyclomatic number of a graph. To motivate the TEK.

more general concepts, consider a connected gréph, _ . _ . . .
with n vertices andn edges. A spanning tree has— 1 Thed_|men3|omf K is the Iarge_st dwn_ensmn of any sim-
edges and every additional edge forms a unique cycle to-Plexin K. A graph is thus d-dimensional abstract sim-

gether with edges in this tree; see Figure 86. Every other plicial complex. Just like for graphs, we sometimes think
of K as an abstract structure and at other times as a geo-

metric object consisting of geometric simplices. In the lat
ter interpretation, we glue the simplices along sharedsace
to form ageometric realizationf K, denoted a$K |. We
sayK triangulatesa spac«X if there is a homeomorphism
h : X — |K|. We have seei- and2-dimensional exam-
ples in the preceding sections. Theundaryof a simplex

o is the collection of co-dimension one faces,

do = {rCo|dim7=dimo—1}.
Figure 86: A tree with three additional edges defining theesam If dim o = p then the boundary consistsp#-1 (p — 1)-
number of cycles. simplices. Everyp — 1)-simplex hap (p — 2)-simplices
in its own boundary. This way we gép + 1)p (p — 2)-
cycle inG can be written as a sum of these— (n — 1) simplices, counting each of thg*}) = (*1%) (p — 2)-
cycles. To make this concrete, we defineyaleas a sub- ~ dimensional faces af twice.

set of the edges such that every vertex belongs to an even
number of these edges. A cycle does not n_eeq to be CON"Chain complexes. We now generalize the cycles in
nected. Thesumof two cycles is the symmetric difference

f the t ¢ h that multile ed h oth rgraphstoCyclesofdiI’“ferentdimensionsin simplicial com-
otthe two sets such that multiple edges erase each othe plexes. Ap-chainis a set ofp-simplices inK. Thesum
in pairs. Clearly, the sum of two cycles is again a cy-

e E | in G tai " b of two p-chains is their symmetric difference. We usually
cle. Every cycle, in G contains some positive number o 1 cets as formal sums,
of edges that do not belong to the spanning tree. Call-

ing these edges, e, ..., e and the cycles they define c = a101+ a0+ ...+ anon;
V1,72, - - - Yk, WE Claim that d = boy +byoy—+...+byo,
Y= At % where ther, andb; are eithel) or 1. Addition can then be

. L done using modula arithmetic,
To see this assume that= v + 92 +. . . + % is different 9

from~. Theny+-¢ is again a cycle but it contains no edges c+od = (a1 42b1)o1+ ...+ (an +2 by)on,

that do not belong to the spanning tree. Heficed = ()

and thereforey = ¢, as claimed. This implies that the wherea; +- b; is the exclusive or operation. We simplify
m—n+1 cycles form a basis of the group of cycles which notation by dropping the subscript but note that the two
motivates us to calln — n + 1 the cyclomatic numbeof plus signs are different, one modulo two and the other a
the graph. Note that the basis depends on the choice offormal notation separating elements in a set. pfuhains

68



form a group, which we denote &§,, +) or simply C,,.

Note that the boundary of gsimplex is a(p — 1)-chain,

an element of,_;. Extending this concept linearly, we
define the boundary of g-chain as the sum of boundaries
of its simplicespc = a;001+. . .+a,d0,. The boundary

is thus a map between chain groups and we sometimes
write the dimension as index for clarity,

Op:Cp— Cpr. Figure 88: Thel-cyclesy andé are notl-boundaries. Adding

. . . the 1-boundarye to § gives al-cycle homologous té.
It is a homomorphism sinc&, (c + d) = J,c + d,d. The
infinite sequence of chain groups connected by boundary
homomorphisms is called thehain complexof K. All asc ~ ¢’. Note thatlc] = [¢/| whenever ~ . Also note

groups of dimension smaller tharand larger than the di-  that[c + d] = [/ + d'] whenever ~ ¢’ andd ~ d'. We
mension of " are trivial. It is convenient to keep them  se this as a definition of addition for homology classes, so

around to avoid special cases at the endsp-@ycleis a we again have a group. For example, thet homology
p-chain whose boundary is zero. The sum of woycles  group of the torus consists of four elemeni, = B,

is again ap-cycle so we get a subgroug, C C,. A (V] =~+Bu1,[0] =5+ By, and[y +d] = v+ +By. We
p-boundaryis ap-chain that is the boundary of(a + 1)- often draw the elements as the corners of a cube of some

chain. The sum of twp-boundaries is againaboundary  dimension; see Figure 89. If the dimensiomithen it has
so we get another subgroup, C C,, Taking the bound-

ary twice in a row gives zero for every simplex and thus vl [y+3]
for every chain, that is(0,(9,+1d) = 0. It follows that
B, is a subgroup oZ,. We can therefore draw the chain

complex as in Figure 87.
o1 vl

Figure 89: The four homology classesldf are generated by
two classes]y] and[d].

Opa 27 corners. The dimension is also the number of classes
needed to generate the group, the size of the basis. For
thep-th homology group, this number i, = rank H, =

Figure 87: The chain complex consisting of a linear sequence 10g [Hy|, thep-th Betti numberFor the torus we have
of chain, cycle, and boundary groups connected by homomor-

phisms. By = 1
B = 2
62 = 1a

Homology groups. We would like to talk about cycles o

but ignore the boundaries since they do not go around a@nd 3, = 0 forall p # 0,1,2. Every0-chain is a0-
hole. At the same time, we would like to consider two Cycle. Two0-cycles are homologous if they are both the
cycles the same if they differ by a boundary. See Figure SUM of an even number or both of an odd number of ver-
88 for a fewl-cycles, some of which areboundariesand ~ tices. Hencejy = log, 2 = 1. We have seen the reason
some of which are not. This is achieved by taking the for /1 = 2 before. Finally, there are only tw-cycles,
quotient of the cycle group and the boundary group. The namely0 and the set of all triangles. The latter is not a
result is thep-th homology group boundary, hencg; = log, 2 = 1.

Hy = Z,/B,. .
Boundary matrices. To compute homology groups and
Its elements are of the forfa] = ¢ + B,,, wherec is ap- Betti numbers, we use a matrix representation of the sim-
cycle. [¢] is called ahomology classc is arepresentative plicial complex. Specifically, we store the boundary ho-
of [¢], and any two cycles if] are homologousienoted momorphism for each dimension, settiig[i, j] = 1 if

69



thei-th (p — 1)-simplex is in the boundary of thgth p-
simplex, and, [i, j| = 0, otherwise. For example, if the
complex consists of all faces of the tetrahedron, then the
boundary matrices are

d = [0 0 0 0];
1110 0 0
5 — 1001 10|
Lo 010101/
000 1 0 11
1 1 0 0
1 010
01 1 0
0 = 1 00 11
01 0 1
|0 0 1 1
(1
1
83_1
|1

Given ap-chain as a column vectos;, its boundary is
computed by matrix multiplication),v. The result is a
combination of columns in thg-th boundary matrix, as
specified byv. Thus,v is ap-cycle iff 9,v = 0 andv is a
p-boundary iff there isx such that, 1 u = v.

Matrix reduction. Letting n, be the number ofp-
simplices inkK’, we note that it is also the rank of theth
chain group,n, = rankC,. The p-th boundary matrix
thus hass,_; rows andn,, columns. To figure the sizes of

the cycle and boundary groups, and thus of the homology

groups, we reduce the matrix to normal form, as shown
in Figure 90. The algorithm of choice uses column and

——rankCp ———
———rankZ, ———

rankBp -1

rankCp-1

Figure 90: Thep-th boundary matrix in normal form. The entries
in the shaded portion of the diagonal drand all other entries
areO0.

row operations similar to Gaussian elimination for solv-

70

ing a linear system. We write it recursively, calling it with
m = 1.

voi d REDUCE(m)

i f 3k,1> mwith 9y[k,1] =1then
exchange rows: andk and columnsn andi;
fori=m+1ton,_;do

if Opli,m] =1then
add rowm to rowi
endi f
endf or;
for j=m+1ton,do
if 0p,lm,j] =1then
add columnm to columnj
endi f
endf or;
REDUCE(m + 1)
endi f .

For each recursive call, we have at most a linear number
of row and column operations. The total running time is
therefore at most cubic in the number of simplices. Figure
90 shows how we interpret the result. Specifically, the
number of zero columns is the rank of the cycle group,
Z,, and the number dfs in the diagonal is the rank of the
boundary groupB,,_:. The Betti number is the difference,

By

taking the rank of the boundary group from the reduced
matrix one dimension up. Working on our example, we
get the following reduced matrices.

rank Z, — rank By,

d = [0 0 0 0];
(1. 0 0 0 0 0
5 010000
L= 00100 0]
|00 0000
1 0 0 0
01 0 0
0010
0 = 00 0 0]
00 0 0
|00 00
1
0
9y = 0
|0

Writing z, = rank Z,, andb, = rank B,, we getzy = 4
from the zeroth andy = 3 from the first reduced bound-
ary matrix. Hence3y, = zy = by = 1. Furthermore,



z1 = 3andb; = 3giving 51 = 0, 2o = 1 andby = 1
giving 82 = 0, andzz = 0 giving 53 = 0. These are the
Betti numbers of the closed ball.

Euler-Poincaré Theorem. TheEuler characteristiof a
simplicial complex is the alternating sum of simplex num-
bers,

X = Z(_l)p”p-

p=>0

Recalling thatn, is the rank of thep-th chain group and
that it equals the rank of theth cycle group plus the rank
of the (p — 1)-st boundary group, we get

X = Z(_l)p(zp + bp—1)

p=>0

= D (“P(z —by),

p=>0

which is the same as the alternating sum of Betti num-
bers. To appreciate the beauty of this result, we need to
know that the Betti numbers do not depend on the trian-
gulation chosen for the space. The proof of this property
is technical and omitted. This now implies that the Euler

characteristic is an invariant of the space, same as the Bett
numbers.

EULER-POINCARE THEOREM. x = > (—1)?f3,.

71



Fifth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is November 13.

Problem 1. (20 points). LetG = (V,FE) be a maxi-
mally connected planar graph and recall thidt =
{1,2,...,k}. A vertexk-coloringis a mappingy :
V — [k] such thaty(u) # ~(v) wheneveru # v
are adjacent, and amdgek-coloring is a mapping
n : E — [k] such that)(e) # n(f) whenever # f
bound a common triangle. Prove thatifhas a ver-
tex 4-coloring then it also has an edgecoloring.

Problem 2. (20 = 10 + 10 points). LetK be a set of
triangles together with their edges and vertices. The
vertices are represented by a linear array, as usual, but
there is no particular ordering information in the way
the edges and triangles are given. In other words, the
edges are just a list of index pairs and the triangles
are a list of index triplets into the vertex array.

(a) Give an algorithm that decides whether or not
K is a triangulation of -manifold.

(b) Analyze your algorithm and collect credit
points if the running time of your algorithm is
linear in the number of triangles.

Problem 3. (20 = 5+7+8 points). Determine the type of
2-manifold with boundary obtained by the following
constructions.

(@) Remove a cylinder from a torus in such a way
that the rest of the torus remains connected.

(b) Remove a disk from the projective plane.
(c) Remove a Mobius strip from a Klein bottle.

Whenever we remove a piece, we do this like cutting
with scissors so that the remainder is still closed, in
each case 2-manifold with boundary.

Problem 4. (20 = 5+ 5 + 5 + 5 points). Recall that the
sphere is the space of points at unit distance from the
origin in three-dimensional Euclidean spa&g, =
{z eR?|||z| =1}

(@) Give atriangulation o$?.

(b) Give the corresponding boundary matrices.
(c) Reduce the boundary matrices.

(d) Give the Betti numbers &.

72

Problem 5. (20 = 10 + 10 points). Thedunce caps ob-

tained by gluing the three edges of a triangular sheet
of paper to each other. [After gluing the first two
edges you get a cone, with the glued edges forming a
seam connecting the cone point with the rim. In the
final step, wrap the seam around the rim, gluing all
three edges to each other. To imagine how this work,
it might help to think of the final result as similar to
the shell of a snale.]

(a) Is the dunce capz&manifold? Justify your an-
swer.

(b) Give a triangulation of the dunce cap, making
sure that no two edges connect the same two
vertices and no two triangles connect the same
three vertices.



VI GEOMETRICALGORITHMS

20 Plane-Sweep
21 Delaunay Triangulations
22 Alpha Shapes
Sixth Homework Assignment

73



20 PIane-Sweep The algorithm is illustrated in Figure 92, which shows the
addition of the sixth point in the data set.

Plane-sweep is an algorithmic paradigm that emerges in
the study of two-dimensional geometric problems. The
idea is to sweep the plane with a line and perform the com-
putations in the sequence the data is encountered. In this
section, we solve three problems with this paradigm: we
construct the convex hull of a set of points, we triangulate
the convex hull using the points as vertices, and we test a
set of line segments for crossings.

Convex hull. Let S be a finite set of points in the plane,
each given by its two coordinates. Thenvex hullof S,
denoted byconv S, is the smallest convex set that con-
tains S. Figure 91 illustrates the definition for a set of
nine points. Imagine the points as solid nails in a planar

board. An intuitive construction stretches a rubber band ) -
around the nails. After letting go, the nails prevent the Orientation test. A critical test needed to construct the

complete relaxation of the rubber band which will then convex hullis to determine the orientation of a sequence
trace the boundary of the convex hull. of three points. In other words, we need to be able to dis-
tinguish whether we make a left-turn or a right-turn as we
go from the first to the middle and then the last point in
the sequence. A convenient way to determine the orien-
tation evaluates the determinant of a three-by-three ma-
trix. More precisely, the points = (a1, a2), b = (b1, ba),

¢ = (1, c2) form a left-turn iff

Figure 92: The vertical sweep-line passes through point®. T
add 6, we substitute 6 for the sequence of vertices on thedboun
ary between 3 and 5.

1 ay ag
det | 1 b1 b > 0.
1 C1 Co

Figure 91: The convgx hull of nine points, which Wg represent The three points form a right-turn iff the determinant is
by the counterclockwise sequence of boundary vertices; @, 3 negative and they lie on a common line iff the determinant
8,9,2. .

IS zero.

To construct the counterclockwise cyclic sequence of bool ean LEFT(Points a,b,c)
boundary vertices representing the convex hull, we sweep et urn [ai(bz — c2) + bi(c2 — az)
a vertical line from left to right over the data. At any mo- + c1(az — b2) > 0].
ment in time, the points in front (to the right) of the line
are untouched and the points behind (to the left) of the line
have already been processed.

To see that this formula is correct, we may convince our-
selves that it is correct for three non-collinear pointg, e.
a = (0,0), b = (1,0), andc = (0,1). Remember also
that the determinant measures the area of the triangle and
is therefore a continuous function that passes through zero
only when the three points are collinear. Since we can
Step 2. Construct a counterclockwise triangle from continuously move every left-turn to every other left-turn
the first three pointstzox3 OF 21 2375. without leaving the class of left-turns, it follows that the
sign of the determinant is the same for all of them.

Step 1. Sort the points from left to right and relabel
them in this sequence as, 2o, . .., x,.

Step 3. Forifrom 4 ton, add the next point; to the
convex hull of the preceding points by finding the
two lines that pass through; and support the con-  Finding support lines. We use a doubly-linked cyclic
vex hull. list of vertices to represent the convex hull boundary. Each

74



node in the list contains pointers to the next and the previ-
ous nodes. In addition, we have a poinkest to the last
vertex added to the list. This vertex is also the rightmost
in the list. We add thé-th point by connecting it to the
verticesy, — pt and\ — pt identified in a counterclock-
wise and a clockwise traversal of the cycle startingat,

as illustrated in Figure 93. We simplify notation by using

Figure 93: The upper support line passes through the firsit poi
u — pt that forms a left-turn fromv — pt to u — next — pt.

maximally connected straight-line embedding of a planar
graph whose vertices are mapped to pointS.ifrigure 94

shows the triangulation of the nine points in Figure 91 con-
structed by the plane-sweep algorithm. A triangulation is

Figure 94: Triangulation constructed with the plane-swaigp-
rithm.

not necessarily a maximally connected planar graph since
the prescribed placement of the points fixes the boundary
of the outer face to be the boundary of the convex hull.
Letting £ be the number of edges of that boundary, we

nodes in the parameter list of the orientation test instead would have to add — 3 more edges to get a maximally

of the points they store.

= A = last; create new node with — pt = i;
whi | e RIGHT (v, i, 1 — neat) do
n=pu— next
endwhi | e;
whi | e LEFT(v, A\, A — prev) do
A=\ — prev
endwhi | e;
v — next = |, v — prev = A,
W — prev = X\ — next = v; last = v.

The effort to add the&-th point can be large, but if it is
then we remove many previously added vertices from the
list. Indeed, each iteration of the for-loop adds only one
vertex to the cyclic list. We charge $2 for the addition,
one dollar for the cost of adding and the other to pay for
the future deletion, if any. The extra dollars pay for all
iterations of the while-loops, except for the first and the
last. This implies that we spend only constant amortized
time per point. After sorting the points from left to right,
we can therefore construct the convex hullropoints in
time O(n).

Triangulation. The same plane-sweep algorithm can be
used to decompose the convex hull into triangles. All

we need to change is that points and edges are never re-

moved and a new point is connected to every point exam-
ined during the two while-loops. We defindgeometric)
triangulation of a finite set of pointsS in the plane as a

75

connected planar graph. It follows that the triangulation
hasm = 3n — (k + 3) edges and = 2n — (k + 2)
triangles.

Line segment intersection. As a third application of the
plane-sweep paradigm, we consider the problem of decid-
ing whether or noth given line segments have pairwise
disjoint interiors. We allow line segments to share end-
points but we do not allow them to cross or to overlap. We
may interpret this problem as deciding whether or not a
straight-line drawing of a graph is an embedding. To sim-
plify the description of the algorithm, we assume no three
endpoints are collinear, so we only have to worry about
crossings and not about other overlaps.

How can we decide whether or not a line segment
with endpointu = (u1,us2) andv = (vq,v2) Crosses
another line segment with endpoinis= (p1,p2) and
q = (q1,q2)? Figure 95 illustrates the question by show-
ing the four different cases of how two line segments and
the lines they span can intersect. The line segments cross
iff uv intersects the line gfq andpq intersects the line of
uv. This condition can be checked using the orientation
test.

bool ean CROSYPoints u,v,p, q)
return[(LEFT(u,v,p) xor LEFT(u,v,q)) and
(LEFT(p, q,u) xor LEFT(p,q,v))].

We can use the above function to test(dl) pairs of line
segments, which takes time €.



u \ “ \ “ \
v u p
o B pe
/) 0’ ¥
q q q
Figure 95: Three pairs of non-crossing and one pair of cnossi
line segments.

Plane-sweep algorithm. We obtain a faster algorithm

Case 2.2 z; isright endpoint of the line segment
x;x;. Therefore,i > j. Letwwv andpq be
the predecessor and the successorof;. If
CRrosqu, v, p, q) then report the crossing and
stop. Deleter;z; from the dictionary.

We do an insertion into the dictionary for each left end-
point and a deletion from the dictionary for each right
endpoint, both in time Q¢gn). In addition, we do at
most two crossing tests per endpoint, which takes constant
time. In total, the algorithm takes time @Jogn) to test
whether a set ofi line segments contains two that cross.

by sweeping the plane with a vertical line from left to
right, as before. To avoid special cases, we assume that
no two endpoints are the same or lie on a common verti-
cal line. During the sweep, we maintain the subset of line
segments that intersect the sweep-line in the order they
meet the line, as shown in Figure 96. We store this subset

Q

O\
o/
o—_|

|

Figure 96: Five of the line segments intersect the sweeapdin
its current position and two of them cross.

in a dictionary, which is updated at every endpoint. Only
line segments that are adjacent in the ordering along the
sweep-line are tested for crossings. Indeed, two line seg-
ments that cross are adjacent right before the sweep-line
passes through the crossing, if not earlier.

Step 1. Sortthe2n endpoints from left to right and re-
label them in this sequence as, zs, . . ., x2,. Each
point still remembers the index of the other endpoint
of its line segment.

Step 2. Fori from 1 to2n, process thé-th endpoint
as follows:

Case 2.1 z; is left endpoint of the line segment
x;xj. Therefore,i < j. Inserta;x; into
the dictionary and let.v andpq be its prede-
cessor and successor. fRGSYu, v, x;, ;)
or CRosqp, ¢, z;, z;) then report the crossing
and stop.

76



21 Delaunay Triangulations Voronoi diagram. We introduce the Delaunay triangu-
lation indirectly, by first defining a particular decomposi-

The triangulations constructing by plane-sweep are typi- tion of the plane mtp regions, one per point in -the finite
cally of inferior quality, that is, there are many long and daf[a sel:S. The region of the point in S contains all
skinny triangles and therefore many small and many large POINtS in the plane that are at least as close s to any
angles. We study Delaunay triangulations which distin- other pointinS, that s,

guish themselves from all other triangulations by a num- Vo = {2eR?|||z—u| <z —v|,veS},
ber of nice properties, including they have fast algorithms B _
and they avoid small angles to the extent possible. wherel|z — ul| = [(z1 —u1)? + (x2 — u2)?]'/? is the Eu-

clidean distance between the pointandu. We refer to
V., as theVoronoi regionof «. It is closed and its bound-

Plane-sweep versus Delaunay triangulation. Figures @y consists o¥/oronoi edgesvhich V., shares with neigh-
97 and 98 show two triangulations of the same set of POring Voronoi regions. A Voronoi edge endsVoronoi
points, one constructed by plane-sweep and the other theverticeswhich it shares with other Voronoi edges. The

Delaunay triangulation. The angles in the Delaunay trian- Voronoi diagramof 5'is the collection of Voronoi regions,
edges and vertices. Figure 99 illustrates the definitions.

Let n be the number of points i§. We list some of the
properties that will be important later.

Figure 97: Triangulation constructed by plane-sweep. 8a@n
the same vertical line are processed from bottom to top.

gulation seem consistently larger than those in the plane-

sweep triangulation. This is not a coincidence and it can Figure 99: The (solid) Voronoi diagram drawn above the (dot-

be proved that the Delaunay triangulation maximizes the ted) Delaunay triangulation of the same twenty-one poitasit

minimum angle for every input set. Both triangulations gulated in Figures 97 and 98. Some of the Voronoi edges are too
far out to fit into the picture.

e Each Voronoiregion is a convex polygon constructed
as the intersection of — 1 closed half-planes.

e The Voronoi regior/,, is bounded (finite) iffu lies in
the interior of the convex hull af.

e The Voronoi regions have pairwise disjoint interiors
and together cover the entire plane.

Delaunay triangulation. We define théelaunay trian-
Figure 98: Delaunay triangulation of the same twenty-oriatso  gulationas the straight-line dual of the Voronoi diagram.
triangulated in Figure 97. Specifically, for every pair of Voronoi regiorig, andV,,

that share an edge, we draw the line segment ficimo.
contain the edges that bound the convex hull of the input By construction, every Voronoi vertex, hasj > 3 clos-
set. est input points. Usually there are exactly three closest

77



points, u, v, w, in which case the triangle they span be- cally Delaunay if it bounds the convex hull §fand thus
longs to the Delaunay triangulation. Note thas equally belongs to only one triangle. The local condition on the
far from u, v, andw and further from all other points in  edges implies a global property.

S. This implies theempty circle propertyf Delaunay tri-

angles: all points o6 — {u, v, w} lie outside the circum-  DeLAUNAY LEMMA. If every edge in a triangulatiok

scribed circle ofuvw. Similarly, for each Delaunay edge of S is locally Delaunay thet is the Delaunay tri-
uw, there is a circle that passes throughndwv such that angulation ofS.

all points of S — {u, v} lie outside the circle. For exam-

ple, the circle cente(ed at the_midpoint of the V_oronoi edge Although every edge of the Delaunay triangulation is lo-
shared by, andV;, is empty in this sense. This property .oy pDelaunay, the Delaunay Lemma is not trivial. In-

can be used to prove that the edge skeleton of the Delau-yeeq i may contain edges that are locally Delaunay but
nay triangulation is a straight-line embedding of a planar 44 ot belong to the Delaunay triangulation, as shown in
graph. Figure 101. We omit the proof of the lemma.

Figure 100: A Voronoi vertex of degree 5 and the correspapdin ~ Figure 101: The edgev is locally Delaunay but does not belong
pentagon in the Delaunay triangulation. The dotted edges co  to the Delaunay triangulation.

plete the triangulation by decomposing the pentagon inteeth

triangles.

Edge-flipping. The Delaunay Lemma suggests we con-
struct the Delaunay triangulation by first constructing an
arbitrary triangulation of the point sétand then modify-
ing it locally to make all edges ID. The idea is to look for
non-ID edges and to flip them, as illustrated in Figure 102.
Indeed, ifuv is a non-ID edge shared by triangkesp and

Now suppose there is a vertex with degyee 3. It cor-
responds to a polygon with > 3 edges in the Delaunay
triangulation, as illustrated in Figure 100. Strictly skea
ing, the Delaunay triangulation is no longer a triangulatio
but we can complete it to a triangulation by decompos-
ing eachj-gon intoj — 2 triangles. This corresponds to
perturbing the data points every so slightly such that the
degrees Voronoi vertices are resolved into trees in which B
j — 2 degree-3 vertices are connected;by 3 tiny edges. a

Local Delaunayhood. Given a triangulation of a finite
point setS, we can test whether or not it is the Delaunay
triangulation by testing each edge against the two trian-
gles that share the edge. Suppose the edg the tri-
angulationT is shared by the trianglesyp anduvg. We

call uv locally Delaunay or ID for short, if ¢ lies on or
outside the circle that passes throughy, p. The condi- Figure 102: The edgev is non-ID and can be flipped to the edge
tion is symmetric inp andg because the circle that passes pg, which is ID.

throughu, v, p intersects the first circle in pointsandwv.

It follows thatp lies on or outside the circle af, v, ¢ iff ¢ uvq thenupvg is a convex quadrilateral arftipping uv
lies on or outside the circle af, v, p. We also calluv lo- means substituting one diagonal for the other, namely

78



for uv. Note that ifuv is non-ID thenpq is ID. It is im-
portant that the algorithm finds non-ID edges quickly. For
this purpose, we use a stack of edges. Initially, we push
all edges on the stack and mark them.

whi | e stack is non-emptglo
pop edge:wv from stack and unmark it;
i f wvisnon-IDt hen
substitutepq for uv;
for ab € {up,pv,vq,qu} do
i f abis unmarked hen
pushab on the stack and mark it
endi f
endf or
endi f
endwhi | e.

Figure 103: The plane passing through, v, p™ intersects the
paraboloid in an ellipse whose projection ifitd passes through
the pointsu, v, p. The pointg™ lies below the plane iff; lies
inside the circle.

against. We note thatlies inside the circle ifi;™ lies be-

The marks avoid multiple copies of the same edge on the low the plane. The latter test can be based on the sign of

stack. This implies that at any one moment the size of the
stack is less thadn. Note also that initially the stack con-
tains all non-ID edges and that this property is maintained
as an invariant of the algorithm. The Delaunay Lemma
implies that when the algorithm halts, which is when the
stack is empty, then the triangulation is the Delaunay tri-
angulation. However, it is not yet clear that the algorithm
terminates. Indeed, the stack can grow and shrink dur-
ing the course of the algorithm, which makes it difficult to
prove that it ever runs empty.

In-circle test. Before studying the termination of the al-
gorithm, we look into the question of distinguishing ID
from non-ID edges. As before we assume that the edge
is shared by the trianglesyp anduwq in the current trian-
gulation. Recall thatv is ID iff ¢ lies outside the circle
that passes through v, p. Let f : R? — R be defined by
f(x) = 2% + 2. As illustrated in Figure 103, the graph
of this function is a paraboloid in three-dimensional space
and we writez™ = (z1,z9, f(2)) for the vertical projec-
tion of the pointz onto the paraboloid. Assuming the three
pointsu, v, p do not lie on a common line then the points
uT,vT, pT lie on a non-vertical plane that is the graph of
a functionh(z) = ax1 + Sz2 + . The projection of the
intersection of the paraboloid and the plane back Rto
is given by
0 f(z) = h(z)

2 2
x] + a5 —axy — PBra — 1,

which is the equation of a circle. This circle passes
throughu, v, p so it is the circle we have to compa#e

79

the determinant of the 4-by-4 matrix

1w uz u?+ul

A — 1 v we v% + v%
B 1 p1 p2 pi+0p3

I ¢ ¢ 4¢+a¢é

Exchanging two rows in the matrix changes the sign.
While the in-circle test should be insensitive to the order
of the first three points, the sign of the determinant is not.
We correct the change using the sign of the determinant of
the 3-by-3 matrix that keeps track of the ordering.ob, p
along the circle,

1 Uy U2
I = 1 U1 U2
I p1 p2

Now we claim thats is inside the circle ofu, v, p iff the
two determinants have opposite signs:

bool ean INCIRCLE(Points u, v, p, q)
returndetI’-det A < 0.

We first show that the boolean function is correct o
(0,0),v = (1,0), p = (0,1), andg = (0,0.5). The sign

of the product of determinants remains unchanged if we
continuously move the points and avoid the configurations
that make either determinant zero, which are when, p

are collinear and when, v, p, ¢ are cocircular. We can
change any configuration whetgeis inside the circle of

u, v, p continuously into the special configuration without
going through zero, which implies the correctness of the
function for general input points.



Termination and running time. To prove the edge-flip
algorithm terminates, we imagine the triangulation lifted
to R3. We do this by projecting the vertices vertically
onto the paraboloid, as before, and connecting them with
straight edges and triangles in space. Letbe an edge
shared by trianglesvp anduwvq that is flipped topg by

the algorithm. It follows the line segments andpq cross
and their endpoints form a convex quadrilateral, as shown
in Figure 104. After lifting the two line segments, we get

Figure 104: A flip in the plane lifts to a tetrahedron in spate i
which the ID edge passes below the non-ID edge.

uTovT passing abovetg™. We may thus think of the flip

as gluing the tetrahedram™ v p* ¢+ underneath the sur-
face obtained by lifting the triangulation. The surface is
pushed down by each flip and never pushed back up. The
removed edge is how above the new surface and can there-
fore not be reintroduced by a later flip. It follows that the
algorithm performs at mos{fg) flips and thus takes at most
time O(?) to construct the Delaunay triangulation §f
There are faster algorithms that work in timerQ¢g n)

but we prefer the suboptimal method because it is simpler
and it reveals more about Delaunay triangulations than the
other algorithms.

The lifting of the input points t@®? leads to an interest-
ing interpretation of the edge-flip algorithm. Starting hwit
a monotone triangulated surface passing through the lifted
points, we glue tetrahedra below the surface until we reach
the unique convex surface that passes through the points.
The projection of this convex surface is the Delaunay tri-
angulation of the points in the plane. This also gives a
reinterpretation of the Delaunay Lemma in terms of con-
vex and concave edges of the surface.

80



22 Alpha Shapes plex as the dual of the Voronoi decomposition of the union
of disks. This time around, we do this more formally. Let-

Many practical applications of geometry have to do with ting C be a finite collgctlon of sets, theerveof C' is the

the intuitive but vague concept of the shape of a finite point System of subcollections that have a non-empty common

set. To make this idea concrete, we use the distances belntersection,

tween the points to identify subcomplexes of the Delaunay

triangulation that represent that shape at different keuél Niv@ = {XCC| ﬂX 7 0}.

resolution.
This is an abstract simplicial complex sinCeX # 0 and
Y C X impliesNY # 0. For example, il is the collec-
Union of disks. Let .S be a set of: points inR®. For  tjon of Voronoi regions theiNrv C' is an abstract version
eachr > 0, we write B, (r) = {z € R* | [lz —ul| < of the Delaunay triangulation. More specifically, this is
r} for the closed disk with center and radiusr. Let true provide the points are in general position and in par-
U(r) = U,es Bu(r) be the union of the: disks. We de- ticular no four points lie on a common circle. We will as-
compose this union into convex sets of the falin(r) = sume this for the remainder of this section. We say the De-
By(r)NV,. Then launay triangulation is geometric realizatiorof Nrv C,
. . . namely the one obtained by mapping each Voronoi region
() Ru(r) is closed and convex for every pointe 5 (a vertex in the abstract simplicial complex) to the gener-
and every radius > 0; ating point. All edges and triangles are just convex hulls
(i) R, (r)andR,(r) have disjointinteriors wheneverthe of their incident vertices. To go from the Delaunay trian-
two points,u andv, are different; gulation to the alpha complex, we substitute the regions
(i) U(r) = Uypeg Rulr). R, (r) fortheV,,. Specifically,
We illustrate this decomposition in Figure 105. Each re- Alpha(r) = Nrv{Ry(r)[ue S}

gion R, (r) is the intersection of. — 1 closed half-planes
and a closed disk. All these sets are closed and convex,
which implies (i). The Voronoi regions have disjoint inte-
riors, which implies (ii). Finally, take a point € U(r)

and letu be a point inS with z € V,,. Thenz € B,(r)

and therefore: € R, (x). This implies (iii).

Clearly, this is isomorphic to a subcomplex of the nerve
of Voronoi regions. We can therefore drawipha(r) as

a subcomplex of the Delaunay triangulation; see Figure
105. We call this geometric realization éfipha(r) the
alpha complexor radiusr, denoted asi(r). Thealpha
shapefor the same radius is the underlying space of the
alpha complex|A(r)]|.

ya N RN The nerve preserves the way the union is connected.
/ \ In particular, their Betti numbers are the same, that is,
\ g \ . | Bp(U(r)) = By(A(r)) for all dimensiong and all radii
o r. This implies that the union and the alpha shape have
g — N\ the same number of components and the same number of
\ holes. For example, in Figure 105 both have one compo-
/ g nent and two holes. We omit the proof of this property.
/ i \ Filtration. We are interested in the sequence of alpha
shapes as the radius grows from zero to infinity. Since

. RN 7

— T growing r grows the regiond?,(r), the nerve can only
get bigger. In other wordsd(r) C A(s) whenever < s.
There are only finitely many subcomplexes of the Delau-
nay triangulation. Hence, we get a finite sequence of alpha
complexes. Writing4; for thei-th alpha complex, we get
the following nested sequence,

Nerve. Similar to defining the Delaunay triangulation as

the dual of the Voronoi diagram, we define the alpha com- S=A CAyC...C A, =D,

Figure 105: The Voronoi decomposition of a union of eighkdis
in the plane and superimposed dual alpha complex.

81



where D denotes the Delaunay triangulation 8f We At this moment, we have a triangulated disk but not yet the

call such a sequence of complexeSl@ation. We illus- entire Delaunay triangulation since the triangtd and the

trate this construction in Figure 106. The sequence of al- edgebd are still missing. Each step is generic except when
we add two equally long edges ;.

Compatible ordering of simplices. We can represent
the entire filtration of alpha complexes compactly by sort-
ing the simplices in the order they join the growing com-
plex. An orderingoy, oo, ...,o0,, of the Delaunay sim-
plices iscompatiblewith the filtration if

1. the simplices in4; precede the ones not iA; for
eachi;

2. the faces of a simplex precede the simplex.

For example, the sequence
Figure 106: A finite sequence of unions of disks, all decoragdos
by the same Voronoi diagram. a,b,c,d,e, f,g,h;ah;be; ab, ef;
de; gh; cd; fg; cg; cf ; bh, abh; ce,

pha complexes begins with a setroisolated vertices, the cde: cfg: cef: ch beh: cghs b bed

points inS. To go from one complex to the next, we either

a?ld an edlge, WE add a;nr_iang(lje, or V\Ile i?‘d a pf(i)rGConsiEtingis compatible with the filtration in Figure 106. Every alpha

ol atr_|ang_ e wit one o Its edges. In \gure » We be- complex is a prefix of the compatible sequence but not
gin with eight vertices and get the following sequence of necessarily the other way round. Condition 2 guarantees
alpha complexes. that every prefix is a complex, whether an alpha complex

Ay = {a,b,c.de, f,g,h}; or not. We thus get a finer filtration of complexes
Az = A U{ahk 0=KyCK,C..CK,=D,
Ag = A2 U {bC},
Ay = AszU{ab,ef}; where K is the set of simplices from; to ;. To con-
_ ) struct the compatible ordering, we just need to compute

As = AqU {de}, . -
A — A . for each Delaunay simplex the radits= r(o;) such that

o = AsU{gh}s o; € A(r) iff » > r;. For a vertex, this radius is zero.
A7 = AgU{cd}; For a triangle, this is the radius of the circumcircle. For
Ag = A7U{fg};
Ay = AgU {Cg}.

Going from A; to Ag, we get for the first time a-cycle,
which bounds a hole in the embedding.A4g, this hole is
cut into two. This is the alpha complex depicted in Figure
105. We continue.

Figure 107: Left: the middle edge belongs to two acute tiiesg

Ao = A U{df}; Right: it belongs to an obtuse and an acute triangle.

A11 = AlO U {abh, bh},

Ay = Ay U{cde, cel; an edge, we have two cases. ketind be the angles
Aia = iz U{clo); aver 1 i - 180 because of the empty cici property
Ay = Az U {cef};

A5 = A1 U{bch,ch}; CAsSEl. ¢ < 90° andy < 90°. Thenr; = r(o;) is half
Ag = A5 U{cgh}. the length of the edge.

82



CASE 2. ¢ > 90°. Thenr; = r;, whereo; is the incident
triangle with anglep.

Both cases are illustrated in Figure 107. In Case 2, the
edgeo; enters the growing alpha complex together with
the triangles;. The total number of simplices in the De-
launay triangulation isn < 6n. The threshold radii can
be computed in time @f. Sorting the simplices into
the compatible ordering can therefore be done in time
O(nlogn).

Betti numbers. In two dimensions, Betti numbers can
be computed directly, without resorting to boundary matri-
ces. The only two possibly non-zero Betti numbers@re
the number of components, afd, the number of holes.
We compute the Betti numbers &f; by adding the sim-
plices in order.

Bo =51 =0;
fori=1tojdo
swi t ch dim o;:
case0: By = [+ 1;
case 1: letu, v be the endpoints af;;
i f FIND(u) =FIND(v)then 3, =51 +1
el sefy=p— 1,
UNION(u, v)
endi f
case2: /1 =01 —1
endswi t ch
endf or.

All we need is tell apart the two cases whenis an edge.
This is done using a union-find data structure maintaining
the components of the alpha complex in amortized time
a(n) per simplex. The total running time of the algorithm
for computing Betti numbers is therefore/@((n)).

83



Sixth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is November 25.

Problem 1. (20 points). LetS be a set ofn unit disks
in the Euclidean plane, each given by its center and
radius, which is one. Give an algorithm that decides
whether any two of the disks ifi intersect.

Problem 2. (20 = 10 + 10 points). LetS be a set of
n points in the Euclidean plane. Tl@&abriel graph
connects points, v € S with a straight edge if

2 2 2
[u=2l" < Ju=pl"+[v-pl
for every pointp in S.

(a) Show that the Grabriel graph is a subgraph of
the edge skeleton of the Delaunay triangulation.

(b) Is the Gabriel graph necessarily connected?
Justify your answer.

Problem 3. (20 = 10 + 10 points). Consider a set of >
3 closed disks in the Euclidean plane. The disks are
allowed to touch but no two of them have an interior
pointin common.

(@) Show that the number of touching pairs of disks
is at most3n — 6.

(b) Give a construction that achieves the upper
bound in (a) for any: > 3.

Problem 4. (20 = 10 + 10 points). LetK be a triangula-
tion of a set ofn. > 3 points in the plane. Lef be a
line that avoids all the points.

(a) Prove thatlL intersects at mostn — 4 of the
edgesink.

(b) Give a construction for whict. achieves the
upper bound in (a) for any > 3.

Problem 5. (20 points). LetS be a set oh points in the
Euclidean plane, consider its Delaunay triangulation
and the corresponding filtration of alpha complexes,

S=A,CAyC...CA..

Under what conditions is it true that; and A, dif-
fer by a single simplex forevery <i < m — 1?

84



VI NP-COMPLETENESS

23 Easy and Hard Problems

24 NP-Complete Problems

25 Approximation Algorithms
Seventh Homework Assignment

85



23 Easy and Hard Problems

The theory ofNP-completeness is an attempt to draw a

line between tractable and intractable problems. The most
important question is whether there is indeed a difference

between the two, and this question is still unanswered.
Typical results are therefore relative statements sucifas “
problemB has a polynomial-time algorithm then so does
problemC” and its equivalent contra-positive “if prob-
lem C has no polynomial-time algorithm then neither has
problemB”. The second formulation suggests we remem-
ber hard problemé&’ and for a new problen® we first see
whether we can prove the implication. If we can then we
may not want to even try to solve problebhefficiently. A
good deal of formalism is necessary for a proper descrip-
tion of results of this kind, of which we will introduce only

a modest amount.

What is a problem? An abstract decision problens a
function — {0,1}, wherel is the set of problem in-
stances an® and1 are interpreted to meamALSE and
TRUE, as usual. To completely formalize the notion, we

ableif T'(n) = O(n*) for some constari independent of
n. The first important complexity class of problems is

P set of concrete decision problems

that are polynomial-time solvable

The problemg) € P are calledractableor easyand the
problems@ ¢ P are calledintractable or hard. Algo-
rithms that take only polynomial time are callefficient
and algorithms that require more than polynomial time
are inefficient In other words, until now in this course
we only talked about efficient algorithms and about easy
problems. This terminology is adapted because the rather
fine grained classification of algorithms by complexity we
practiced until now is not very useful in gaining insights
into the rather coarse distinction between polynomial and
non-polynomial.

It is convenient to recast the scenario in a formal lan-
guage framework. Aanguageis a setl. C {0,1}*. We
can think of it as the set of problem instances,that
have an affirmative answe€)(z) = 1. An algorithm
A {0,1}* — {0,1} acceptse € {0,1}*if A(z) =1
and itrejectsz if A(z) = 0. The languageacceptedy A

encode the problem instances in strings of zeros and onesis the set of strings € {0,1}* with A(z) = 1. There is

I — {0,1}*. A concrete decision problers then a func-
tion @ : {0,1}* — {0, 1}. Following the usual conven-
tion, we map bit-strings that do not correspond to mean-
ingful problem instances to 0.

As an example consider the shortest-path problem. A
problem instance is a graph and a pair of vertiaeand
v, in the graph. A solution is a shortest path franand
v, or the length of such a path. The decision problem ver-
sion specifies an integérand asks whether or not there
exists a path fromu to v whose length is at mog¢t The
theory of NP-completeness really only deals with deci-
sion problems. Although this is a loss of generality, the
loss is not dramatic. For example, given an algorithm for

a subtle difference between accepting aedidinga lan-
guageL. The latter means that accepts every € L and
rejects everyr ¢ L. For example, there is an algorithm
that accepts every program that halts, but there is no algo-
rithm that decides the language of such programs. Within
the formal language framework we redefine the class of
polynomial-time solvable problems as

P {L C€{0,1}" | Lis accepted by
a polynomial-time algorithrh
{L C€{0,1}* | Lis decided by

a polynomial-time algorithrp

the deC_iSiOI‘l version of the shortest-path problem, we canndeed, a language that can be accepted in polynomial
determine the length of the shortest path by repeated de-time can also be decided in polynomial time: we keep

cisions for different values of. Decision problems are

track of the time and if too much goes by withaube-

always easier (or at least not harder) than the correspond-ing accepted, we turn around and rejectThis is a non-

ing optimization problems. So in order to prove that an
optimization problem is hard it suffices to prove that the
corresponding decision problem is hard.

Polynomial time. An algorithmsolvesa concrete deci-
sion problem@ in time T'(n) if for every instancer €
{0,1}* of lengthn the algorithm produce®(z) in time

at mostT'(n). Note that this is the worst-case notion of
time-complexity. The probler®) is polynomial-time solv-

86

constructive argument since we may not know the con-
stants in the polynomial. However, we know such con-
stants exist which suffices to show that a simulation as
sketched exists.

Hamiltonian cycles. We use a specific graph problem to
introduce the notion of verifying a solution to a problem,
as opposed to solving it. Le&¥ = (V, E) be an undi-
rected graph. Ahamiltonian cyclecontains every vertex



v € V exactly once. The grapf¥ is hamiltonianif it has The nameNP is an abbreviation fonon-deterministic

a hamiltonian cycle. Figure 108 shows a hamiltonian cy- polynomial time, because a non-deterministic computer

cle of the edge graph of a Platonic solid. How about the can guess a certificate and then verify that certificate. In a

edge graphs of the other four Platonic solids? Define parallel emulation, the computer would generate all possi-
ble certificates and then verify them in parallel. Generat-
ing one certificate is easy, because it only has polynomial
length, but generating all of them is hard, because there
are exponentially many strings of polynomial length.

P = NP = co-NP

@ NP = co-NP

Figure 108: The edge graph of the dodecahedron and one of its
hamiltonian cycles.

{G | G is hamiltoniar}. We can thus ask whether or not
L € P, that is, whether or not there is a polynomial-time
algorithm that decides whether or not a graph is hamilto-

nian. The answer to this question is currently not known,  non_deterministic machine are at least as powerful as
but there is evidence that the answer might be negative. Onyeerministic machines. It follows that every problem in
the other hand, suppogés a hamiltonian cycle ofr. The Pis also inNP. P C NP. Define

languagd.’ = {(G, y) | v is a hamiltonian cycle of7} is

Figure 109: Four possible relations between the complexity
classes?, NP, andco-NP.

certainly in P because we just need to make sure that co-NP = {L|L={x¢L}eNP},
andG have the same number of vertices and every edge of
y is also an edge af. which is the class of languages whose complement can

be verified in non-deterministic polynomial time. It is

o o ) not known whether or noP = co-NP. For example,
Non-deterministic polynomial time. More generally, it it seems easy to verify that a graph is hamiltonian but
seems easier to verify a given solution than to come Up it seems hard to verify that a graph is not hamiltonian.
with one. In a nutshell, this is whatP-completeness is  \ve said earlier that i, € P thenT € P. Therefore,
about, namely finding out whether this is indeed the case p ~ o.NP. Hence, only the four relationships between
and whether the difference between accepting and Verify- (g three complexity classes shown in Figure 109 are pos-
ing can be used to separate hard from easy problems.  gjpje put at this time we do not know which one is correct.

Cally € {0,1}* acertificate An algorithm A verifies
a problem instance € {0, 1}* if there exists a certificate
y with A(z,y) = 1. The languageerifiedby A is the set
of stringsz € {0, 1}* verified by A. We now define a new
class of problems,

Problem reduction. We now develop the concept of re-
ducing one problem to another, which is key in the con-
struction of the class dfiP-complete problems. The idea
is to map or transform an instance of a first problem to an
NP = {LC{0,1}* | Lis verified by instance of a second problem and.to map th.e solution to
the second problem back to a solution to the first problem.
For decision problems, the solutions are the same and need
no transformation.

a polynomial-time algorithrh

More formally, L is in NP if for every problem instance
x € L there is a certificatgy whose length is bounded Languagel; is polynomial-time reducibléo language
from above by a polynomial in the length efsuch that Lo, denoted.; <p Lo, ifthereis a polynomial-time com-
A(xz,y) = 1 and A runs in polynomial time. For exam-  putable functionf : {0,1}* — {0,1}* such that: € L,

ple, deciding whether or na¥ is hamiltonian is inNP. iff f(x) € Lo, forallz € {0,1}*. Now suppose that

87



L, is polynomial-time reducible td.. and thatl; has a
polynomial-time algorithm4, that decided.o,

e -5 fa) 22 {0, 1}

We can compose the two algorithms and obtain a poly-
nomial-time algorithmA; = A, o f that decided.;. In
other words, we gained an efficient algorithm for just

by reducing it toLs.

REDUCTIONLEMMA. If Ly <p L, andL, € P then
L, €P.

In words, if Ly is polynomial-time reducible td.» and
Lo is easy thernl; is also easy. Conversely, if we know
that L, is hard then we can conclude tha{ is also hard.
This motivates the following definition. A languageC
{0,1}* is NP-completdf

(1) L € NP;
(2) L' <p L, foreveryL’ € NP.

Sinceevery L’ € NP is polynomial-time reducible td,,

all L’ have to be easy fok to have a chance to be easy.
The L’ thus only provide evidence thdt might indeed

be hard. We say. is NP-hard if it satisfies (2) but not
necessarily (1). The problems that satisfy (1) and (2) form
the complexity class

NPC

= {L| LisNP-completé.

All these definitions would not mean much if we could
not find any problems itNPC. The first step is the most
difficult one. Once we have one problemhNiPC we can
get others using reductions.

Satisfying boolean formulas. Perhaps surprisingly, a
first NP-complete problem has been found, namely the
problem of satisfiability for logical expressions. A
boolean formulayp, consists of variables;;, xs, . . ., op-
erators,~, A, V,—, ..., and parentheses. thuth assign-
mentmaps each variable to a boolean valo@r 1. The
truth assignmerdatisfiesf the formula evaluatesto 1. The
formula is satisfiableif there exists a satisfying truth as-
signment. Define SAT= {¢ | ¢ is satisfiablé. As an
example consider the formula

(2

If we setx; = 29 = 1 we get(zy = a2) = 1, (22 V
—z1) = 1 and therefore) = 1. It follows thaty € SAT.

(Il - SCQ) <~ (SCQ \ _|SC1).

88

In fact, all truth assignments evaluate itpwhich means
that ¢ is really a tautology. More generally, a boolean
formula,, is satisfyable iff-¢ is not a tautology.

SATISFIABILITY THEOREM. We have SAT¢ NP and
L' <p SAT foreveryL’ € NP.

That SAT is in the clasBIP is easy to prove: just guess an
assignment and verify that it satisfies. However, to prove
that everyL’ € NP can be reduced to SAT in polynomial
time is quite technical and we omit the proof. The main
idea is to use the polynomial-time algorithm that verifies
L' and to construct a boolean formula from this algorithm.
To formalize this idea, we would need a formal model of a
computer, a Touring machine, which is beyond the scope
of this course.



24 NP-Complete Problems

In this section, we discuss a numbeiN#?-complete prob-

lems, with the goal to develop a feeling for what hard
problems look like. Recognizing hard problems is an im-
portant aspect of a reliable judgement for the difficulty of

a problem and the most promising approach to a solution.

Of course, forNP-complete problems, it seems futile to

work toward polynomial-time algorithms and instead we
would focus on finding approximations or circumventing
the problems altogether. We begin with a result on differ-
ent ways to write boolean formulas.

Reduction to 3-satisfiability. We call a boolean vari-
able or its negation diteral. The conjunctive normal
formis a sequence of clauses connected\By and each
clauseis a sequence of literals connected \by. A for-

mula is in3-CNFif it is in conjunctive normal form and

each clause consists of three literals. It turns out that de-

ciding the satisfiability of a boolean formula in 3-CNF
is no easier than for a general boolean formula. Define
3-SAT = {¢ € SAT | ¢isin3-CNF. We prove the
above claim by reducing SAT to 3-SAT.

SATISFIABILITY LEMMA. SAT <p 3-SAT.

PrROOF We take a boolean formulaand transform it into
3-CNF in three steps.

Step 1. Think of ¢ as an expression and representit as

a binary tree. Each node is an operation that gets the

input from its two children and forwards the output
to its parent. Introduce a new variable for the output
and define a new formul@’ for each node, relating
the two input edges with the one output edge. Figure
110 shows the tree representation of the formuita

(r1 = x2) <= (22 V —x1). The new formula is

/

4

(y2 == (11 = 22))
/\(y3 <~ (xg V ﬁxl))
ANy <= (y2 <= y3)) ANy

It should be clear that there is a satisfying assignment

for ¢ iff there is one fory'.

X,

X2 ﬁXl

Figure 110: The tree representation of the formglalnciden-
tally, ¢ is a tautology, which means it is satisfied by every truth
assignment. Equivalentlyp is not satisfiable.

Y2 x1 w2 Y2 & (1= x2) prohibited

0 0 0 0 —y2 A mx1 A\ X2
0 0 1 0 =y A mx1 A\ 2
0 1 0 1

0 1 1 0 —y2 AN x1 N\ X2
1 0 0 1

1 0 1 1

1 1 0 0 y2 A x1 A 2
1 1 1 1

Table 6: Conversion of a clause into a disjunction of conioms
of at most three literals each.

follows thatys <= (z1 = x2) is equivalent to the
negation of that disjunction, which by de Morgan’s
law is (yQ V. \/SCQ) A\ (yQ V. \/—'SCQ) A (y2 V -z V
ﬁxg) A\ (ﬁyg V -z V .%'2).

Step 3. The clauses with fewer than three literals can
be expanded by adding new variables. For example
aVbis expandedtda VbV p) A (aV bV —p)and
(a) isexpandedtéa VpVq) A(aVpV—g)A(aV
“pV ) A(aV-pV-g).

Each step takes only polynomial time. At the end, we get
an equivalent formula in 3-conjunctive normal formg

We note that clauses of length three are necessary to
make the satisfiability problem hard. Indeed, there is a
polynomial-time algorithm that decides the satisfiability
of a formula in 2-CNF.

NP-completeness proofs. Using polynomial-time re-
ductions, we can show fairly mechanically that problems
areNP-complete, if they are. A key property is the tran-
sitivity of <p, thatis, if L’ <p L; andL; <p Lo

Step 2. Convert each clause into disjunctive normal thenL’ <p L,, as can be seen by composing the two
form. The most mechanical way uses the truth table polynomial-time computable functions to get a third one.
for each clause, as illustrated in Table 6. Each clause
has at most three literals. For example, the negation REDUCTION LEMMA. Let Ly, Ly C {0,1}* and assume
of yo <= (1 = x2) is equivalent to the disjunc- L1 <p Lo. If L1 is NP-hard andL, € NP then
tion of the conjunctions in the rightmost column. It Lo € NPC.

89



A genericNP-completeness proof thus follows the steps  Itis easy to decide in tim®(k2n*+2) whether or not a

outline below. graph ofn vertices has a clique of size If k is a constant,
the running time of this algorithm is polynomial in For
Step 1. Provethatls € NP. the QLIQUE problem to beNP-complete it is therefore es-

sential thatk be a variable that can be arbitrarily large.
We use theNP-completeness of finding large cliques to
prove theNP-completeness of large sets of pairwise non-
adjacent vertices. Le¥ = (V, F) be an undirected graph.
A subsetiV C V isindependenif none of the vertices in
W are adjacent or, equivalently, N (VQV) = (. Given

G and an integek;, the INDEPENDENTSET problem asks
whether or not there is an independent sefafr more
vertices.

Step 2. SelectaknowiMNP-hard problem/., and find
a polynomial-time computable functiofi, with x €
Ly iff f(.%‘) € Lo.

This is what we did forL, = 3-SAT andL; = SAT.
Therefore 3-SATe NPC. Currently, there are thousands
of problems known to b&lP-complete. This is often con-

NP

®

CLAIM . INDEPENDENTSET € NPC.

PROOE It is easy to verify that there is an independent set
of sizek: just guess a subset bfvertices and verify that
no two are adjacent.

Figure 111: Possible relation betweBnNPC, andNP.

sidered evidence th& # NP, which can be the case only
if PN NPC = (0, as drawn in Figure 111.

Cliques and independent sets. There are manyNP- O @)

complete problems on graphs. A typical such problem @)

asks for the largest complete subgraph. Defirdigque

in an undirected grap& = (V, E) as a subgrapbiV, I) Figure 112: The four shaded vertices form an independerin set
with F = (VQV) GivenG and an integek;, the QLIQUE the graph on the left and a clique in the complement graphen th
problem asks whether or not there is a cliqué @r more right.

vertices. )
We complete the proof by reducing the. IQUE to the

INDEPENDENTSET problem. As illustrated in Figure 112,
W C V isindependent ifil” defines a clique in the com-
plement graphi; = (V, (%) — E). To prove QIQUE <p
INDEPENDENTSET, we transform an instandg, & of the
CLIQUE problem to the instanc€ = H, k of the INDE-
PENDENTSET problem.G has an independent set of size

k or larger iff H has a clique of sizé& or larger.

CLAIM. CLIQUE € NPC.

PROOF Given k vertices inG, we can verify in poly-
nomial time whether or not they form a complete graph.
Thus Q.IQUE € NP. To prove property (2), we show
that 3-SAT <p CLIQUE. Lety be a boolean formula in
3-CNF consisting of: clauses. We construct a graph as
follows:
Various NP-complete graph problems. We now de-
(i) each clause is replaced by three vertices; scribe a fewNP-complete problems for graphs without

(ii) two vertices are connected by an edge if they do not Proving that they are indeetiP-complete. LetG =
belong to the same clause and they are not negations V> £) b€ an undirected graph withvertices and: a pos-
of each other. itive integer, as before. The following problems defined

for G andk areNP-complete.

In a satisfying truth assignment, there is at least one true  An /¢-coloring of G is a functiony : V' — [¢] with
literal in each clause. The true literals form a clique. Con- x(u) # x(v) wheneven andv are adjacent. The l@RO-
versely, a clique ok or more vertices covers all clauses MATIC NUMBER problem asks whether or n6t has ary-
and thus implies a satisfying truth assignment. coloring with¢ < k. The problem remainslP-complete

90



for fixed £ > 3. Fork = 2, the GHROMATIC NUMBER
problem asks whether or n6tis bipartite, for which there
is a polynomial-time algorithm.

The bandwidthof G is the minimum? such that there
is a bijectiong : V' — [n] with |G(u) — G(v)| < ¢ for
all adjacent vertices andv. The BANDWIDTH problem
asks whether or not the bandwidth @Gfis k or less. The
problem arises in linear algebra, where we permute rows
and columns of a matrix to move all non-zero elements of

complete if no set i’ contains more than three elements,
and there is a polynomial-time algorithm if every set con-
tains two elements. In the latter case, the set system is a
graph and a maximum packing is a maximum matching.

The CovERING problem asks whether or nét hask
or fewer subsets whose unionlis The problem remains
NP-complete if no set i’ contains more than three ele-
ments, and there is a polynomial-time algorithm if every
sets contains two elements. In the latter case, the set sys-

a square matrix as close to the diagonal as possible. Fortem is a graph and the minimum cover can be constructed

example, if the graph is a simple path then the bandwidth
is 1, as can be seen in Figure 113. We can transform the

» o
Rk O Kk
P ok
P o R
P o R
P o Bk

B O R
(ST

Figure 113: Simple path and adjacency matrix with rows and
columns ordered along the path.

adjacency matrix ofz such that all non-zero diagonals are
at most the bandwidth @ away from the main diagonal.
(V). and that each edgew, has a positive integer
weight, w(uv). The TRAVELING SALESMAN problem
asks whether there is a permutatiog, u, . .., u,_1 Of

the vertices such that the sum of edges connecting con-

tiguous vertices (and the last vertex to the firstkier
less,

Assume now that the grapty is complete, F

S
—

’LU(UZ'UZ'+1) S k,

Il
o

where indices are taken moduto The problem remains
NP-complete ifw : E — {1, 2} (reduction to FAMILTO -
NIAN CvcLE problem), and also if the vertices are points
in the plane and the weight of an edge is the Euclidean
distance between the two endpoints.

Set systems. Simple graphs are set systems in which the
sets contain only two elements. We now list a fis\R-
complete problems for more general set systems. Letting
V be a finite setC' C 2V a set system, ankl a positive
integer, the following problems af¢P-complete.

The RACKING problem asks whether or n6t hask or
more mutually disjoint sets. The problem remaNB-

91

in polynomial time from a maximum matching.

Suppose every element € V has a positive integer
weight, w(v). The RRTITION problem asks whether
there is a subséf C V with

> w(u)

uelU

Z w(v).

veV-U

The problem remainslP-complete if we require thal/
andV — U have the same number of elements.



25 Approximation Algorithms

Many important problems amdP-hard and just ignoring

a matching that is, a subset of the edges so that no two
share a vertex. The size of the minimum vertex cover is
at least the size of the largest possible matching. The al-

them is not an option. There are indeed many things one gorithm finds a matching and since it picks two vertices

can do. For problems of small size, even exponential-

per edge, we are guaranteed at most twice as many ver-

time algorithms can be effective and special subclassestices as needed. This pattern of boundirigby the size

of hard problems sometimes have polynomial-time algo-
rithms. We consider a third coping strategy appropriate
for optimization problems, which is computing almost op-
timal solutions in polynomial time. In case the aim is
to maximize a positive cost, &n)-approximation algo-
rithm is one that guarantees to find a solution with cost
C > C*/o(n), whereC* is the maximum cost. For mini-
mization problems, we would requireé < C*p(n). Note
thato(n) > 1 andifp(n) = 1 then the algorithm produces
optimal solutions. Ideallyp is a constant but sometime
even this is not achievable in polynomial time.

Vertex cover. The first problem we consider is finding
the minimum set of vertices in a gragh = (V, E) that
covers all edges. Formally, a subdét C V is aver-

tex coverif every edge has at least one endpoinfiih
Observe thal’’ is a vertex cover iff — V' is an inde-
pendent set. Finding a minimum vertex cover is therefore
equivalent to finding a maximum independent set. Since
the latter problem iSNP-complete, we conclude that find-
ing a minimum vertex cover is alddP-complete. Here is

a straightforward algorithm that achieves approximation
ratio o(n) = 2, foralln = |V|.

V=0, E'=E;
while E' #(do

select an arbitrary edgev in E’;

addu andv to V7;

remove all edges incident toor v from E’
endwhi | e.

Clearly, V' is a vertex cover. Using adjacency lists with
links between the two copies of an edge, the running time
is O(n + m), wherem is the number of edges. Further-
more, we have = 2 because every cover must pick at
least one vertex of each edge selected by the algorithm,
henceC' < 2C*. Observe that this result does not imply
a constant approximation ratio for the maximum indepen-
dent set problem. We hay& —V'| = n—C > n—2C*,
which we have to compare with — C*, the size of the
maximum independent set. FOr" = 7, the approxima-
tion ratio is unbounded.

Let us contemplate the argument we used to refate
andC*. The set of edgesv selected by the algorithm is

92

of another quantity (in this case the size of the largest
matching) is common in the analysis of approximation al-
gorithms. Incidentally, for bipartite graphs, the size loé t
largest matching is equal to the size of the smallest vertex
cover. Furthermore, there is a polynomial-time algorithm
for computing them.

Traveling salesman. Second, we consider the traveling
salesman problem, which is formulated for a complete
graphG = (V, E) with a positive integer cost function

¢ : E — Z,. A tourin this graph is a Hamiltonian
cycle and the problem is finding the tout, with mini-
mum total costc(A) = >, o4 c(uv). Let us first as-
sume that the cost function satisfies the triangle inequal-
ity, c(uw) < e(uv) + c(vw) for all u,v,w € V. It can

be shown that the problem of finding the shortest tour
remainsNP-complete even if we restrict it to weighted
graphs that satisfy this inequality. We formulate an al-
gorithm based on the observation that the cost of every
tour is at least the cost of the minimum spanning tree,
C* > ¢(T).

1 Construct the minimum spanning tréeof G.
2 Return the preorder sequence of vertice®'in

Using Prim’s algorithm for the minimum spanning tree,
the running time is Q¢2). Figure 114 illustrates the algo-
rithm. The preorder sequence is only defined if we have

Figure 114: The solid minimum spanning tree, the dottecktrav
sal using each edge of the tree twice, and the solid tour rudxdai
by taking short-cuts.

a root and the neighbors of each vertex are ordered, but



we may choose both arbitrarily. The cost of the returned ing greedy approach that selects, at each step, the set con-
tour is at most twice the cost of the minimum spanning taining the maximum number of yet uncovered elements.
tree. To see this, consider traversing each edge of the min-

imum spanning tree twice, once in each direction. When-

ever a vertex is visited more than once, we take the direct
edge connecting the two neighbors of the second copy as a

short-cut. By the triangle inequality, this substituticanc
only decrease the overall cost of the traversal. It follows
thatC < 2¢(T) < 2C*.

The triangle inequality is essential in finding a constant
approximation. Indeed, without it we can construct in-
stances of the problem for which finding a constant ap-
proximation isNP-hard. To see this, transform an un-
weighted grapiz’ = (V’, E’) to the complete weighted
graphG = (V, E) with

cluw) = 1 if uv e E’,
- on+ 1 otherwise.

Any p-approximation algorithm must return the Hamilto-
nian cycle ofG’, if there is one.

Set cover. Third, we consider the problem of covering
a setX with sets chosen from a set systefn We as-
sume the set is the union of sets in the syst&ms | J F.
More precisely, we are looking for a smallest subsystem
F' C Fwith X = [JF'. Thecostof this subsystem is
the number of sets it containgF’|. See Figure 115 for
an illustration of the problem. The vertex cover problem

S
[O O O O}
[O O ®) O}

@) @) @) O
- @@

Figure 115: The seX of twelve dots can be covered with four
of the five sets in the system.

is a special caseX = FE and.F contains all subsets of

edges incident to a common vertex. It is special because

each element (edge) belongs to exactly two sets. Since w

no longer have a bound on the number of sets containing

a single element, it is not surprising that the algorithm for

e

F =0 X'=X;
while X’ # (do
selectS € F maximizing|S N X'|;
F=FU{Sh X'=X"-8
endwhi | e.

Using a sparse matrix representation of the set system
(similar to an adjacency list representation of a graph), we
can run the algorithm in time proportional to the total size
of the sets in the system, = ¢ - |S|. We omit the
details.

Analysis. More interesting than the running time is the
analysis of the approximation ratio the greedy algorithm
achieves. Itis convenient to have short notation fordhe
th harmonic numbeti; = Z‘Z:l 1 ford > 0. Recall that
Hy; <1+ 1Indford > 1. Letthe size of the largest set in
the system ben = max{|S| | S € F}.

CLAIM . The greedy method is afi,,,-approximation al-
gorithm for the set cover problem.

PROOF For each sef selected by the algorithm, we dis-
tribute $1 over théS N X’| elements covered for the first
time. Letc, be the cost allocated this way 1o X. We
have|F'| = > . v c.. If 2 is covered the first time by the
i-th selected sefS;, then

1
1S — (S1U...USi1)|

Cg

We have|F'| < 3 ez > ,cgCa beCause the optimal
cover,F*, contains each elementat least once. We will
prove shortly thab - ¢, < H|g| for every setS € F.

It follows that

zeS

\F'| < > Hg < HplF',

SeF*

as claimed.

Form = 3, we getp = Hs = L. This implies that
for graphs with vertex-degrees at most 3, the greedy algo-
rithm guarantees a vertex cover of size at méstimes
the optimum, which is better than the ratio 2 guaranteed
by our first algorithm.

We still need to prove that the sum of costsover the

vertex covers does not extend to a constant-approximationelements of a sef in the system is bounded from above

algorithm for set covers. Instead, we consider the follow-

93

by Hs|. Letu; be the number of elements ki that are



not covered by the first selected setsy; = |S — (57 U

.U S;)|, and observe that the numbers do not increase.
Letui_1 be the last non-zero number in the sequence, so
S| =up > ... > ug—1 > uy = 0. Sinceu;—; —u; is the
number of elements i¥ covered the first time by;, we
have

Ui—1 —
D e = Z|s— ...USH)|'

zeS

We also havey;,—; < |S; — (S1 U...US;_4)], for all

i < k, because of the greedy choice &f If this were
not the case, the algorithm would have choseimstead

of S; in the construction ofF’. The problem thus reduces
to bounding the sum of ratios~———=. It is not difficult

to see that this sum can be at Ieast logarithmic in the size
of S. Indeed, if we choose; about half the size of,;_1,

for all « > 1, then we have logarithmically many terms,
each roughly%. We use a sequence of simple arithmetic
manipulations to prove that this lower bound is asymptot-
ically tight:

k

Ui—1 — Uy
ST ST
Ug—
wes i=1 il
k Uq—1
i=1 j=u;+1 Ui-1

We now replace the denominator hy< u;_; to form a
telescoping series of harmonic numbers and get

Uq—1
Seo< Yy > -
zeS i=1 j= u1+1

@. @.
I Ma— i Ma—
— —
—~
juy <
- i
I

This is equal toH,,, — H,, = H)g), which fills the gap
left in the analysis of the greedy algorithm.

94



Seventh Homework Assignment Problem 4. (20 = 10 + 10 points). LetA C 2V be an
abstract simplicial complex over the finite détand

The purpose of this assignment is to help you prepare for let & be a positive integer.
tcr:)e":;ildexam. Solutions will neither be graded nor even (a) IsitNP-hard to decide whethet hask or more

disjoint simplices?
) ) (b) Is it NP-hard to decide whetheA hask or
Problem 1. (20 = 5 + 15 points). Consider the class fewer simplices whose union I$?

of satisfiable boolean formulas in conjunctive nor-

mal form in which each clause contains two literals, Problem 5. (20 points). LetG — (V,E) be an undi-

2-SAT = {p € SAT| ¢ is 2-CNR. rected, bipartite graph and recall that there is a
(@) Is 2-SATe NP? polynomial-time algorithm for constructing a max-
imum matching. We are interested in computing a
minimum set of matchings such that every edge of
the graph is a member of at least one of the selected
matchings. Give a polynomial-time algorithm con-
structing anO(logn) approximation for this prob-

lem.

(b) Is there a polynomial-time algorithm for decid-
ing whether or not a boolean formula in 2-CNF
is satisfiable? If your answer is yes, then de-
scribe and analyze your algorithm. If your an-
swer is no, then show that 2-SAT NPC.

Problem 2. (20 points). LetA be a finite set and a func-
tion that maps every € A to a positive integef (a).
The RRTITION problem asks whether or not there is
a subseB C A such that

SFw) = Y fla).

beB acA—-B

We have learned that theARTITION problem is
NP-complete. Given positive integejsand k, the
SUM OF SQUARES problem asks whether or not
A can be partitioned intg disjoint subsetsA =
By U B U...U Bj, such that

Xj: <Z f(a))2 < k.

=1 a€EB;

Prove that the 8M OF SQUARES problem isNP-
complete.

Problem 3. (20 = 10410 points). LetG be an undirected
graph. A path inG is simpleif it contains each ver-
tex at most once. Specifying two verticesv and a
positive integetk, the LONGESTPATH problem asks
whether or not there is a simple path connecting
andv whose length i& or longer.

(a) Give a polynomial-time algorithm for the
LONGESTPATH problem or show that it ilP-
hard.

(b) Reuvisit (a) under the assumption th@itis di-
rected and acyclic.

95



