
CPS 230

DESIGN AND ANALYSIS

OF ALGORITHMS

Fall 2008

Instructor:Herbert Edelsbrunner
Teaching Assistant:Zhiqiang Gu

CPS 230 Fall Semester of 2008

Table of Contents

1 Introduction 3

I DESIGN TECHNIQUES 4

2 Divide-and-Conquer 5
3 Prune-and-Search 8
4 Dynamic Programming 11
5 Greedy Algorithms 14

First Homework Assignment 17

II SEARCHING 18

6 Binary Search Trees 19
7 Red-Black Trees 22
8 Amortized Analysis 26
9 Splay Trees 29

Second Homework Assignment 33

III PRIORITIZING 34

10 Heaps and Heapsort 35
11 Fibonacci Heaps 38
12 Solving Recurrence Relations 41

Third Homework Assignment 44

IV GRAPH ALGORITHMS 45

13 Graph Search 46
14 Shortest Paths 50
15 Minimum Spanning Trees 53
16 Union-Find 56

Fourth Homework Assignment 60

V TOPOLOGICAL ALGORITHMS 61

17 Geometric Graphs 62
18 Surfaces 65
19 Homology 68

Fifth Homework Assignment 72

VI GEOMETRIC ALGORITHMS 73

20 Plane-Sweep 74
21 Delaunay Triangulations 77
22 Alpha Shapes 81

Sixth Homework Assignment 84

VII NP-COMPLETENESS 85

23 Easy and Hard Problems 86
24 NP-Complete Problems 89
25 Approximation Algorithms 92

Seventh Homework Assignment 95

2

1 Introduction

Meetings. We meet twice a week, on Tuesdays and
Thursdays, from 1:15 to 2:30pm, in room D106 LSRC.

Communication. The course material will be delivered
in the two weekly lectures. A written record of the lec-
tures will be available on the web, usually a day after the
lecture. The web also contains other information, such as
homework assignments, solutions, useful links, etc. The
main supporting text is

TARJAN. Data Structures and Network Algorithms.SIAM,
1983.

The book focuses on fundamental data structures and
graph algorithms, and additional topics covered in the
course can be found in the lecture notes or other texts in
algorithms such as

KLEINBERG AND TARDOS. Algorithm Design.Pearson Ed-
ucation, 2006.

Examinations. There will be a final exam (covering the
material of the entire semester) and a midterm (at the be-
ginning of October), You may want to freshen up your
math skills before going into this course. The weighting
of exams and homework used to determine your grades is

homework 35%,
midterm 25%,
final 40%.

Homework. We have seven homeworks scheduled
throughout this semester, one per main topic covered in
the course. The solutions to each homework are due one
and a half weeks after the assignment. More precisely,
they are due at the beginning of the third lecture after the
assignment. The seventh homework may help you prepare
for the final exam and solutions will not be collected.

Rule 1. The solution to any one homework question must
fit on a single page (together with the statement of the
problem).

Rule 2. The discussion of questions and solutions before
the due date is not discouraged, but you must formu-
late your own solution.

Rule 3. The deadline for turning in solutions is 10 min-
utes after the beginning of the lecture on the due date.

Overview. The main topics to be covered in this course
are

I Design Techniques;

II Searching;

III Prioritizing;

IV Graph Algorithms;

V Topological Algorithms;

VI Geometric Algorithms;

VII NP-completeness.

The emphasis will be on algorithmdesignand on algo-
rithm analysis. For the analysis, we frequently need ba-
sic mathematical tools. Think of analysis as the measure-
ment of the quality of your design. Just like you use your
sense of taste to check your cooking, you should get into
the habit of using algorithm analysis to justify design de-
cisions when you write an algorithm or a computer pro-
gram. This is a necessary step to reach the next level in
mastering the art of programming. I encourage you to im-
plement new algorithms and to compare the experimental
performance of your program with the theoretical predic-
tion gained through analysis.

3

I DESIGN TECHNIQUES

2 Divide-and-Conquer
3 Prune-and-Search
4 Dynamic Programming
5 Greedy Algorithms

First Homework Assignment

4

2 Divide-and-Conquer

We use quicksort as an example for an algorithm that fol-
lows the divide-and-conquer paradigm. It has the repu-
tation of being the fasted comparison-based sorting algo-
rithm. Indeed it is very fast on the average but can be slow
for some input, unless precautions are taken.

The algorithm. Quicksort follows the general paradigm
of divide-and-conquer, which means itdivides the un-
sorted array into two, itrecurseson the two pieces, and it
finally combinesthe two sorted pieces to obtain the sorted
array. An interesting feature of quicksort is that the divide
step separates small from large items. As a consequence,
combining the sorted pieces happens automatically with-
out doing anything extra.

void QUICKSORT(int ℓ, r)
if ℓ < r thenm = SPLIT(ℓ, r);

QUICKSORT(ℓ,m− 1);
QUICKSORT(m+ 1, r)

endif.

We assume the items are stored inA[0..n− 1]. The array
is sorted by calling QUICKSORT(0, n− 1).

Splitting. The performance of quicksort depends heav-
ily on the performance of the split operation. The effect of
splitting fromℓ to r is:

• x = A[ℓ] is moved to its correct location atA[m];

• no item inA[ℓ..m− 1] is larger thanx;

• no item inA[m+ 1..r] is smaller thanx.

Figure 1 illustrates the process with an example. The nine
items are split by moving a pointeri from left to right
and another pointerj from right to left. The process stops
wheni andj cross. To get splitting right is a bit delicate,
in particular in special cases. Make sure the algorithm is
correct for (i)x is smallest item, (ii)x is largest item, (iii)
all items are the same.

int SPLIT(int ℓ, r)
x = A[ℓ]; i = ℓ; j = r + 1;
repeat repeat i++ until x ≤ A[i];

repeat j-- until x ≥ A[j];
if i < j then SWAP(i, j) endif

until i ≥ j;
SWAP(ℓ, j); return j.

i j

m

ji

1 9

3 5 4 2 41 92 7

5

7

4 2 9 4 2 17 3

3 5 4 2 4 2

Figure 1: First,i and j stop at items 9 and 1, which are then
swapped. Second,i andj cross and the pivot, 7, is swapped with
item 2.

Special cases (i) and (iii) are ok but case (ii) requires a
stopper atA[r + 1]. This stopper must be an item at least
as large asx. If r < n − 1 this stopper is automatically
given. Forr = n− 1, we create such a stopper by setting
A[n] = +∞.

Running time. The actions taken by quicksort can be
expressed using a binary tree: each (internal) node repre-
sents a call and displays the length of the subarray; see
Figure 2. The worst case occurs whenA is already sorted.

1

2

1 1

2

5

7

9

1

Figure 2: The total amount of time is proportional to the sum
of lengths, which are the numbers of nodes in the corresponding
subtrees. In the displayed case this sum is 29.

In this case the tree degenerates to a list without branch-
ing. The sum of lengths can be described by the following
recurrence relation:

T (n) = n+ T (n− 1) =

n
∑

i=1

i =

(

n+ 1

2

)

.

The running time in the worst case is therefore in O(n2).

In the best case the tree is completely balanced and the
sum of lengths is described by the recurrence relation

T (n) = n+ 2 · T
(

n− 1

2

)

.

5

If we assumen = 2k − 1 we can rewrite the relation as

U(k) = (2k − 1) + 2 · U(k − 1)

= (2k − 1) + 2(2k−1 − 1) + . . .+ 2k−1(2 − 1)

= k · 2k −
k−1
∑

i=0

2i

= 2k · k − (2k − 1)

= (n+ 1) · log2(n+ 1) − n.

The running time in the best case is therefore in
O(n logn).

Randomization. One of the drawbacks of quicksort, as
described until now, is that it is slow on rather common
almost sorted sequences. The reason are pivots that tend
to create unbalanced splittings. Such pivots tend to oc-
cur in practice more often than one might expect. Hu-
man and often also machine generated data is frequently
biased towards certain distributions (in this case, permuta-
tions), and it has been said that 80% of the time or more,
sorting is done on either already sorted or almost sorted
files. Such situations can often be helped by transferring
the algorithm’s dependence on the input data to internally
made random choices. In this particular case, we use ran-
domization to make the choice of the pivot independent of
the input data. Assume RANDOM(ℓ, r) returns an integer
p ∈ [ℓ, r] with uniform probability:

Prob[RANDOM(ℓ, r) = p] =
1

r − ℓ+ 1

for eachℓ ≤ p ≤ r. In other words, eachp ∈ [ℓ, r] is
equally likely. The following algorithm splits the array
with a random pivot:

int RSPLIT(int ℓ, r)
p = RANDOM(ℓ, r); SWAP(ℓ, p);
return SPLIT(ℓ, r).

We get a randomized implementation by substituting
RSPLIT for SPLIT. The behavior of this version of quick-
sort depends onp, which is produced by a random number
generator.

Average analysis. We assume that the items inA[0..n−
1] are pairwise different. The pivot splitsA into

A[0..m− 1], A[m], A[m+ 1..n− 1].

By assumption on functionRSPLIT, the probability for
eachm ∈ [0, n − 1] is 1

n . Therefore the average sum
of array lengths split by QUICKSORT is

T (n) = n+
1

n
·

n−1
∑

m=0

(T (m) + T (n−m− 1)) .

To simplify, we multiply withn and obtain a second rela-
tion by substitutingn− 1 for n:

n · T (n) = n2 + 2 ·
n−1
∑

i=0

T (i), (1)

(n− 1) · T (n− 1) = (n− 1)2 + 2 ·
n−2
∑

i=0

T (i). (2)

Next we subtract (2) from (1), we divide byn(n+ 1), we
use repeated substitution to expressT (n) as a sum, and
finally split the sum in two:

T (n)

n+ 1
=

T (n− 1)

n
+

2n− 1

n(n+ 1)

=
T (n− 2)

n− 1
+

2n− 3

(n− 1)n
+

2n− 1

n(n+ 1)

=

n
∑

i=1

2i− 1

i(i+ 1)

= 2 ·
n
∑

i=1

1

i+ 1
−

n
∑

i=1

1

i(i+ 1)
.

Bounding the sums. The second sum is solved directly
by transformation to a telescoping series:

n
∑

i=1

1

i(i+ 1)
=

n
∑

i=1

(

1

i
− 1

i+ 1

)

= 1 − 1

n+ 1
.

The first sum is bounded from above by the integral of1
x

for x ranging from 1 ton + 1; see Figure 3. The sum
of 1

i+1 is the sum of areas of the shaded rectangles, and
because all rectangles lie below the graph of1

x we get a
bound for the total rectangle area:

n
∑

i=1

1

i+ 1
<

∫ n+1

1

dx
x

= ln(n+ 1).

6

x

x1/

4321

Figure 3: The areas of the rectangles are the terms in the sum,
and the total rectangle area is bounded by the integral from 1
throughn + 1.

We plug this bound back into the expression for the aver-
age running time:

T (n) < (n+ 1) ·
n
∑

i=1

2

i+ 1

< 2 · (n+ 1) · ln(n+ 1)

=
2

log2 e
· (n+ 1) · log2(n+ 1).

In words, the running time of quicksort in the average case
is only a factor of about2/ log2 e = 1.386 . . . slower than
in the best case. This also implies that the worst case can-
not happen very often, for else the average performance
would be slower.

Stack size. Another drawback of quicksort is the recur-
sion stack, which can reach a size ofΩ(n) entries. This
can be improved by always first sorting the smaller side
and simultaneously removing the tail-recursion:

void QUICKSORT(int ℓ, r)
i = ℓ; j = r;
while i < j do
m = RSPLIT(i, j);
ifm− i < j −m
then QUICKSORT(i,m− 1); i = m+ 1
else QUICKSORT(m+ 1, j); j = m− 1

endif
endwhile.

In each recursive call to QUICKSORT, the length of the ar-
ray is at most half the length of the array in the preceding
call. This implies that at any moment of time the stack
contains no more than1 + log2 n entries. Note that with-
out removal of the tail-recursion, the stack can reachΩ(n)
entries even if the smaller side is sorted first.

Summary. Quicksort incorporates two design tech-
niques to efficiently sortn numbers: divide-and-conquer
for reducing large to small problems and randomization
for avoiding the sensitivity to worst-case inputs. The av-
erage running time of quicksort is in O(n logn) and the
extra amount of memory it requires is in O(logn). For
the deterministic version, the average is over alln! per-
mutations of the input items. For the randomized version
the average is the expected running time forevery input
sequence.

7

3 Prune-and-Search

We use two algorithms for selection as examples for the
prune-and-search paradigm. The problem is to find the
i-smallest item in an unsorted collection ofn items. We
could first sort the list and then return the item in thei-th
position, but just finding thei-th item can be done faster
than sorting the entire list. As a warm-up exercise consider
selecting the 1-st or smallest item in the unsorted array
A[1..n].

min = 1;
for j = 2 to n do
if A[j] < A[min] thenmin = j endif

endfor.

The index of the smallest item is found inn − 1 com-
parisons, which is optimal. Indeed, there is an adversary
argument, that is, with fewer thann − 1 comparisons we
can change the minimum without changing the outcomes
of the comparisons.

Randomized selection. We return to finding thei-
smallest item for a fixed but arbitrary integer1 ≤ i ≤ n,
which we call therank of that item. We can use the split-
ting function of quicksort also for selection. As in quick-
sort, we choose a random pivot and split the array, but we
recurse only for one of the two sides. We invoke the func-
tion with the range of indices of the current subarray and
the rank of the desired item,i. Initially, the range consists
of all indices betweenℓ = 1 andr = n, limits included.

int RSELECT(int ℓ, r, i)
q = RSPLIT(ℓ, r); m = q − ℓ+ 1;
if i < m then return RSELECT(ℓ, q − 1, i)
elseif i = m then return q
else return RSELECT(q + 1, r, i−m)

endif.

For small sets, the algorithm is relatively ineffective and
its running time can be improved by switching over to
sorting when the size drops below some constant thresh-
old. On the other hand, each recursive step makes some
progress so that termination is guaranteed even without
special treatment of small sets.

Expected running time. For each1 ≤ m ≤ n, the
probability that the array is split into subarrays of sizes
m− 1 andn−m is 1

n . For convenience we assume thatn

is even. The expected running time increases with increas-
ing number of items,T (k) ≤ T (m) if k ≤ m. Hence,

T (n) ≤ n+
1

n

n
∑

m=1

max{T (m− 1), T (n−m)}

≤ n+
2

n

n
∑

m= n
2
+1

T (m− 1).

Assume inductively thatT (m) ≤ cm for m < n and
a sufficiently large positive constantc. Such a constant
c can certainly be found form = 1, since for that case
the running time of the algorithm is only a constant. This
establishes the basis of the induction. The case ofn items
reduces to cases ofm < n items for which we can use the
induction hypothesis. We thus get

T (n) ≤ n+
2c

n

n
∑

m= n
2
+1

m− 1

= n+ c · (n− 1) − c

2
·
(n

2
+ 1
)

= n+
3c

4
· n− 3c

2
.

Assumingc ≥ 4 we thus haveT (n) ≤ cn as required.
Note that we just proved that the expected running time of
RSELECT is only a small constant times that ofRSPLIT.
More precisely, that constant factor is no larger than four.

Deterministic selection. The randomized selection al-
gorithm takes time proportional ton2 in the worst case,
for example if each split is as unbalanced as possible. It is
however possible to select in O(n) time even in the worst
case. Themedianof the set plays a special role in this al-
gorithm. It is defined as thei-smallest item wherei = n+1

2
if n is odd andi = n

2 or n+2
2 if n is even. The determinis-

tic algorithm takes five steps to select:

Step 1. Partition then items into
⌈

n
5

⌉

groups of size
at most 5 each.

Step 2. Find the median in each group.

Step 3. Find the median of the medians recursively.

Step 4. Split the array using the median of the medians
as the pivot.

Step 5. Recurse on one side of the pivot.

It is convenient to definek =
⌈

n
5

⌉

and to partition such
that each group consists of items that are multiples ofk
positions apart. This is what is shown in Figure 4 provided
we arrange the items row by row in the array.

8

Figure 4: The 43 items are partitioned into seven groups of 5 and
two groups of 4, all drawn vertically. The shaded items are the
medians and the dark shaded item is the median of medians.

Implementation with insertion sort. We use insertion
sort on each group to determine the medians. Specifically,
we sort the items in positionsℓ, ℓ+k, ℓ+2k, ℓ+3k, ℓ+4k
of arrayA, for eachℓ.

void ISORT(int ℓ, k, n)
j = ℓ+ k;
while j ≤ n do i = j;
while i > ℓ and A[i] > A[i− k] do

SWAP(i, i− k); i = i− k
endwhile;
j = j + k

endwhile.

Although insertion sort takes quadratic time in the worst
case, it is very fast for small arrays, as in this applica-
tion. We can now combine the various pieces and write
the selection algorithm in pseudo-code. Starting with the
code for the randomized algorithm, we first remove the
randomization and second add code for Steps 1, 2, and 3.
Recall thati is the rank of the desired item inA[ℓ..r]. Af-
ter sorting the groups, we have their medians arranged in
the middle fifth of the array,A[ℓ+2k..ℓ+3k−1], and we
compute the median of the medians by recursive applica-
tion of the function.

int SELECT(int ℓ, r, i)
k = ⌈(r − ℓ+ 1)/5⌉;
for j = 0 to k − 1 do ISORT(ℓ+ j, k, r) endfor;
m′ = SELECT(ℓ+ 2k, ℓ+ 3k − 1, ⌊(k + 1)/2⌋);
SWAP(ℓ,m′); q = SPLIT(ℓ, r); m = q − ℓ+ 1;
if i < m then return SELECT(ℓ, q − 1, i)
elseif i = m then return q
else return SELECT(q + 1, r, i−m)

endif.

Observe that the algorithm makes progress as long as there
are at least three items in the set, but we need special treat-
ment of the cases of one or of two items. The role of the
median of medians is to prevent an unbalanced split of

the array so we can safely use the deterministic version of
splitting.

Worst-case running time. To simplify the analysis, we
assume thatn is a multiple of 5 and ignore ceiling and
floor functions. We begin by arguing that the number of
items less than or equal to the median of medians is at least
3n
10 . These are the first three items in the sets with medians
less than or equal to the median of medians. In Figure 4,
these items are highlighted by the box to the left and above
but containing the median of medians. Symmetrically, the
number of items greater than or equal to the median of
medians is at least3n

10 . The first recursion works on a set
of n

5 medians, and the second recursion works on a set of
at most7n

10 items. We have

T (n) ≤ n+ T
(n

5

)

+ T

(

7n

10

)

.

We proveT (n) = O(n) by induction assumingT (m) ≤
c ·m for m < n andc a large enough constant.

T (n) ≤ n+
c

5
· n+

7c

10
· n

=

(

1 +
9c

10

)

· n.

Assumingc ≥ 10 we haveT (n) ≤ cn, as required. Again
the running time is at most some constant times that of
splitting the array. The constant is about two and a half
times the one for the randomized selection algorithm.

A somewhat subtle issue is the presence of equal items
in the input collection. Such occurrences make the func-
tion SPLIT unpredictable since they could occur on either
side of the pivot. An easy way out of the dilemma is to
make sure that the items that are equal to the pivot are
treated as if they were smaller than the pivot if they occur
in the first half of the array and they are treated as if they
were larger than the pivot if they occur in the second half
of the array.

Summary. The idea of prune-and-search is very similar
to divide-and-conquer, which is perhaps the reason why
some textbooks make no distinction between the two. The
characteristic feature of prune-and-search is that the recur-
sion covers only a constant fraction of the input set. As we
have seen in the analysis, this difference implies a better
running time.

It is interesting to compare the randomized with the de-
terministic version of selection:

9

• the use of randomization leads to a simpler algorithm
but it requires a source of randomness;

• upon repeating the algorithm for the same data, the
deterministic version goes through the exact same
steps while the randomized version does not;

• we analyze the worst-case running time of the deter-
ministic version and the expected running time (for
the worst-case input) of the randomized version.

All three differences are fairly universal and apply to other
algorithms for which we have the choice between a deter-
ministic and a randomized implementation.

10

4 Dynamic Programming

Sometimes, divide-and-conquer leads to overlapping sub-
problems and thus to redundant computations. It is not
uncommon that the redundancies accumulate and cause
an exponential amount of wasted time. We can avoid
the waste using a simple idea:solve each subproblem
only once. To be able to do that, we have to add a cer-
tain amount of book-keeping to remember subproblems
we have already solved. The technical name for this de-
sign paradigm isdynamic programming.

Edit distance. We illustrate dynamic programming us-
ing the edit distance problem, which is motivated by ques-
tions in genetics. We assume a finite set ofcharacters
or letters, Σ, which we refer to as thealphabet, and we
considerstringsor wordsformed by concatenating finitely
many characters from the alphabet. Theedit distancebe-
tween two words is the minimum number of letter inser-
tions, letter deletions, and letter substitutions required to
transform one word to the other. For example, the edit
distance betweenFOOD andMONEY is at most four:

FOOD → MOOD → MOND → MONED → MONEY

A better way to display the editing process is thegap rep-
resentationthat places the words one above the other, with
a gap in the first word for every insertion and a gap in the
second word for every deletion:

F O O D

M O N E Y

Columns with two different characters correspond to sub-
stitutions. The number of editing steps is therefore the
number of columns that do not contain the same character
twice.

Prefix property. It is not difficult to see that you cannot
get fromFOOD to MONEY in less than four steps. However,
for longer examples it seems considerably more difficult
to find the minimum number of steps or to recognize an
optimal edit sequence. Consider for example

A L G O R I T H M

A L T R U I S T I C

Is this optimal or, equivalently, is the edit distance between
ALGORITHM andALTRUISTIC six? Instead of answering
this specific question, we develop a dynamic program-
ming algorithm that computes the edit distance between

anm-character stringA[1..m] and ann-character string
B[1..n]. LetE(i, j) be the edit distance between the pre-
fixes of lengthi andj, that is, betweenA[1..i] andB[1..j].
The edit distance between the complete strings is therefore
E(m,n). A crucial step towards the development of this
algorithm is the following observation about the gap rep-
resentation of an optimal edit sequence.

PREFIX PROPERTY. If we remove the last column of an
optimal edit sequence then the remaining columns
represent an optimal edit sequence for the remaining
substrings.

We can easily prove this claim by contradiction: if the
substrings had a shorter edit sequence, we could just glue
the last column back on and get a shorter edit sequence for
the original strings.

Recursive formulation. We use the Prefix Property to
develop a recurrence relation forE. The dynamic pro-
gramming algorithm will be a straightforward implemen-
tation of that relation. There are a couple of obvious base
cases:

• Erasing: we needi deletions to erase ani-character
string,E(i, 0) = i.

• Creating: we need j insertions to create aj-
character string,E(0, j) = j.

In general, there are four possibilities for the last column
in an optimal edit sequence.

• Insertion: the last entry in the top row is empty,
E(i, j) = E(i, j − 1) + 1.

• Deletion: the last entry in the bottom row is empty,
E(i, j) = E(i− 1, j) + 1.

• Substitution: both rows have characters in the last
column that are different,E(i, j) = E(i − 1, j −
1) + 1.

• No action: both rows end in the same character,
E(i, j) = E(i− 1, j − 1).

Let P be the logical propositionA[i] 6= B[j] and denote
by |P | its indicator variable:|P | = 1 if P is true and|P | =
0 if P is false. We can now summarize and fori, j > 0
get the edit distance as the smallest of the possibilities:

E(i, j) = min







E(i, j − 1) + 1
E(i− 1, j) + 1
E(i− 1, j − 1) + |P |







.

11

The algorithm. If we turned this recurrence relation di-
rectly into a divide-and-conqueralgorithm, we would have
the following recurrence for the running time:

T (m,n) = T (m,n− 1) + T (m− 1, n)

+ T (m− 1, n− 1) + 1.

The solution to this recurrence is exponential inm andn,
which is clearly not the way to go. Instead, let us build
anm + 1 timesn + 1 table of possible values ofE(i, j).
We can start by filling in the base cases, the entries in the
0-th row and column. To fill in any other entry, we need
to know the values directly to the left, directly above, and
both to the left and above. If we fill the table from top to
bottom and from left to right then whenever we reach an
entry, the entries it depends on are already available.

int EDITDISTANCE(intm,n)
for i = 0 tom do E[i, 0] = i endfor;
for j = 1 to n do E[0, j] = j endfor;
for i = 1 tom do
for j = 1 to n do
E[i, j] = min{E[i, j − 1] + 1, E[i− 1, j] + 1,

E[i− 1, j − 1] + |A[i] 6= B[j]|}
endfor

endfor;
return E[m,n].

Since there are(m+1)(n+1) entries in the table and each
takes a constant time to compute, the total running time is
in O(mn).

An example. The table constructed for the conversion of
ALGORITHM to ALTRUISTIC is shown in Figure 5. Boxed
numbers indicate places where the two strings have equal
characters. The arrows indicate the predecessors that de-
fine the entries. Each direction of arrow corresponds to a
different edit operation: horizontal for insertion, vertical
for deletion, and diagonal for substitution. Dotted diago-
nal arrows indicate free substitutions of a letter for itself.

Recovering the edit sequence. By construction, there
is at least one path from the upper left to the lower right
corner, but often there will be several. Each such path
describes an optimal edit sequence. For the example at
hand, we have three optimal edit sequences:

A L G O R I T H M

A L T R U I S T I C

A

L

I

G

O

R

T

H

M

A L T R U I S T I C

0 41 2 3 5 6 7 8

3

9

4

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

10

1 0 1 2 3 4 5 6 7 8

2 1 1 2 3 4 5 6 7 8

3 2 2 2 3 4 5 6 7 8

4 3 2 3 4 5 6 7 8

5 4 4 3 3 3 4 5 6 7

6 5 4 4 4 4 5 64

7 6 5 5 5 5 5 5 5 6

8 7 6 6 6 6 6 6 6 6

Figure 5: The table of edit distances between all prefixes of
ALGORITHM and ofALTRUISTIC. The shaded area highlights the
optimal edit sequences, which are paths from the upper left to
the lower right corner.

A L G O R I T H M

A L T R U I S T I C

A L G O R I T H M

A L T R U I S T I C

They are easily recovered by tracing the paths backward,
from the end to the beginning. The following algorithm
recovers an optimal solution that also minimizes the num-
ber of insertions and deletions. We call it with the lengths
of the strings as arguments, R(m,n).

void R(int i, j)
if i > 0 or j > 0 then
switch incoming arrow:
caseց: R(i− 1, j − 1); print(A[i], B[j])
case ↓: R(i− 1, j); print(A[i],)
case→: R(i, j − 1); print(, B[j]).

endswitch
endif.

Summary. The structure of dynamic programming is
again similar to divide-and-conquer, except that the sub-
problems to be solved overlap. As a consequence, we get
different recursive paths to the same subproblems. To de-
velop a dynamic programming algorithm that avoids re-
dundant solutions, we generally proceed in two steps:

12

1. We formulate the problem recursively. In other
words, we write down the answer to the whole prob-
lem as a combination of the answers to smaller sub-
problems.

2. We build solutions from bottom up. Starting with the
base cases, we work our way up to the final solution
and (usually) store intermediate solutions in a table.

For dynamic programming to be effective, we need a
structure that leads to at most some polynomial number
of different subproblems. Most commonly, we deal with
sequences, which have linearly many prefixes and suffixes
and quadratically many contiguous substrings.

13

5 Greedy Algorithms

The philosophy of being greedy is shortsightedness. Al-
ways go for the seemingly best next thing, always op-
timize the presence, without any regard for the future,
and never change your mind about the past. The greedy
paradigm is typically applied to optimization problems. In
this section, we first consider a scheduling problem and
second the construction of optimal codes.

A scheduling problem. Consider a set of activities
1, 2, . . . , n. Activity i starts at timesi and finishes
at time fi > si. Two activities i and j overlap if
[si, fi] ∩ [sj , fj] 6= ∅. The objective is to select a maxi-
mum number of pairwise non-overlapping activities. An
example is shown in Figure 6. The largest number of ac-

c
d

b h
ga

e

time

f

[

[
[

[
[

[
[

[

]

]
]

]
]

]

]
]

Figure 6: A best schedule isc, e, f , but there are also others of
the same size.

tivities can be scheduled by choosing activities with early
finish times first. We first sort and reindex such thati < j
impliesfi ≤ fj .

S = {1}; last = 1;
for i = 2 to n do
if flast < si then
S = S ∪ {i}; last = i

endif
endfor.

The running time is O(n logn) for sorting plus O(n) for
the greedy collection of activities.

It is often difficult to determine how close to the opti-
mum the solutions found by a greedy algorithm really are.
However, for the above scheduling problem the greedy
algorithm always finds an optimum. For the proof let
1 = i1 < i2 < . . . < ik be the greedy schedule con-
structed by the algorithm. Letj1 < j2 < . . . < jℓ be any
other feasible schedule. Sincei1 = 1 has the earliest finish
time of any activity, we havefi1 ≤ fj1 . We can therefore
addi1 to the feasible schedule and remove at most one ac-
tivity, namelyj1. Among the activities that do not overlap
i1, i2 has the earliest finish time, hencefi2 ≤ fj2 . We can
again addi2 to the feasible schedule and remove at most

one activity, namelyj2 (or possiblyj1 if it was not re-
moved before). Eventually, we replace the entire feasible
schedule by the greedy schedule without decreasing the
number of activities. Since we could have started with a
maximum feasible schedule, we conclude that the greedy
schedule is also maximum.

Binary codes. Next we consider the problem of encod-
ing a text using a string of 0s and 1s. Abinary codemaps
each letter in the alphabet of the text to a unique string
of 0s and 1s. Suppose for example that the letter ‘t’ is
encoded as ‘001’, ‘h’ is encoded as ‘101’, and ‘e’ is en-
coded as ‘01’. Then the word ‘the’ would be encoded as
the concatenation of codewords: ‘00110101’. This partic-
ular encoding is unambiguous because the code isprefix-
free: no codeword is prefix of another codeword. There is

1

10

h

1

1

0

0 1 h

t e

0

e

t

0 1

Figure 7: Letters correspond to leaves and codewords correspond
to maximal paths. A left edge is read as ‘0’ and a right edge as
‘1’. The tree to the right is full and improves the code.

a one-to-one correspondence between prefix-free binary
codes and binary trees where each leaf is a letter and the
corresponding codeword is the path from the root to that
leaf. Figure 7 illustrates the correspondence for the above
3-letter code. Being prefix-free corresponds to leaves not
having children. The tree in Figure 7 is not full because
three of its internal nodes have only one child. This is an
indication of waste. The code can be improved by replac-
ing each node with one child by its child. This changes
the above code to ‘00’ for ‘t’, ‘ 1’ for ‘h’, and ‘01’ for ‘e’.

Huffman trees. Let wi be the frequency of the letterci
in the given text. It will be convenient to refer towi as
the weight of ci or of its external node. To get an effi-
cient code, we choose short codewords for common let-
ters. Supposeδi is the length of the codeword forci. Then
the number of bits for encoding the entire text is

P =
∑

i

wi · δi.

Sinceδi is the depth of the leafci, P is also known as the
weighted external path lengthof the corresponding tree.

14

TheHuffman treefor theci minimizes the weighted ex-
ternal path length. To construct this tree, we start withn
nodes, one for each letter. At each stage of the algorithm,
we greedily pick the two nodes with smallest weights and
make them the children of a new node with weight equal
to the sum of two weights. We repeat until only one node
remains. The resulting tree for a collection of nine letters
with displayed weights is shown in Figure 8. Ties that

38

17

61

23

13

7
10

4

21 86395315

Figure 8: The numbers in the external nodes (squares) are the
weights of the corresponding letters, and the ones in the internal
nodes (circles) are the weights of these nodes. The Huffman tree
is full by construction.

001

000

11

101

100

01110

01111

0110
010

5

61

23 38

10 13

31

43

5

17

6

21

987

Figure 9: The weighted external path length is15 + 15 + 18 +
12 + 5 + 15 + 24 + 27 + 42 = 173.

arise during the algorithm are broken arbitrarily. We re-
draw the tree and order the children of a node as left and
right child arbitrarily, as shown in Figure 9.

The algorithm works with a collectionN of nodes
which are the roots of the trees constructed so far. Ini-
tially, each leaf is a tree by itself. We denote the weight
of a node byw(µ) and use a function EXTRACTM IN that
returns the node with the smallest weight and, at the same
time, removes this node from the collection.

Tree HUFFMAN

loop µ = EXTRACTM IN(N);
if N = ∅ then return µ endif;
ν = EXTRACTM IN(N);
create nodeκ with childrenµ andν

and weightw(κ) = w(µ) + w(ν);
addκ toN

forever.

Straightforward implementations use an array or a linked
list and take time O(n) for each operation involvingN .
There are fewer than2n extractions of the minimum and
fewer thann additions, which implies that the total run-
ning time is O(n2). We will see later that there are better
ways to implementN leading to running time O(n logn).

An inequality. We prepare the proof that the Huffman
tree indeed minimizes the weighted external path length.
Let T be a full binary tree with weighted external path
lengthP (T). Let Λ(T) be the set of leaves and letµ and
ν be any two leaves with smallest weights. Then we can
construct a new treeT ′ with

(1) set of leavesΛ(T ′) = (Λ(T) − {µ, ν}) ∪̇ {κ} ,

(2) w(κ) = w(µ) + w(ν),

(3) P (T ′) ≤ P (T) − w(µ) − w(ν), with equality ifµ
andν are siblings.

We now argue thatT ′ really exists. Ifµ andν are siblings
then we constructT ′ from T by removingµ andν and
declaring their parent,κ, as the new leaf. Then

µ νµ σ

ν σ

Figure 10: The increase in the depth ofν is compensated by the
decrease in depth of the leaves in the subtree ofσ.

P (T ′) = P (T) − w(µ)δ − w(ν)δ + w(κ)(δ − 1)

= P (T) − w(µ) − w(ν),

whereδ = δ(µ) = δ(ν) = δ(κ) + 1 is the common depth
of µ andν. Otherwise, assumeδ(µ) ≥ δ(ν) and letσ be

15

the sibling ofµ, which may or may not be a leaf. Exchange
ν andσ. Since the length of the path from the root toσ
is at least as long as the path toµ, the weighted external
path length can only decrease; see Figure 10. Then do the
same as in the other case.

Proof of optimality. The optimality of the Huffman tree
can now be proved by induction.

HUFFMAN TREE THEOREM. Let T be the Huffman tree
andX another tree with the same set of leaves and
weights. ThenP (T) ≤ P (X).

PROOF. If there are only two leaves then the claim is obvi-
ous. Otherwise, letµ andν be the two leaves selected by
the algorithm. Construct treesT ′ andX ′ with

P (T ′) = P (T) − w(µ) − w(ν),

P (X ′) ≤ P (X) − w(µ) − w(ν).

T ′ is the Huffman tree forn− 1 leaves so we can use the
inductive assumption and getP (T ′) ≤ P (X ′). It follows
that

P (T) = P (T ′) + w(µ) + w(ν)

≤ P (X ′) + w(µ) + w(ν)

≤ P (X).

Huffman codesare binary codes that correspond to
Huffman trees as described. They are commonly used to
compress text and other information. Although Huffman
codes are optimal in the sense defined above, there are
other codes that are also sensitive to the frequency of se-
quences of letters and this way outperform Huffman codes
for general text.

Summary. The greedy algorithm for constructing Huff-
man trees works bottom-up by stepwise merging, rather
than top-down by stepwise partitioning. If we run the
greedy algorithm backwards, it becomes very similar to
dynamic programming, except that it pursues only one of
many possible partitions. Often this implies that it leads
to suboptimal solutions. Nevertheless, there are problems
that exhibit enough structure that the greedy algorithm
succeeds in finding an optimum, and the scheduling and
coding problems described above are two such examples.

16

First Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is September 18.

Problem 1. (20 points). Consider two sums,X = x1 +
x2 + . . .+ xn andY = y1 + y2 + . . .+ ym. Give an
algorithm that finds indicesi andj such that swap-
ping xi with yj makes the two sums equal, that is,
X − xi + yj = Y − yj + xi, if they exist. Analyze
your algorithm. (You can use sorting as a subroutine.
The amount of credit depends on the correctness of
the analysis and the running time of your algorithm.)

Problem 2. (20 = 10 + 10 points). Consider dis-
tinct items x1, x2, . . . , xn with positive weights
w1, w2, . . . , wn such that

∑n
i=1 wi = 1.0. The

weighted medianis the itemxk that satisfies
∑

xi<xk

wi < 0.5 and
∑

xj>xk

wj ≤ 0.5.

(a) Show how to compute the weighted median
of n items in worst-case time O(n logn) using
sorting.

(b) Show how to compute the weighted median in
worst-case time O(n) using a linear-time me-
dian algorithm.

Problem 3. (20 = 6 + 14 points). A game-board hasn
columns, each consisting of a top number, the cost of
visiting the column, and a bottom number, the maxi-
mum number of columns you are allowed to jump to
the right. The top number can be any positive integer,
while the bottom number is either 1, 2, or 3. The ob-
jective is to travel from the first column off the board,
to the right of thenth column. The cost of a game is
the sum of the costs of the visited columns.

Assuming the board is represented in a two-
dimensional array,B[2, n], the following recursive
procedure computes the cost of the cheapest game:

int CHEAPEST(int i)
if i > n then return 0 endif;
x = B[1, i] + CHEAPEST(i+ 1);
y = B[1, i] + CHEAPEST(i+ 2);
z = B[1, i] + CHEAPEST(i+ 3);
case B[2, i] = 1: return x;

B[2, i] = 2: return min{x, y};
B[2, i] = 3: return min{x, y, z}

endcase.

(a) Analyze the asymptotic running time of the pro-
cedure.

(b) Describe and analyze a more efficient algorithm
for finding the cheapest game.

Problem 4. (20 = 10 + 10 points). Consider a set ofn
intervals[ai, bi] that cover the unit interval, that is,
[0, 1] is contained in the union of the intervals.

(a) Describe an algorithm that computes a mini-
mum subset of the intervals that also covers
[0, 1].

(b) Analyze the running time of your algorithm.

(For question (b) you get credit for the correctness of
your analysis but also for the running time of your
algorithm. In other words, a fast algorithm earns you
more points than a slow algorithm.)

Problem 5. (20 = 7 + 7 + 6 points). LetA[1..m] and
B[1..n] be two strings.

(a) Modify the dynamic programming algorithm
for computing the edit distance betweenA and
B for the case in which there are only two al-
lowed operations, insertions and deletions of in-
dividual letters.

(b) A (not necessarily contiguous)subsequenceof
A is defined by the increasing sequence of its
indices,1 ≤ i1 < i2 < . . . < ik ≤ m. Use
dynamic programming to find the longest com-
mon subsequence ofA andB and analyze its
running time.

(c) What is the relationship between the edit dis-
tance defined in (a) and the longest common
subsequence computed in (b)?

17

II SEARCHING

6 Binary Search Trees
7 Red-black Trees
8 Amortized Analysis
9 Splay Trees

Second Homework Assignment

18

6 Binary Search Trees

One of the purposes of sorting is to facilitate fast search-
ing. However, while a sorted sequence stored in a lin-
ear array is good for searching, it is expensive to add and
delete items. Binary search trees give you the best of both
worlds: fast search and fast update.

Definitions and terminology. We begin with a recursive
definition of the most common type of tree used in algo-
rithms. A (rooted) binary treeis either empty or a node
(theroot) with a binary tree as left subtree and binary tree
as right subtree. We store items in the nodes of the tree.
It is often convenient to say the itemsare the nodes. A
binary tree is sorted if each item is between the smaller or
equal items in the left subtree and the larger or equal items
in the right subtree. For example, the tree illustrated in
Figure 11 is sorted assuming the usual ordering of English
characters. Terms for relations between family members
such aschild, parent, sibling are also used for nodes in a
tree. Every node has one parent, except the root which has
no parent. Aleaf or external nodeis one without children;
all other nodes areinternal. A nodeν is adescendentof µ
if ν = µ or ν is a descendent of a child ofµ. Symmetri-
cally, µ is anancestorof ν if ν is a descendent ofµ. The
subtreeof µ consists of all descendents ofµ. An edgeis a
parent-child pair.

mk

l

zv

i

j

db

r

g y

c

Figure 11: The parent, sibling and two children of the dark node
are shaded. The internal nodes are drawn as circles while the
leaves are drawn as squares.

The sizeof the tree is the number of nodes. A binary
tree isfull if every internal node has two children. Every
full binary tree has one more leaf than internal node. To
count its edges, we can either count 2 for each internal
node or 1 for every node other than the root. Either way,
the total number of edges is one less than the size of the
tree. A path is a sequence of contiguous edges without
repetitions. Usually we only consider paths that descend
or paths that ascend. Thelengthof a path is the number

of edges. For every nodeµ, there is a unique path from
the root toµ. The length of that path is thedepthof µ.
Theheightof the tree is the maximum depth of any node.
Thepath lengthis the sum of depths over all nodes, and
theexternal path lengthis the same sum restricted to the
leaves in the tree.

Searching. A binary search treeis a sorted binary tree.
We assume each node is a record storing an item and point-
ers to two children:

struct Node{item info; Node ∗ ℓ, ∗ r};
typedef Node ∗ Tree.

Sometimes it is convenient to also store a pointer to the
parent, but for now we will do without. We can search in
a binary search tree by tracing a path starting at the root.

Node ∗ SEARCH(Tree ̺, item x)
case ̺ = NULL : return NULL ;

x < ̺→ info: return SEARCH(̺→ ℓ, x);
x = ̺→ info: return ̺;
x > ̺→ info: return SEARCH(̺→ r, x)

endcase.

The running time depends on the length of the path, which
is at most the height of the tree. Letn be the size. In the
worst case the tree is a linked list and searching takes time
O(n). In the best case the tree is perfectly balanced and
searching takes only time O(logn).

Insert. To add a new item is similarly straightforward:
follow a path from the root to a leaf and replace that leaf
by a new node storing the item. Figure 12 shows the tree
obtained after addingw to the tree in Figure 11. The run-

c j

yg

r

b d i

v z

l

k m

w

Figure 12: The shaded nodes indicate the path from the root we
traverse when we insertw into the sorted tree.

ning time depends again on the length of the path. If the
insertions come in a random order then the tree is usually

19

close to being perfectly balanced. Indeed, the tree is the
same as the one that arises in the analysis of quicksort.
The expected number of comparisons for a (successful)
search is onen-th of the expected running time of quick-
sort, which is roughly2 lnn.

Delete. The main idea for deleting an item is the same
as for inserting: follow the path from the root to the node
ν that stores the item.

Case 1. ν has no internal node as a child. Removeν.

Case 2. ν has one internal child. Make that child the
child of the parent ofν.

Case 3. ν has two internal children. Find the rightmost
internal node in the left subtree, remove it, and sub-
stitute it forν, as shown in Figure 13.

νν K J

J

Figure 13: StoreJ in ν and delete the node that used to storeJ .

The analysis of the expected search time in a binary search
tree constructed by a random sequence of insertions and
deletions is considerably more challenging than if no dele-
tions are present. Even the definition of a random se-
quence is ambiguous in this case.

Optimal binary search trees. Instead of hoping the in-
cremental construction yields a shallow tree, we can con-
struct the tree that minimizes the search time. We con-
sider the common problem in which items have different
probabilities to be the target of a search. For example,
some words in the English dictionary are more commonly
searched than others and are therefore assigned a higher
probability. Leta1 < a2 < . . . < an be the items and
pi the corresponding probabilities. To simplify the discus-
sion, we only consider successful searches and thus as-
sume

∑n
i=1 pi = 1. The expected number of comparisons

for a successful search in a binary search treeT storing

then items is

1 + C(T) =
n
∑

i=1

pi · (δi + 1)

= 1 +

n
∑

i=1

pi · δi,

whereδi is the depth of the node that storesai. C(T)
is the weighted path lengthor the cost of T . We study
the problem of constructing a tree that minimizes the cost.
To develop an example, letn = 3 and p1 = 1

2 , p2 =
1
3 , p3 = 1

6 . Figure 14 shows the five binary trees with
three nodes and states their costs. It can be shown that the

a2

3aa

1a2

a2

a

1

1 a1

a1

a a3

a2 a

3

2

a3

a3 a

Figure 14: There are five different binary trees of three nodes.
From left to right their costs are2

3
, 5

6
, 2

3
, 7

6
, 4

3
. The first tree and

the third tree are both optimal.

number of different binary trees withn nodes is 1
n+1

(

2n
n

)

,
which is exponential inn. This is far too large to try all
possibilities, so we need to look for a more efficient way
to construct an optimum tree.

Dynamic programming. We writeT j
i for the optimum

weighted binary search tree ofai, ai+1, . . . , aj , Cj
i for its

cost, andpj
i =

∑j
k=i pk for the total probability of the

items in T j
i . Suppose we know that the optimum tree

stores itemak in its root. Then the left subtree isT k−1
i

and the right subtree isT j
k+1. The cost of the optimum

tree is thereforeCj
i = Ck−1

i +Cj
k+1 + pj

i − pk. Since we
do not know which item is in the root, we try all possibili-
ties and find the minimum:

Cj
i = min

i≤k≤j
{Ck−1

i + Cj
k+1 + pj

i − pk}.

This formula can be translated directly into a dynamic pro-
gramming algorithm. We use three two-dimensional ar-
rays, one for the sums of probabilities,pj

i , one for the costs
of optimum trees,Cj

i , and one for the indices of the items
stored in their roots,Rj

i . We assume that the first array has
already been computed. We initialize the other two arrays
along the main diagonal and add one dummy diagonal for
the cost.

20

for k = 1 to n do
C[k, k − 1] = C[k, k] = 0; R[k, k] = k

endfor;
C[n+ 1, n] = 0.

We fill the rest of the two arrays one diagonal at a time.

for ℓ = 2 to n do
for i = 1 to n− ℓ+ 1 do
j = i+ ℓ− 1; C[i, j] = ∞;
for k = i to j do

cost= C[i, k − 1] + C[k + 1, j]
+ p[i, j] − p[k, k];

if cost< C[i, j] then
C[i, j] = cost; R[i, j] = k

endif
endfor

endfor
endfor.

The main part of the algorithm consists of three nested
loops each iterating through at mostn values. The running
time is therefore in O(n3).

Example. Table 1 shows the partial sums of probabil-
ities for the data in the earlier example. Table 2 shows

6p 1 2 3

1 3 5 6
2 2 3
3 1

Table 1: Six times the partial sums of probabilities used by the
dynamic programming algorithm.

the costs and the indices of the roots of the optimum trees
computed for all contiguous subsequences. The optimum

6C 1 2 3

1 0 2 4
2 0 1
3 0

R 1 2 3

1 1 1 1
2 2 2
3 3

Table 2: Six times the costs and the roots of the optimum trees.

tree can be constructed fromR as follows. The root stores
the item with indexR[1, 3] = 1. The left subtree is there-
fore empty and the right subtree storesa2, a3. The root
of the optimum right subtree stores the item with index
R[2, 3] = 2. Again the left subtree is empty and the right
subtree consists of a single node storinga3.

Improved running time. Notice that the arrayR in Ta-
ble 2 is monotonic, both along rows and along columns.
Indeed it is possible to proveRj−1

i ≤ Rj
i in every row and

Rj
i ≤ Rj

i+1 in every column. We omit the proof and show
how the two inequalities can be used to improve the dy-
namic programming algorithm. Instead of trying all roots
from i throughj we restrict the innermostfor-loop to

for k = R[i, j − 1] to R[i+ 1, j] do

The monotonicity property implies that this change does
not alter the result of the algorithm. The running time of a
single iteration of the outerfor-loop is now

Uℓ(n) =
n−ℓ+1
∑

i=1

(Rj
i+1 −Rj−1

i + 1).

Recall thatj = i+ ℓ− 1 and note that most terms cancel,
giving

Uℓ(n) = Rn
n−ℓ+2 −Rℓ−1

1 + (n− ℓ+ 1)

≤ 2n.

In words, each iteration of the outerfor-loop takes only
time O(n), which implies that the entire algorithm takes
only time O(n2).

21

7 Red-Black Trees

Binary search trees are an elegant implementation of the
dictionarydata type, which requires support for

item SEARCH (item),
void INSERT (item),
void DELETE (item),

and possible additional operations. Their main disadvan-
tage is the worst case timeΩ(n) for a single operation.
The reasons are insertions and deletions that tend to get
the tree unbalanced. It is possible to counteract this ten-
dency with occasional local restructuring operations and
to guarantee logarithmic time per operation.

2-3-4 trees. A special type of balanced tree is the 2-3-4
tree. Each internal node stores one, two, or three items
and has two, three, or four children. Each leaf has the
same depth. As shown in Figure 15, the items in the in-
ternal nodes separate the items stored in the subtrees and
thus facilitate fast searching. In the smallest 2-3-4 tree of

7 15

25204 1792

Figure 15: A 2-3-4 tree of height two. All items are stored in
internal nodes.

heighth, every internal node has exactly two children, so
we have2h leaves and2h−1 internal nodes. In the largest
2-3-4 tree of heighth, every internal node has four chil-
dren, so we have4h leaves and(4h − 1)/3 internal nodes.
We can store a 2-3-4 tree in a binary tree by expanding a
node withi > 1 items andi+1 children intoi nodes each
with one item, as shown in Figure 16.

Red-black trees. Suppose we color each edge of a bi-
nary search tree either red or black. The color is conve-
niently stored in the lower node of the edge. Such a edge-
colored tree is ared-black treeif

(1) there are no two consecutive red edges on any de-
scending path and every maximal such path ends with
a black edge;

(2) all maximal descending paths have the same number
of black edges.

ba c

ora b

b

a

ca

ab
b

Figure 16: Transforming a 2-3-4 tree into a binary tree. Bold
edges are called red and the others are called black.

The number of black edges on a maximal descending path
is theblack height, denoted asbh(̺). When we transform
a 2-3-4 tree into a binary tree as in Figure 16, we get a red-
black tree. The result of transforming the tree in Figure 15

17

20

15

25

2

9

7

4

Figure 17: A red-black tree obtained from the 2-3-4 tree in Fig-
ure 15.

is shown in Figure 17.

HEIGHT LEMMA . A red-black tree withn internal nodes
has height at most2 log2(n+ 1).

PROOF. The number of leaves isn + 1. Contract each
red edge to get a 2-3-4 tree withn + 1 leaves. Its height
is h ≤ log2(n + 1). We havebh(̺) = h, and by Rule
(1) the height of the red-black tree is at most2bh(̺) ≤
2 log2(n+ 1).

Rotations. Restructuring a red-black tree can be done
with only one operation (and its symmetric version): aro-
tation that moves a subtree from one side to another, as
shown in Figure 18. The ordered sequence of nodes in the
left tree of Figure 18 is

. . . , order(A), ν, order(B), µ, order(C), . . . ,

and this is also the ordered sequence of nodes in the right
tree. In other words, a rotation maintains the ordering.
Function ZIG below implements the right rotation:

22

CB

A

BA

C

right rotation

left rotation

Zig

Zag

ν

µ ν

µ

Figure 18: From left to right a right rotation and from right to
left a left rotation.

Node ∗ ZIG(Node ∗ µ)
assert µ 6= NULL and ν = µ→ ℓ 6= NULL ;
µ→ ℓ = ν → r; ν → r = µ; return ν.

Function ZAG is symmetric and performs a left rotation.
Occasionally, it is necessary to perform two rotations in
sequence, and it is convenient to combine them into a sin-
gle operation referred to as adouble rotation, as shown
in Figure 19. We use a function ZIGZAG to implement a

A

right rotation

ZigZag

double

ν

µ

κ

κ

ν µ

CB

A

D

B C D

Figure 19: The double right rotation atµ is the concatenation of
a single left rotation atν and a single right rotation atµ.

double right rotation and the symmetric function ZAGZIG

to implement a double left rotation.

Node ∗ ZIGZAG(Node ∗ µ)
µ→ ℓ = ZAG(µ→ ℓ); return ZIG(µ).

The double right rotation is the composition of two single
rotations: ZIGZAG(µ) = ZIG(µ) ◦ ZAG(ν). Remember
that the composition of functions is written from right to
left, so the single left rotation ofν precedes the single right
rotation ofµ. Single rotations preserve the ordering of
nodes and so do double rotations.

Insertion. Before studying the details of the restructur-
ing algorithms for red-black trees, we look at the trees that
arise in a short insertion sequence, as shown in Figure 20.
After adding 10, 7, 13, 4, we have two red edges in se-
quence and repair this by promoting 10 (A). After adding

2, we repair the two red edges in sequence by a single ro-
tation of 7 (B). After adding 5, we promote 4 (C), and after
adding 6, we do a double rotation of 7 (D).

5

4 13

2

4

5

2 7

10

6

5

13

7

2 7

6

10

4

A 7

D

C

B13

4

2

10

13

4

1010

137

Figure 20: Sequence of red-black trees generated by inserting
the items 10, 7, 13, 4, 2, 5, 6 in this sequence.

An itemx is added by substituting a new internal node
for a leaf at the appropriate position. To satisfy Rule (2)
of the red-black tree definition, color the incoming edge
of the new node red, as shown in Figure 21. Start the

νν

x

Figure 21: The incoming edge of a newly added node is always
red.

adjustment of color and structure at the parentν of the new
node. We state the properties maintained by the insertion
algorithm as invariants that apply to a nodeν traced by the
algorithm.

INVARIANT I. The only possible violation of the red-
black tree properties is that of Rule (1) at the node
ν, and if ν has a red incoming edge then it has ex-
actly one red outgoing edge.

Observe that Invariant I holds right after addingx. We
continue with the analysis of all the cases that may arise.
The local adjustment operations depend on the neighbor-
hood ofν.

Case 1. The incoming edge ofν is black. Done.

23

Case 2. The incoming edge ofν is red. Letµ be the
parent ofν and assumeν is left child ofµ.

Case 2.1. Both outgoing edges ofµ are red, as
in Figure 22. Promoteµ. Let ν be the parent of
µ and recurse.

ν

µµ

ν

Figure 22: Promotion ofµ. (The colors of the outgoing edges of
ν may be the other way round).

Case 2.2. Only one outgoing edge ofµ is red,
namely the one fromµ to ν.

Case 2.2.1. The left outgoing edge ofν is
red, as in Figure 23 to the left. Right rotate
µ. Done.

σ

ν µ

µ

ν µ

ν

σ

ν

µ

Figure 23: Right rotation ofµ to the left and double right rotation
of µ to the right.

Case 2.2.2. The right outgoing edge ofν
is red, as in Figure 23 to the right. Double
right rotateµ. Done.

Case 2 has a symmetric case where left and right are in-
terchanged. An insertion may cause logarithmically many
promotions but at most two rotations.

Deletion. First find the nodeπ that is to be removed. If
necessary, we substitute the inorder successor forπ so we
can assume that both children ofπ are leaves. Ifπ is last
in inorder we substitute symmetrically. Replaceπ by a
leafν, as shown in Figure 24. If the incoming edge ofπ is
red then change it to black. Otherwise, remember the in-
coming edge ofν as ‘double-black’, which counts as two
black edges. Similar to insertions, it helps to understand
the deletion algorithm in terms of a property it maintains.

INVARIANT D. The only possible violation of the red-
black tree properties is a double-black incoming edge
of ν.

π ν

Figure 24: Deletion of nodeπ. The dashed edge counts as two
black edges when we compute the black depth.

Note that Invariant D holds right after we removeπ. We
now present the analysis of all the possible cases. The ad-
justment operation is chosen depending on the local neigh-
borhood ofν.

Case 1. The incoming edge ofν is black. Done.

Case 2. The incoming edge ofν is double-black. Let
µ be the parent andκ the sibling ofν. Assumeν is
left child of µ and note thatκ is internal.

Case 2.1. The edge fromµ to κ is black.

Case 2.1.1. Both outgoing edges ofκ are
black, as in Figure 25. Demoteµ. Recurse
for ν = µ.

κ

µ

κν ν

µ

Figure 25: Demotion ofµ.

Case 2.1.2. The right outgoing edge ofκ
is red, as in Figure 26 to the left. Change
the color of that edge to black and left ro-
tateµ. Done.

µκ

κ

κ

σ

νν

µ νν

µ µ

κ

σ

Figure 26: Left rotation ofµ to the left and double left rotation
of µ to the right.

Case 2.1.3. The right outgoing edge of
κ is black, as in Figure 26 to the right.
Change the color of the left outgoing edge
to black and double left rotateµ. Done.

Case 2.2. The edge fromµ to κ is red, as in Fig-
ure 27. Left rotateµ. Recurse forν.

24

µ

ν κ µ

κ

ν

Figure 27: Left rotation ofµ.

Case 2 has a symmetric case in whichν is the right child of
µ. Case 2.2 seems problematic because it recurses without
movingν any closer to the root. However, the configura-
tion excludes the possibility of Case 2.2 occurring again.
If we enter Cases 2.1.2 or 2.1.3 then the termination is im-
mediate. If we enter Case 2.1.1 then the termination fol-
lows because the incoming edge ofµ is red. The deletion
may cause logarithmically many demotions but at most
three rotations.

Summary. The red-black tree is an implementation
of the dictionary data type and supports the operations
search, insert, delete in logarithmic time each. An inser-
tion or deletion requires the equivalent of at most three
single rotations. The red-black tree also supports finding
the minimum, maximum and the inorder successor, prede-
cessor of a given node in logarithmic time each.

25

8 Amortized Analysis

Amortization is an analysis technique that can influence
the design of algorithms in a profound way. Later in this
course, we will encounter data structures that owe their
very existence to the insight gained in performance due to
amortized analysis.

Binary counting. We illustrate the idea of amortization
by analyzing the cost of counting in binary. Think of an
integer as a linear array of bits,n =

∑

i≥0 A[i] · 2i. The
following loop keeps incrementing the integer stored inA.

loop i = 0;
while A[i] = 1 do A[i] = 0; i++ endwhile;
A[i] = 1.

forever.

We define thecostof counting as the total number of bit
changes that are needed to increment the number one by
one. What is the cost to count from 0 ton? Figure 28
shows that counting from 0 to 15 requires 26 bit changes.
Sincen takes only1 + ⌊log2 n⌋ bits or positions inA,

0
0
0

0
0

0
0
0
0

0
0
0
0

0

0
0
0
0
0

0
0
0
0
0
0

0
0
0

0

0
0
0

0

0
0
0

0
0

0
0
0

0
0

0

0
0

0

0

0
0

0

0
0

0
0

0
0

0

0
0

0

0
0

1
1 1

1

1 1

1

1
1

1
1
1

1 1

1

1

0 1

1

1
1

1
1

1
1

1

1
1
1

1
1
1
1

5

4

3

2

1

0

Figure 28: The numbers are written vertically from top to bot-
tom. The boxed bits change when the number is incremented.

a single increment does at most2 + log2 n steps. This
implies that the cost of counting from 0 ton is at most
n log2 n+2n. Even though the upper bound of2+ log2 n
is almost tight for the worst single step, we can show that
the total cost is much less thann times that. We do this
with two slightly different amortization methods referred
to as aggregation and accounting.

Aggregation. The aggregation method takes a global
view of the problem. The pattern in Figure 28 suggests
we definebi equal to the number of 1s andti equal to
the number of trailing 1s in the binary notation ofi. Ev-
ery other number has no trailing 1, every other number
of the remaining ones has one trailing 1, etc. Assuming
n = 2k − 1, we therefore have exactlyj − 1 trailing 1s
for 2k−j = (n+ 1)/2j integers between 0 andn− 1. The

total number of bit changes is therefore

T (n) =

n−1
∑

i=0

(ti + 1) = (n+ 1) ·
k
∑

j=1

j

2j
.

We use index transformation to show that the sum on the
right is less than 2:

∑

j≥1

j

2j
=

∑

j≥1

j − 1

2j−1

= 2 ·
∑

j≥1

j

2j
−
∑

j≥1

1

2j−1

= 2.

Hence the cost isT (n) < 2(n + 1). Theamortized cost
per operation isT (n)

n , which is about 2.

Accounting. The idea of the accounting method is to
charge each operation what we think its amortized cost is.
If the amortized cost exceeds the actual cost, then the sur-
plus remains as a credit associated with the data structure.
If the amortized cost is less than the actual cost, the accu-
mulated credit is used to pay for the cost overflow. Define
the amortized cost of a bit change0 → 1 as $2 and that
of 1 → 0 as $0. When we change 0 to 1 we pay $1 for
the actual expense and $1 stays with the bit, which is now
1. This $1 pays for the (later) cost of changing the 1 to 0.
Each increment has amortized cost $2, and together with
the money in the system, this is enough to pay for all the
bit changes. The cost is therefore at most2n.

We see how a little trick, like making the0 → 1 changes
pay for the1 → 0 changes, leads to a very simple analysis
that is even more accurate than the one obtained by aggre-
gation.

Potential functions. We can further formalize the amor-
tized analysis by using a potential function. The idea is
similar to accounting, except there is no explicit credit
saved anywhere. The accumulated credit is an expres-
sion of the well-being or potential of the data structure.
Let ci be the actual cost of thei-th operation andDi the
data structure after thei-th operation. LetΦi = Φ(Di)
be the potential ofDi, which is some numerical value
depending on the concrete application. Then we define
ai = ci + Φi − Φi−1 as theamortized costof the i-th

26

operation. The sum of amortized costs ofn operations is

n
∑

i=1

ai =

n
∑

i=1

(ci + Φi − Φi−1)

=

n
∑

i=1

ci + Φn − Φ0.

We aim at choosing the potential such thatΦ0 = 0 and
Φn ≥ 0 because then we get

∑

ai ≥ ∑

ci. In words,
the sum of amortized costs covers the sum of actual costs.
To apply the method to binary counting we define the po-
tential equal to the number of 1s in the binary notation,
Φi = bi. It follows that

Φi − Φi−1 = bi − bi−1

= (bi−1 − ti−1 + 1) − bi−1

= 1 − ti−1.

The actual cost of thei-th operation isci = 1 + ti−1,
and the amortized cost isai = ci + Φi − Φi−1 = 2.
We haveΦ0 = 0 andΦn ≥ 0 as desired, and therefore
∑

ci ≤
∑

ai = 2n, which is consistent with the analysis
of binary counting with the aggregation and the account-
ing methods.

2-3-4 trees. As a more complicated application of amor-
tization we consider 2-3-4 trees and the cost of restructur-
ing them under insertions and deletions. We have seen
2-3-4 trees earlier when we talked about red-black trees.
A set of keys is stored in sorted order in the internal nodes
of a 2-3-4 tree, which is characterized by the following
rules:

(1) each internal node has2 ≤ d ≤ 4 children and stores
d− 1 keys;

(2) all leaves have the same depth.

As for binary trees, being sorted means that the left-to-
right order of the keys is sorted. The only meaningful def-
inition of this ordering is the ordered sequence of the first
subtree followed by the first key stored in the root followed
by the ordered sequence of the second subtree followed by
the second key, etc.

To insert a new key, we attach a new leaf and add the key
to the parentν of that leaf. All is fine unlessν overflows
because it now has five children. If it does, we repair the
violation of Rule (1) by climbing the tree one node at a
time. We call an internal nodenon-saturatedif it has fewer
than four children.

Case 1. ν has five children and a non-saturated sibling
to its left or right. Move one child fromν to that
sibling, as in Figure 29.

$1 $0$6 $3

Figure 29: The overflowing node gives one child to a non-
saturated sibling.

Case 2. ν has five children and no non-saturated sib-
ling. Splitν into two nodes and recurse for the parent
of ν, as in Figure 30. Ifν has no parent then create a
new root whose only children are the two nodes ob-
tained fromν.

$0$6

$3 $6

$1

Figure 30: The overflowing node is split into two and the parent
is treated recursively.

Deleting a key is done is a similar fashion, although there
we have to battle with nodesν that have too few children
rather than too many. Letν have only one child. We repair
Rule (1) by adopting a child from a sibling or by merging
ν with a sibling. In the latter case the parent ofν looses a
child and needs to be visited recursively. The two opera-
tions are illustrated in Figures 31 and 32.

$4$3 $1$0

Figure 31: The underflowing node receives one child from a sib-
ling.

Amortized analysis. The worst case for inserting a new
key occurs when all internal nodes are saturated. The in-
sertion then triggers logarithmically many splits. Sym-
metrically, the worst case for a deletion occurs when all

27

$1 $4 $0

$1$0

Figure 32: The underflowing node is merged with a sibling and
the parent is treated recursively.

internal nodes have only two children. The deletion then
triggers logarithmically many mergers. Nevertheless, we
can show that in the amortized sense there are at most a
constant number of split and merge operations per inser-
tion and deletion.

We use the accounting method and store money in the
internal nodes. The best internal nodes have three children
because then they are flexible in both directions. They
require no money, but all other nodes are given a posi-
tive amount to pay for future expenses caused by split and
merge operations. Specifically, we store $4, $1, $0, $3,
$6 in each internal node with 1, 2, 3, 4, 5 children. As il-
lustrated in Figures 29 and 31, an adoption moves money
only from ν to its sibling. The operation keeps the total
amount the same or decreases it, which is even better. As
shown in Figure 30, a split frees up $5 fromν and spends
at most $3 on the parent. The extra $2 pay for the split
operation. Similarly, a merger frees $5 from the two af-
fected nodes and spends at most $3 on the parent. This
is illustrated in Figure 32. An insertion makes an initial
investment of at most $3 to pay for creating a new leaf.
Similarly, a deletion makes an initial investment of at most
$3 for destroying a leaf. If we charge$2 for each split and
each merge operation, the money in the system suffices to
cover the expenses. This implies that forn insertions and
deletions we get a total of at most3n

2 split and merge oper-
ations. In other words, the amortized number of split and
merge operations is at most3

2 .

Recall that there is a one-to-one correspondence be-
tween 2-3-4 tree and red-black trees. We can thus trans-
late the above update procedure and get an algorithm for
red-black trees with an amortized constant restructuring
cost per insertion and deletion. We already proved that for
red-black trees the number of rotations per insertion and
deletion is at most a constant. The above argument im-
plies that also the number of promotions and demotions is
at most a constant, although in the amortized and not in
the worst-case sense as for the rotations.

28

9 Splay Trees

Splay trees are similar to red-black trees except that they
guarantee good shape (small height) only on the average.
They are simpler to code than red-black trees and have the
additional advantage of giving faster access to items that
are more frequently searched. The reason for both is that
splay trees are self-adjusting.

Self-adjusting binary search trees. Instead of explic-
itly maintaining the balance using additional information
(such as the color of edges in the red-black tree), splay
trees maintain balance implicitly through a self-adjusting
mechanism. Good shape is a side-effect of the operations
that are applied. These operations are applied whilesplay-
ing a node, which means moving it up to the root of the
tree, as illustrated in Figure 33. A detailed analysis will

2

1

3

4 4

3

1

2 2

3

1

4 1

4

3

2

Figure 33: The node storing 1 is splayed using three single rota-
tions.

reveal that single rotations do not imply good amortized
performance but combinations of single rotations in pairs
do. Aside from double rotations, we useroller-coaster
rotationsthat compose two single left or two single right
rotations, as shown in Figure 35. The sequence of the two
single rotations is important, namely first the higher then
the lower node. Recall that ZIG(κ) performs a single right
rotation and returns the new root of the rotated subtree.
The roller-coaster rotation to the right is then

Node ∗ ZIGZIG(Node ∗ κ)
return ZIG(ZIG(κ)).

Function ZAGZAG is symmetric, exchanging left and
right, and functions ZIGZAG and ZAGZIG are the two
double rotations already used for red-black trees.

Splay. A splay operation finds an item and uses rotations
to move the corresponding node up to the root position.
Whenever possible, a double rotation or a roller-coaster
rotation is used. We dispense with special cases and show

Function SPLAY for the case the search itemx is less than
the item in the root.

if x < ̺→ info then µ = ̺→ ℓ;
if x < µ→ info then
µ→ ℓ = SPLAY(µ→ ℓ, x);
return ZIGZIG(̺)

elseif x > µ→ info then
µ→ r = SPLAY(µ→ r, x);
return ZIGZAG(̺)

else
return ZIG(̺)

endif.

If x is stored in one of the children of̺ then it is moved
to the root by a single rotation. Otherwise, it is splayed
recursively to the third level and moved to the root either
by a double or a roller-coaster rotation. The number of
rotation depends on the length of the path from̺ to x.
Specifically, if the path isi edges long thenx is splayed in
⌊i/2⌋ double and roller-coaster rotations and zero or one
single rotation. In the worst case, a single splay operation
takes almost as many rotations as there are nodes in the
tree. We will see shortly that the amortized number of
rotations is at most logarithmic in the number of nodes.

Amortized cost. Recall that the amortized cost of an op-
eration is the actual cost minus the cost for work put into
improving the data structure. To analyze the cost, we use a
potential function that measures the well-being of the data
structure. We need definitions:

thesizes(ν) is the number of descendents of nodeν, in-
cludingν,

thebalanceβ(ν) is twice the floor of the binary logarithm
of the size,β(ν) = 2⌊log2 s(ν)⌋,

thepotentialΦ of a tree or a collection of trees is the sum
of balances over all nodes,Φ =

∑

β(ν),

theactual costci of the i-th splay operation is 1 plus the
number of single rotations (counting a double or
roller-coaster rotation as two single rotations).

theamortized costai of the i-th splay operation isai =
ci + Φi − Φi−1.

We haveΦ0 = 0 for the empty tree andΦi ≥ 0 in general.
This implies that the total actual cost does not exceed the
total amortized cost,

∑

ci =
∑

ai − Φn + Φ0 ≤∑ ai.

To get a feeling for the potential, we computeΦ for
the two extreme cases. Note first that the integral of the

29

natural logarithm is
∫

lnx = x ln x − x and therefore
∫

log2 x = x log2 x − x/ ln 2. In the extreme unbal-
anced case, the balance of thei-th node from the bottom
is 2⌊log2 i⌋ and the potential is

Φ = 2
n
∑

i=1

⌊log2 i⌋ = 2n log2 n− O(n).

In the balanced case, we boundΦ from above by2U(n),
whereU(n) = 2U(n

2)+log2 n. We prove thatU(n) < 2n
for the case whenn = 2k. Consider the perfectly balanced
tree withn leaves. The height of the tree isk = log2 n.
We encode the termlog2 n of the recurrence relation by
drawing the hook-like path from the root to the right child
and then following left edges until we reach the leaf level.
Each internal node encodes one of the recursively surfac-
ing log-terms by a hook-like path starting at that node. The
paths are pairwise edge-disjoint, which implies that their
total length is at most the number of edges in the tree,
which is2n− 2.

Investment. The main part of the amortized time analy-
sis is a detailed study of the three types of rotations: sin-
gle, roller-coaster, and double. We writeβ(ν) for the bal-
ance of a nodeν before the rotation andβ′(ν) for the bal-
ance after the rotation. Letν be the lowest node involved
in the rotation. The goal is to prove that the amortized
cost of a roller-coaster and a double rotation is at most
3[β′(ν) − β(ν)] each, and that of a single rotation is at
most1 + 3[β′(ν) − β(ν)]. Summing these terms over the
rotations of a splay operation gives a telescoping series in
which all terms cancel except the first and the last. To this
we add 1 for the at most one single rotation and another 1
for the constant cost in definition of actual cost.

INVESTMENT LEMMA . The amortized cost of splaying a
nodeν in a tree̺ is at most2 + 3[β(̺) − β(ν)].

Before looking at the details of the three types of rota-
tions, we prove that if two siblings have the same balance
then their common parent has a larger balance. Because
balances are even integers this means that the balance of
the parent exceeds the balance of its children by at least 2.

BALANCE LEMMA . If µ has childrenν, κ andβ(ν) =
β(κ) = β thenβ(µ) ≥ β + 2.

PROOF. By definitionβ(ν) = 2⌊log2 s(ν)⌋ and therefore
s(ν) ≥ 2β/2. We haves(µ) = 1+ s(ν)+ s(κ) ≥ 21+β/2,
and thereforeβ(µ) ≥ β + 2.

Single rotation. The amortized cost of a single rotation
shown in Figure 34 is 1 for performing the rotation plus
the change in the potential:

a = 1 + β′(ν) + β′(µ) − β(ν) − β(µ)

≤ 1 + 3[β′(ν) − β(ν)]

becauseβ′(µ) ≤ β(µ) andβ(ν) ≤ β′(ν).

µ

νµ

ν

Figure 34: The size ofµ decreases and that ofν increases from
before to after the rotation.

Roller-coaster rotation. The amortized cost of a roller-
coaster rotation shown in Figure 35 is

a = 2 + β′(ν) + β′(µ) + β′(κ)

− β(ν) − β(µ) − β(κ)

≤ 2 + 2[β′(ν) − β(ν)]

becauseβ′(κ) ≤ β(κ), β′(µ) ≤ β′(ν), andβ(ν) ≤ β(µ).
We distinguish two cases to prove thata is bounded from
above by3[β′(ν) − β(ν)]. In both cases, the drop in the

µ

ν

κ

ν

µ

κµ

κ

ν

Figure 35: If in the middle tree the balance ofν is the same as
the balance ofµ then by the Balance Lemma the balance ofκ is
less than that common balance.

potential pays for the two single rotations.

Case β′(ν) > β(ν). The difference between the balance
of ν before and after the roller-coaster rotation is at
least 2. Hencea ≤ 3[β′(ν) − β(ν)].

Case β′(ν) = β(ν) = β. Then the balances of nodesν
andµ in the middle tree in Figure 35 are also equal
to β. The Balance Lemma thus implies that the bal-
ance ofκ in that middle tree is at mostβ − 2. But
since the balance ofκ after the roller-coaster rotation
is the same as in the middle tree, we haveβ′(κ) < β.
Hencea ≤ 0 = 3[β′(ν) − β(ν)].

30

Double rotation. The amortized cost of a double rota-
tion shown in Figure 36 is

a = 2 + β′(ν) + β′(µ) + β′(κ)

− β(ν) − β(µ) − β(κ)

≤ 2 + [β′(ν) − β(ν)]

becauseβ′(κ) ≤ β(κ) andβ′(µ) ≤ β(µ). We again dis-
tinguish two cases to prove thata is bounded from above
by 3[β′(ν)−β(ν)]. In both cases, the drop in the potential
pays for the two single rotations.

Case β′(ν) > β(ν). The difference is at least 2, which
impliesa ≤ 3[β′(ν) − β(ν)], as before.

Case β′(ν) = β(ν) = β. Thenβ(µ) = β(κ) = β. We
haveβ′(µ) < β′(ν) orβ′(κ) < β′(ν) by the Balance
Lemma. Hencea ≤ 0 = 3[β′(ν) − β(ν)].

µ

κ

ν

µ

ν

κ

Figure 36: In a double rotation, the sizes ofµ andκ decrease
from before to after the operation.

Dictionary operations. In summary, we showed that the
amortized cost of splaying a nodeν in a binary search tree
with root̺ is at most1+3[β(̺)−β(ν)]. We now use this
result to show that splay trees have good amortized perfor-
mance for all standard dictionary operations and more.

To accessan item we first splay it to the root and return
the root even if it does not containx. The amortized cost
is O(β(̺)).

Given an itemx, we cansplit a splay tree into two,
one containing all items smaller than or equal tox and the
other all items larger thanx, as illustrated in Figure 37.
The amortized cost is the amortized cost for splaying plus

x x

Figure 37: After splayingx to the root, we split the tree by un-
linking the right subtree.

the increase in the potential, which we denote asΦ′ − Φ.
Recall that the potential of a collection of trees is the sum
of the balances of all nodes. Splitting the tree decreases
the number of descendents and therefore the balance of
the root, which implies thatΦ′ − Φ < 0. It follows that
the amortized cost of a split operation is less than that of a
splay operation and therefore in O(β(̺)).

Two splay trees can bejoined into one if all items in
one tree are smaller than all items in the other tree, as il-
lustrated in Figure 38. The cost for splaying the maximum

max max

Figure 38: We first splay the maximum in the tree with the
smaller items and then link the two trees.

in the first tree is O(β(̺1)). The potential increase caused
by linking the two trees is

Φ′ − Φ ≤ 2⌊log2(s(̺1) + s(̺2))⌋
≤ 2 log2 s(̺1) + 2 log2 s(̺2).

The amortized cost of joining is thus O(β(̺1) + β(̺2)).

To insert a new item,x, we split the tree. Ifx is al-
ready in the tree, we undo the split operation by linking
the two trees. Otherwise, we make the two trees the left
and right subtrees of a new node storingx. The amortized
cost for splaying is O(β(̺)). The potential increase caused
by linking is

Φ′ − Φ ≤ 2⌊log2(s(̺1) + s(̺2) + 1)⌋
= β(̺).

The amortized cost of an insertion is thus O(β(̺)).

To deletean item, we splay it to the root, remove the
root, and join the two subtrees. Removingx decreases the
potential, and the amortized cost of joining the two sub-
trees is at most O(β(̺)). This implies that the amortized
cost of a deletion is at most O(β(̺)).

Weighted search. A nice property of splay trees not
shared by most other balanced trees is that they automat-
ically adapt to biased search probabilities. It is plausible
that this would be the case because items that are often
accessed tend to live at or near the root of the tree. The
analysis is somewhat involved and we only state the re-
sult. Each item or node has a positive weight,w(ν) > 0,

31

and we defineW =
∑

ν w(ν). We have the following
generalization of the Investment Lemma, which we state
without proof.

WEIGHTED INVESTMENT LEMMA . The amortized cost
of splaying a nodeν in a tree with total weightW
is at most2 + 3 log2(W/w(ν)).

It can be shown that this result is asymptotically best pos-
sible. In other words, the amortized search time in a splay
tree is at most a constant times the optimum, which is
what we achieve with an optimum weighted binary search
tree. In contrast to splay trees, optimum trees are expen-
sive to construct and they require explicit knowledge of
the weights.

32

Second Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is October 02.

Problem 1. (20 = 12 + 8 points). Consider an array
A[1..n] for which we know thatA[1] ≥ A[2] and
A[n− 1] ≤ A[n]. We say thati is alocal minimumif
A[i− 1] ≥ A[i] ≤ A[i+ 1]. Note thatA has at least
one local minimum.

(a) We can obviously find a local minimum in time
O(n). Describe a more efficient algorithm that
does the same.

(b) Analyze your algorithm.

Problem 2. (20 points). Avertex coverfor a tree is a sub-
setV of its vertices such that each edge has at least
one endpoint inV . It is minimumif there is no other
vertex cover with a smaller number of vertices. Given
a tree withn vertices, describe an O(n)-time algo-
rithm for finding a minimum vertex cover. (Hint: use
dynamic programming or the greedy method.)

Problem 3. (20 points). Consider a red-black tree formed
by the sequential insertion ofn > 1 items. Argue that
the resulting tree has at least one red edge.

[Notice that we are talking about a red-black tree
formed by insertions. Without this assumption, the
tree could of course consist of black edges only.]

Problem 4. (20 points). Prove that2n rotations suffice to
transform any binary search tree into any other binary
search tree storing the samen items.

Problem 5. (20 = 5 + 5 + 5 + 5 points). Consider a
collection of items, each consisting of a key and a
cost. The keys come from a totally ordered universe
and the costs are real numbers. Show how to maintain
a collection of items under the following operations:

(a) ADD(k, c): assuming no item in the collection
has keyk yet, add an item with keyk and cost
c to the collection;

(b) REMOVE(k): remove the item with keyk from
the collection;

(c) MAX(k1, k2): assumingk1 ≤ k2, report the
maximum cost among all items with keysk ∈
[k1, k2].

(d) COUNT(c1, c2): assumingc1 ≤ c2, report the
number of items with costc ∈ [c1, c2];

Each operation should take at most O(logn) time in
the worst case, wheren is the number of items in the
collection when the operation is performed.

33

III PRIORITIZING

10 Heaps and Heapsort
11 Fibonacci Heaps
12 Solving Recurrence Relations

Third Homework Assignment

34

10 Heaps and Heapsort

A heap is a data structure that stores a set and allows fast
access to the item with highest priority. It is the basis of
a fast implementation of selection sort. On the average,
this algorithm is a little slower than quicksort but it is not
sensitive to the input ordering or to random bits and runs
about as fast in the worst case as on the average.

Priority queues. A data structure implements theprior-
ity queueabstract data type if it supports at least the fol-
lowing operations:

void INSERT (item),
item FINDM IN (void),
void DELETEM IN (void).

The operations are applied to a set of items with priori-
ties. The priorities are totally ordered so any two can be
compared. To avoid any confusion, we will usually refer
to the priorities as ranks. We will always use integers as
priorities and follow the convention that smaller ranks rep-
resent higher priorities. In many applications, FINDM IN

and DELETEM IN are combined:

void EXTRACTM IN(void)
r = FINDM IN; DELETEM IN; return r.

Function EXTRACTM IN removes and returns the item
with smallest rank.

Heap. A heap is a particularly compact priority queue.
We can think of it as a binary tree with items stored in the
internal nodes, as in Figure 39. Each level is full, except

13

8

7

96

5

8

2

15

12107

Figure 39: Ranks increase or, more precisely, do not decrease
from top to bottom.

possibly the last, which is filled from left to right until
we run out of items. The items are stored inheap-order:
every nodeµ has a rank larger than or equal to the rank of
its parent. Symmetrically,µ has a rank less than or equal

to the ranks of both its children. As a consequence, the
root contains the item with smallest rank.

We store the nodes of the tree in a linear array, level
by level from top to bottom and each level from left to
right, as shown in Figure 40. The embedding saves ex-

6 9 8 15 8 772 5 10
7 8 9 10 11 126

12 13
1 2 3 4 5

Figure 40: The binary tree is layed out in a linear array. The root
is placed inA[1], its children follow inA[2] andA[3], etc.

plicit pointers otherwise needed to establish parent-child
relations. Specifically, we can find the children and par-
ent of a node by index computation: the left child ofA[i]
is A[2i], the right child isA[2i + 1], and the parent is
A[⌊i/2⌋]. The item with minimum rank is stored in the
first element:

item FINDM IN(int n)
assert n ≥ 1; return A[1].

Since the index along a path at least doubles each step,
paths can have length at mostlog2 n.

Deleting the minimum. We first study the problem of
repairing the heap-order if it is violated at the root, as
shown in Figure 41. Letn be the length of the array. We

8 10

6 9

2

7

87 12

15

13

5

Figure 41: The root is exchanged with the smaller of its two
children. The operation is repeated along a single path until the
heap-order is repaired.

repair the heap-order by a sequence of swaps along a sin-
gle path. Each swap is between an item and the smaller of
its children:

35

void SIFT-DN(int i, n)
if 2i ≤ n then
k = arg min{A[2i], A[2i+ 1]}
if A[k] < A[i] then SWAP(i, k);

SIFT-DN(k, n)
endif

endif.

Here we assume thatA[n + 1] is defined and larger than
A[n]. Since a path has at mostlog2 n edges, the time to re-
pair the heap-order takes time at most O(log n). To delete
the minimum we overwrite the root with the last element,
shorten the heap, and repair the heap-order:

void DELETEM IN(int ∗ n)
A[1] = A[∗n]; ∗n−−; SIFT-DN(1, ∗n).

Instead of the variable that storesn, we pass a pointer to
that variable,∗n, in order to use it as input and output
parameter.

Inserting. Consider repairing the heap-order if it is vio-
lated at the last position of the heap. In this case, the item
moves up the heap until it reaches a position where its rank
is at least as large as that of its parent.

void SIFT-UP(int i)
if i ≥ 2 then k = ⌊i/2⌋;
if A[i] < A[k] then SWAP(i, k);

SIFT-UP(k)
endif

endif.

An item is added by first expanding the heap by one ele-
ment, placing the new item in the position that just opened
up, and repairing the heap-order.

void INSERT(int ∗ n, item x)
∗n++; A[∗n] = x; SIFT-UP(∗n).

A heap supports FINDM IN in constant time and INSERT

and DELETEM IN in time O(logn) each.

Sorting. Priority queues can be used for sorting. The
first step throws all items into the priority queue, and the
second step takes them out in order. Assuming the items
are already stored in the array, the first step can be done
by repeated heap repair:

for i = 1 to n do SIFT-UP(i) endfor.

In the worst case, thei-th item moves up all the way to
the root. The number of exchanges is therefore at most
∑n

i=1 log2 i ≤ n log2 n. The upper bound is asymptot-
ically tight because half the terms in the sum are at least
log2

n
2 = log2 n−1. It is also possible to construct the ini-

tial heap in time O(n) by building it from bottom to top.
We modify the first step accordingly, and we implement
the second step to rearrange the items in sorted order:

void HEAPSORT(int n)
for i = n downto 1 do SIFT-DN(i, n) endfor;
for i = n downto 1 do

SWAP(i, 1); SIFT-DN(1, i− 1)
endfor.

At each step of the firstfor-loop, we consider the sub-
tree with rootA[i]. At this moment, the items in the left
and right subtrees rooted atA[2i] andA[2i + 1] are al-
ready heaps. We can therefore use one call to function
SIFT-DN to make the subtree with rootA[i] a heap. We
will prove shortly that this bottom-up construction of the
heap takes time only O(n). Figure 42 shows the array
after each iteration of the secondfor-loop. Note how
the heap gets smaller by one element each step. A sin-

15 10 12 13

121015

788

15

15

15

15

13

77889

25

6

12 13 10

1312

25

7

9

256798

2

9 86 7 8

6 5

2

7789

256

6

567713

25

6

8 9 12

10 128

10

10

12107 8 13

8

13

10 12

1312 15

1513

13

15

12139 10 15

15

8

8 8 7 7 6 5 29

7788910

1012

7 6 5 2

7 87

15 9 8 8 7101213

7

2 5 7

975 6 7

25

8

6 9 8 8 7

28

Figure 42: Each step moves the last heap element to the root and
thus shrinks the heap. The circles mark the items involved inthe
sift-down operation.

gle sift-down operation takes time O(log n), and in total
HEAPSORT takes time O(n logn). In addition to the in-
put array, HEAPSORT uses a constant number of variables

36

and memory for the recursion stack used by SIFT-DN.
We can save the memory for the stack by writing func-
tion SIFT-DN as an iteration. The sort can be changed to
non-decreasing order by reversing the order of items in the
heap.

Analysis of heap construction. We return to proving
that the bottom-up approach to constructing a heap takes
only O(n) time. Assuming the worst case, in which ev-
ery node sifts down all the way to the last level, we draw
the swaps as edges in a tree; see Figure 43. To avoid

Figure 43: Each node generates a path that shares no edges with
the paths of the other nodes.

drawing any edge twice, we always first swap to the right
and then continue swapping to the left until we arrive at
the last level. This introduces only a small inaccuracy in
our estimate. The paths cover each edge once, except for
the edges on the leftmost path, which are not covered at
all. The number of edges in the tree isn − 1, which im-
plies that the total number of swaps is less thann. Equiv-
alently, the amortized number of swaps per item is less
than 1. There is a striking difference in time-complexity
to sorting, which takes an amortized number of about
log2 n comparisons per item. The difference between 1
and log2 n may be interpreted as a measure of how far
from sorted a heap-ordered array still is.

37

11 Fibonacci Heaps

The Fibonacci heap is a data structure implementing the
priority queue abstract data type, just like the ordinary
heap but more complicated and asymptotically faster for
some operations. We first introduce binomial trees, which
are special heap-ordered trees, and then explain Fibonacci
heaps as collections of heap-ordered trees.

Binomial trees. Thebinomial treeof heighth is a tree
obtained from two binomial trees of heighth− 1, by link-
ing the root of one to the other. The binomial tree of height
0 consists of a single node. Binomial trees of heights up
to 4 are shown in Figure 44. Each step in the construc-

Figure 44: Binomial trees of heights 0, 1, 2, 3, 4. Each tree is
obtained by linking two copies of the previous tree.

tion increases the height by one, increases thedegree(the
number of children) of the root by one, and doubles the
size of the tree. It follows that a binomial tree of heighth
has root degreeh and size2h. The root has the largest de-
gree of any node in the binomial tree, which implies that
every node in a binomial tree withn nodes has degree at
mostlog2 n.

To store any set of items with priorities, we use a small
collection of binomial trees. For an integern, let ni be
the i-th bit in the binary notation, so we can writen =
∑

i≥0 ni2
i. To storen items, we use a binomial tree of

size2i for eachni = 1. The total number of binomial trees
is thus the number of 1’s in the binary notation ofn, which
is at mostlog2(n + 1). The collection is referred to as a
binomial heap. The items in each binomial tree are stored
in heap-order. There is no specific relationship between
the items stored in different binomial trees. The item with
minimum key is thus stored in one of the logarithmically
many roots, but it is not prescribed ahead of time in which
one. An example is shown in Figure 45 where1110 =
10112 items are stored in three binomial trees with sizes
8, 2, and 1. In order to add a new item to the set, we create
a new binomial tree of size 1 and we successively link
binomial trees as dictated by the rules of adding 1 to the

=+
10

4

111312

15 7

15

9 89

15

10

1113

15

12

4 7

9

5

8

5

9

Figure 45: Adding the shaded node to a binomial heap consisting
of three binomial trees.

binary notation ofn. In the example, we get10112+12 =
11002. The new collection thus consists of two binomial
trees with sizes 8 and 4. The size 8 tree is the old one, and
the size 4 tree is obtained by first linking the two size 1
trees and then linking the resulting size 2 tree to the old
size 2 tree. All this is illustrated in Figure 45.

Fibonacci heaps. A Fibonacci heapis a collection of
heap-ordered trees. Ideally, we would like it to be a col-
lection of binomial trees, but we need more flexibility. It
will be important to understand how exactly the nodes of a
Fibonacci heap are connected by pointers. Siblings are or-
ganized in doubly-linked cyclic lists, and each node has a
pointer to its parent and a pointer to one of its children, as
shown in Figure 46. Besides the pointers, each node stores

min

12 13

5

15

7

109

4

8

11

9

Figure 46: The Fibonacci heap representation of the first collec-
tion of heap-ordered trees in Figure 45.

a key, its degree, and a bit that can be used to mark or un-
mark the node. The roots of the heap-ordered trees are
doubly-linked in a cycle, and there is an explicit pointer to
the root that stores the item with the minimum key. Figure
47 illustrates a few basic operations we perform on a Fi-
bonacci heap. Given two heap-ordered trees, welink them
by making the root with the bigger key the child of the
other root. Tounlink a heap-ordered tree or subtree, we
remove its root from the doubly-linked cycle. Finally, to
mergetwo cycles, we cut both open and connect them at

38

merging

linking

unlinking

Figure 47: Cartoons for linking two trees, unlinking a tree,and
merging two cycles.

their ends. Any one of these three operations takes only
constant time.

Potential function. A Fibonacci heap supports a vari-
ety of operations, including the standard ones for priority
queues. We use a potential function to analyze their amor-
tized cost applied to an initially empty Fibonacci heap.
Letting ri be the number of roots in the root cycle and
mi the number of marked nodes, thepotentialafter the
i-th operation isΦi = ri +2mi. When we deal with a col-
lection of Fibonacci heaps, we define its potential as the
sum of individual potentials. The initial Fibonacci heap is
empty, soΦ0 = 0. As usual, we letci be the actual cost
andai = ci + Φi − Φi−1 the amortized cost of thei-th
operation. SinceΦ0 = 0 andΦi ≥ 0 for all i, the actual
cost is less than the amortized cost:

n
∑

i=1

ci ≤
n
∑

i=1

ai = rn + 2mn +

n
∑

i=1

ci.

For some of the operations, it is fairly easy to compute the
amortized cost. We get theminimum by returning the key
in the marked root. This operation does not change the po-
tential and its amortized and actual cost isai = ci = 1.
We meld two Fibonacci heaps,H1 andH2, by first merg-
ing the two root circles and second adjusting the pointer to
the minimum key. We have

ri(H) = ri−1(H1) + ri−1(H2),

mi(H) = mi−1(H1) +mi−1(H2),

which implies that there is no change in potential. The
amortized and actual cost is thereforeai = ci = 1. We
insert a key into a Fibonacci heap by first creating a new
Fibonacci heap that stores only the new key and second
melding the two heaps. We have one more node in the
root cycle so the change in potential isΦi − Φi−1 = 1.
The amortized cost is thereforeai = ci + 1 = 2.

Deletemin. Next we consider the somewhat more in-
volved operation of deleting the minimum key, which is
done in four steps:

Step 1. Remove the node with minimum key from the
root cycle.

Step 2. Merge the root cycle with the cycle of children
of the removed node.

Step 3. As long as there are two roots with the same
degree link them.

Step 4. Recompute the pointer to the minimum key.

For Step 3, we use a pointer arrayR. Initially, R[i] =
NULL for eachi. For each root̺ in the root cycle, we
execute the following iteration.

i = ̺→ degree;
while R[i] 6= NULL do
̺′ = R[i]; R[i] = NULL ; ̺ = L INK(̺, ̺′); i++

endwhile;
R[i] = ̺.

To analyze the amortized cost for deleting the minimum,
let D(n) be the maximum possible degree of any node
in a Fibonacci heap ofn nodes. The number of linking
operations in Step 3 is the number of roots we start with,
which is less thanri−1 +D(n), minus the number of roots
we end up with, which isri. After Step 3, all roots have
different degrees, which impliesri ≤ D(n)+1. It follows
that the actual cost for the four steps is

ci ≤ 1 + 1 + (ri−1 +D(n) − ri) + (D(n) + 1)

= 3 + 2D(n) + ri−1 − ri.

The potential change isΦi−Φi−1 = ri−ri−1. The amor-
tized cost is thereforeai = ci + Φi −Φi−1 ≤ 2D(n) + 3.
We will prove next time that the maximum possible de-
gree is at most logarithmic in the size of the Fibonacci
heap,D(n) < 2 log2(n + 1). This implies that deleting
the minimum has logarithmic amortized cost.

Decreasekey and delete. Besides deletemin, we also
have operations that delete an arbitrary item and that de-
crease the key of an item. Both change the structure of
the heap-ordered trees and are the reason why a Fibonacci
heap is not a collection of binomial trees but of more gen-
eral heap-ordered trees. Thedecreasekeyoperation re-
places the item with keyx stored in the nodeν by x− ∆,
where∆ ≥ 0. We will see that this can be done more effi-
ciently than to deletex and to insertx − ∆. We decrease
the key in four steps.

39

Step 1. Unlink the tree rooted atν.

Step 2. Decrease the key inν by ∆.

Step 3. Add ν to the root cycle and possibly update
the pointer to the minimum key.

Step 4. Do cascading cuts.

We will explain cascading cuts shortly, after explaining
the four steps we take to delete a nodeν. Before we delete
a nodeν, we check whetherν = min, and if it is then we
delete the minimum as explained above. Assume therefore
thatν 6= min.

Step 1. Unlink the tree rooted atν.

Step 2. Merge the root-cycle with the cycle ofν’s chil-
dren.

Step 3. Dispose ofν.

Step 4. Do cascading cuts.

Figure 48 illustrates the effect of decreasing a key and of
deleting a node. Both operations create trees that are not

decreasekey 12 to 2

delete 4

57

9

7

28

9

10

11

5

15

13

13

89 15

2

10

11

9

7 54

810

11

4

9

1312

9

15

Figure 48: A Fibonacci heap initially consisting of three bino-
mial trees modified by a decreasekey and a delete operation.

binomial, and we use cascading cuts to make sure that the
shapes of these trees are not very different from the shapes
of binomial trees.

Cascading cuts. Let ν be a node that becomes the child
of another node at timet. We markν when it loses its first
child after timet. Then we unmarkν, unlink it, and add it
to the root-cycle when it loses its second child thereafter.
We call this operation acut, and it may cascade because
one cut can cause another, and so on. Figure 49 illus-
trates the effect of cascading in a heap-ordered tree with
two marked nodes. The first step decreases key 10 to 7,
and the second step cuts first node 5 and then node 4.

5

4

5

7

4

7 5

4

10

Figure 49: The effect of cascading after decreasing 10 to 7.
Marked nodes are shaded.

Summary analysis. As mentioned earlier, we will prove
D(n) < 2 log2(n+1) next time. Assuming this bound, we
are able to compute the amortized cost of all operations.
The actual cost of Step 4 in decreasekey or in delete is the
number of cuts,ci. The potential changes because there
areci new roots andci fewer marked nodes. Also, the last
cut may introduce a new mark. Thus

Φi − Φi−1 = ri − ri−1 + 2mi − 2mi−1

≤ ci − 2ci + 2

= −ci + 2.

The amortized cost is thereforeai = ci + Φi − Φi−1 ≤
ci − (2 − ci) = 2. The first three steps of a decreasekey
operation take only a constant amount of actual time and
increase the potential by at most a constant amount. It
follows that the amortized cost of decreasekey, including
the cascading cuts in Step 4, is only a constant. Similarly,
the actual cost of a delete operation is at most a constant,
but Step 2 may increase the potential of the Fibonacci heap
by as much asD(n). The rest is bounded from above by
a constant, which implies that the amortized cost of the
delete operation is O(logn). We summarize the amortized
cost of the various operations supported by the Fibonacci
heap:

find the minimum O(1)
meld two heaps O(1)
insert a new item O(1)
delete the minimum O(logn)
decrease the key of a node O(1)
delete a node O(logn)

We will later see graph problems for which the difference
in the amortized cost of the decreasekey and delete op-
erations implies a significant improvement in the running
time.

40

12 Solving Recurrence Relations

Recurrence relations are perhaps the most important tool
in the analysis of algorithms. We have encountered sev-
eral methods that can sometimes be used to solve such
relations, such as guessing the solution and proving it by
induction, or developing the relation into a sum for which
we find a closed form expression. We now describe a new
method to solve recurrence relations and use it to settle
the remaining open question in the analysis of Fibonacci
heaps.

Annihilation of sequences. Suppose we are given an in-
finite sequence of numbers,A = 〈a0, a1, a2, . . .〉. We can
multiply with a constant, shift to the left and add another
sequence:

kA = 〈ka0, ka1, ka2, . . .〉,
LA = 〈a1, a2, a3, . . .〉,

A+B = 〈a0 + b0, a1 + b1, a2 + b2, . . .〉.

As an example, consider the sequence of powers of two,
ai = 2i. Multiplying with 2 and shifting to the left give
the same result. Therefore,

LA− 2A = 〈0, 0, 0, . . .〉.

We writeLA − 2A = (L − 2)A and think ofL − 2 as an
operator thatannihilatesthe sequence of powers of 2. In
general,L− k annihilates any sequence of the form〈cki〉.
What doesL − k do to other sequencesA = 〈cℓi〉, when
ℓ 6= k?

(L − k)A = 〈cℓ, cℓ2, cℓ3, . . .〉 − 〈ck, ckℓ, ckℓ2, . . .〉
= (ℓ− k)〈c, cℓ, cℓ2, . . .〉
= (ℓ− k)A.

We see that the operatorL − k annihilates only one type
of sequence and multiplies other similar sequences by a
constant.

Multiple operators. Instead of just one, we can ap-
ply several operators to a sequence. We may multiply
with two constants,k(ℓA) = (kℓ)A, multiply and shift,
L(kA) = k(LA), and shift twice,L(LA) = L2A. For
example,(L − k)(L − ℓ) annihilates all sequences of the
form 〈cki + dℓi〉, where we assumek 6= ℓ. Indeed,L − k
annihilates〈cki〉 and leaves behind〈(ℓ− k)dℓi〉, which is
annihilated byL − ℓ. Furthermore,(L − k)(L − ℓ) anni-
hilates no other sequences. More generally, we have

FACT. (L − k1)(L − k2) . . . (L − kn) annihilates all se-
quences of the form〈c1ki

1 + c2k
i
2 + . . .+ cnk

i
n〉.

What if k = ℓ? To answer this question, we consider

(L − k)2〈iki〉 = (L − k)〈(i+ 1)ki+1 − iki+1〉
= (L − k)〈ki+1〉
= 〈0〉.

More generally, we have

FACT. (L − k)n annihilates all sequences of the form
〈p(i)ki〉, with p(i) a polynomial of degreen− 1.

Since operators annihilate only certain types of sequences,
we can determine the sequence if we know the annihilating
operator. The general method works in five steps:

1. Write down the annihilator for the recurrence.

2. Factor the annihilator.

3. Determine what sequence each factor annihilates.

4. Put the sequences together.

5. Solve for the constants of the solution by using initial
conditions.

Fibonacci numbers. We put the method to a test by con-
sidering the Fibonacci numbers defined recursively as fol-
lows:

F0 = 0,

F1 = 1,

Fj = Fj−1 + Fj−2, for j ≥ 2.

Writing a few of the initial numbers, we get the sequence
〈0, 1, 1, 2, 3, 5, 8, . . .〉. We notice thatL2 − L − 1 annihi-
lates the sequence because

(L2 − L − 1)〈Fj〉 = L2〈Fj〉 − L〈Fj〉 − 〈Fj〉
= 〈Fj+2〉 − 〈Fj+1〉 − 〈Fj〉
= 〈0〉.

If we factor the operator into its roots, we get

L2 − L − 1 = (L − ϕ)(L − ϕ),

where

ϕ =
1 +

√
5

2
= 1.618 . . . ,

ϕ = 1 − ϕ =
1 −

√
5

2
= − 0.618

41

The first root is known as thegolden ratiobecause it repre-
sents the aspect ratio of a rectangular piece of paper from
which we may remove a square to leave a smaller rect-
angular piece of the same ratio:ϕ : 1 = 1 : ϕ − 1.
Thus we know that(L − ϕ)(L − ϕ) annihilates〈Fj〉 and
this means that thej-th Fibonacci number is of the form
Fj = cϕj + c ϕj . We get the constant factors from the
initial conditions:

F0 = 0 = c + c,

F1 = 1 = cϕ+ c ϕ.

Solving the two linear equations in two unknowns, we get
c = 1/

√
5 andc = −1/

√
5. This implies that

Fj =
1√
5

(

1 +
√

5

2

)j

− 1√
5

(

1 −
√

5

2

)j

.

From this viewpoint, it seems surprising thatFj turns out
to be an integer for allj. Note that|ϕ| > 1 and|ϕ| < 1.
It follows that for growing exponentj, ϕj goes to infinity
andϕj goes to zero. This implies thatFj is approximately
ϕj/

√
5, and that this approximation becomes more and

more accurate asj grows.

Maximum degree. Recall thatD(n) is the maximum
possible degree of any one node in a Fibonacci heap of
sizen. We need two easy facts about the kind of trees that
arise in Fibonacci heaps in order to show thatD(n) is at
most logarithmic inn. Let ν be a node of degreej, and
let µ1, µ2, . . . , µj be its children ordered by the time they
were linked toν.

DEGREELEMMA . The degree ofµi is at leasti− 2.

PROOF. Recall that nodes are linked only during the
deletemin operation. Right before the linking happens, the
two nodes are roots and have the same degree. It follows
that the degree ofµi was at leasti − 1 at the time it was
linked toν. The degree ofµi might have been even higher
because it is possible thatν lost some of the older children
afterµi had been linked. After being linked,µi may have
lost at most one of its children, for else it would have been
cut. Its degree is therefore at leasti− 2, as claimed.

SIZE LEMMA . The number of descendents ofν (includ-
ing ν) is at leastFj+2.

PROOF. Let sj be the minimum number of descendents a
node of degreej can have. We haves0 = 1 ands1 = 2.

For largerj, we getsj from sj−1 by adding the size of a
minimum tree with root degreej−2, which issj−2. Hence
sj = sj−1 + sj−2, which is the same recurrence relation
that defines the Fibonacci numbers. The initial values are
shifted two positions so we getsj = Fj+2, as claimed.

Consider a Fibonacci heap withn nodes and letν be a
node with maximum degreeD = D(n). The Size Lemma
implies n ≥ FD+2. The Fibonacci number with index
D + 2 is roughlyϕD+2/

√
5. BecauseϕD+2 <

√
5, we

have

n ≥ 1√
5
ϕD+2 − 1.

After rearranging the terms and taking the logarithm to the
baseϕ, we get

D ≤ logϕ

√
5(n+ 1) − 2.

Recall thatlogϕ x = log2 x/ log2 ϕ and use the calculator

to verify that log2 ϕ = 0.694 . . . > 0.5 and logϕ

√
5 =

1.672 . . . < 2. Hence

D ≤ log2(n+ 1)

log2 ϕ
+ logϕ

√
5 − 2

< 2 log2(n+ 1).

Non-homogeneous terms. We now return to the anni-
hilation method for solving recurrence relations and con-
sider

aj = aj−1 + aj−2 + 1.

This is similar to the recurrence that defines Fibonacci
numbers and describes the minimum number of nodes in
anAVL tree, also known asheight-balanced tree. It is de-
fined by the requirement that the height of the two sub-
trees of a node differ by at most 1. The smallest tree
of heightj thus consists of the root, a subtree of height
j − 1 and another subtree of heightj − 2. We refer to the
terms involvingai as thehomogeneousterms of the re-
lation and the others as thenon-homogeneousterms. We
know thatL2 − L − 1 annihilates the homogeneous part,
aj = aj−1 + aj−2. If we apply it to the entire relation we
get

(L2 − L − 1)〈aj〉 = 〈aj+2〉 − 〈aj+1〉 − 〈aj〉
= 〈1, 1, . . .〉.

The remaining sequence of 1s is annihilated byL − 1.
In other words,(L − ϕ)(L − ϕ)(L − 1) annihilates〈aj〉
implying thataj = cϕj + c ϕj + c′1j . It remains to find

42

the constants, which we get from the boundary conditions
a0 = 1, a1 = 2 anda2 = 4:

c + c + c′ = 1,
ϕc + ϕ c + c′ = 2,
ϕ2c + ϕ2c + c′ = 4.

Noting thatϕ2 = ϕ + 1, ϕ2 = ϕ + 1, andϕ − ϕ =
√

5
we getc = (5 + 2

√
5)/5, c = (5− 2

√
5)/5, andc′ = −1.

The minimum number of nodes of a height-j AVL tree is
therefore roughly the constantc timesϕj . Conversely, the
maximum height of an AVL tree withn = cϕj nodes is
roughly j = logϕ(n/c) = 1.440 . . . · log2 n + O(1). In
words, the height-balancing condition implies logarithmic
height.

Transformations. We extend the set of recurrences we
can solve by employing transformations that produce rela-
tions amenable to the annihilation method. We demon-
strate this by considering mergesort, which is another
divide-and-conquer algorithm that can be used to sort a
list of n items:

Step 1. Recursively sort the left half of the list.

Step 2. Recursively sort the right half of the list.

Step 3. Merge the two sorted lists by simultaneously
scanning both from beginning to end.

The running time is described by the solution to the recur-
rence

T (1) = 1,

T (n) = 2T (n/2) + n.

We have no way to work with terms likeT (n/2) yet.
However, we can transform the recurrence into a more
manageable form. Definingn = 2i andti = T (2i) we
get

t0 = 1,

ti = 2ti−1 + 2i.

The homogeneous part is annihilated byL − 2. Similarly,
non-homogeneous part is annihilated byL − 2. Hence,
(L − 2)2 annihilates the entire relation and we getti =
(ci+c)2i. Expressed in the original notation we thus have
T (n) = (c log2 n + c)n = O(n logn). This result is of
course no surprise and reconfirms what we learned earlier
about sorting.

The Master Theorem. It is sometimes more convenient
to look up the solution to a recurrence relation than play-
ing with different techniques to see whether any one can
make it to yield. Such a cookbook method for recurrence
relations of the form

T (n) = aT (n/b) + f(n)

is provided by the following theorem. Here we assume
thata ≥ 1 andb > 1 are constants and thatf is a well-
behaved positive function.

MASTER THEOREM. Definec = logb a and letε be an
arbitrarily small positive constant. Then

T (n) =







O(nc) if f(n) = O(nc−ε),
O(nc logn) if f(n) = O(nc),
O(f(n)) if f(n) = Ω(nc+ε).

The last of the three cases also requires a usually satis-
fied technical condition, namely thataf(n/b) < δf(n)
for some constantδ strictly less than 1. For example, this
condition is satisfied inT (n) = 2T (n/2) + n2 which im-
pliesT (n) = O(n2).

As another example consider the relationT (n) =
2T (n/2) + n that describes the running time of merge-
sort. We havec = log2 2 = 1 andf(n) = n = O(nc).
The middle case of the Master Theorem applies and we
getT (n) = O(n logn), as before.

43

Third Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is October 14.

Problem 1. (20 = 10 + 10 points). Consider a lazy ver-
sion of heapsort in which each item in the heap is
either smaller than or equal to every other item in its
subtree, or the item is identified asuncertified. To
certify an item, we certify its children and then ex-
change it with the smaller child provided it is smaller
than the item itself. SupposeA[1..n] is a lazy heap
with all items uncertified.

(a) How much time does it take to certifyA[1]?

(b) Does certifyingA[1] turnA into a proper heap
in which every item satisfies the heap property?
(Justify your answer.)

Problem 2. (20 points). Recall that Fibonacci numbers
are defined recursively asF0 = 0, F1 = 1, andFn =
Fn−1 +Fn−2. Prove the square of then-th Fibonacci
number differs from the product of the two adjacent
numbers by one:F 2

n = Fn−1 · Fn+1 + (−1)n+1.

Problem 3. (20 points). Professor Pinocchio claims that
the height of ann-node Fibonacci heap is at most
some constant timeslog2 n. Show that the Profes-
sor is mistaken by exhibiting, for any integern, a
sequence of operations that create a Fibonacci heap
consisting of just one tree that is a linear chain ofn
nodes.

Problem 4. (20 = 10 + 10 points). To search in a sorted
array takes time logarithmic in the size of the array,
but to insert a new items takes linear time. We can
improve the running time for insertions by storing the
items in several instead of just one sorted arrays. Let
n be the number of items, letk = ⌈log2(n+ 1)⌉,
and writen = nk−1nk−2 . . . n0 in binary notation.
We usek sorted arraysAi (some possibly empty),
whereAi storesni2

i items. Each item is stored ex-
actly once, and the total size of the arrays is indeed
∑k

i=0 ni2
i = n. Although each individual array is

sorted, there is no particular relationship between the
items in different arrays.

(a) Explain how to search in this data structure and
analyze your algorithm.

(b) Explain how to insert a new item into the data
structure and analyze your algorithm, both in
worst-case and in amortized time.

Problem 5. (20 = 10 + 10 points). Consider a full bi-
nary tree withn leaves. Thesizeof a node,s(ν), is
the number of leaves in its subtree and therank is
the floor of the binary logarithm of the size,r(ν) =
⌊log2 s(ν)⌋.

(a) Is it true that every internal nodeν has a child
whose rank is strictly less than the rank ofν?

(b) Prove that there exists a leaf whose depth
(length of path to the root) is at mostlog2 n.

44

IV GRAPH ALGORITHMS

13 Graph Search
14 Shortest Paths
15 Minimum Spanning Trees
16 Union-find

Fourth Homework Assignment

45

13 Graph Search

We can think of graphs as generalizations of trees: they
consist of nodes and edges connecting nodes. The main
difference is that graphs do not in general represent hier-
archical organizations.

Types of graphs. Different applications require differ-
ent types of graphs. The most basic type is thesimple
undirected graphthat consists of a setV of verticesand a
setE of edges. Each edge is an unordered pair (a set) of
two vertices. We always assumeV is finite, and we write

3

4

1

20

Figure 50: A simple undirected graph with vertices0, 1, 2, 3, 4
and edges{0, 1}, {1, 2}, {2, 3}, {3, 0}, {3, 4}.

(

V
2

)

for the collection of all unordered pairs. HenceE is a
subset of

(

V
2

)

. Note that becauseE is a set, each edge can
occur only once. Similarly, because each edge is a set (of
two vertices), it cannot connect to the same vertex twice.
Verticesu andv areadjacentif {u, v} ∈ E. In this caseu
andv are calledneighbors. Other types of graphs are

directed: E ⊆ V × V .
weighted: has a weighting functionw : E → R.
labeled: has a labeling functionℓ : V → Z.
non-simple: there are loops and multi-edges.

A loop is like an edge, except that it connects to the same
vertex twice. Amulti-edgeconsists of two or more edges
connecting the same two vertices.

Representation. The two most popular data structures
for graphs are direct representations of adjacency. Let
V = {0, 1, . . . , n − 1} be the set of vertices. Thead-
jacency matrixis then-by-nmatrixA = (aij) with

aij =

{

1 if {i, j} ∈ E,
0 if {i, j} 6∈ E.

For undirected graphs, we haveaij = aji, soA is sym-
metric. For weighted graphs, we encode more informa-
tion than just the existence of an edge and defineaij as

the weight of the edge connectingi andj. The adjacency
matrix of the graph in Figure 50 is

A =













0 1 0 1 0
1 0 1 0 0
0 1 0 1 0
1 0 1 0 1
0 0 0 1 0













,

which is symmetric. Irrespective of the number of edges,

0 1 2 3

V

4

0

2

4

3

3

1

3

0

2

1

Figure 51: The adjacency list representation of the graph inFig-
ure 50. Each edge is represented twice, once for each endpoint.

the adjacency matrix hasn2 elements and thus requires a
quadratic amount of space. Often, the number of edges
is quite small, maybe not much larger than the number of
vertices. In these cases, the adjacency matrix wastes mem-
ory, and a better choice is a sparse matrix representation
referred to asadjacency lists, which is illustrated in Fig-
ure 51. It consists of a linear arrayV for the vertices and
a list of neighbors for each vertex. For most algorithms,
we assume that vertices and edges are stored in structures
containing a small number of fields:

struct Vertex {int d, f, π; Edge ∗adj};
struct Edge {int v; Edge ∗next}.

Thed, f, π fields will be used to store auxiliary informa-
tion used or created by the algorithms.

Depth-first search. Since graphs are generally not or-
dered, there are many sequences in which the vertices can
be visited. In fact, it is not entirely straightforward to make
sure that each vertex is visited once and only once. A use-
ful method is depth-first search. It uses a global variable,
time, which is incremented and used to leave time-stamps
behind to avoid repeated visits.

46

void V ISIT(int i)
1 time++; V [i].d = time;

forall outgoing edgesij do
2 if V [j].d = 0 then
3 V [j].π = i; V ISIT(j)

endif
endfor;

4 time++; V [i].f = time.

The test in line 2 checks whether the neighborj of i has
already been visited. The assignment in line 3 records that
the vertex is visitedfrom vertexi. A vertex is first stamped
in line 1 with the time at which it is encountered. A vertex
is second stamped in line 4 with the time at which its visit
has been completed. To prepare the search, we initialize
the global time variable to 0, label all vertices as not yet
visited, and call VISIT for all yet unvisited vertices.

time= 0;
forall verticesi do V [i].d = 0 endfor;
forall verticesi do
if V [i].d = 0 then V [i].π = 0; V ISIT(i) endif

endfor.

Letn be the number of vertices andm the number of edges
in the graph. Depth-first search visits every vertex once
and examines every edge twice, once for each endpoint.
The running time is therefore O(n+m), which is propor-
tional to the size of the graph and therefore optimal.

DFS forest. Figure 52 illustrates depth-first search by
showing the time-stampsd andf and the pointersπ in-
dicating the predecessors in the traversal. We call an edge
{i, j} ∈ E a tree edgeif i = V [j].π or j = V [i].π and a
back edge, otherwise. The tree edges form theDFS forest

12,13

11,14

10,15

1,16

4, 5 7, 8

2, 93, 6

Figure 52: The traversal starts at the vertex with time-stamp 1.
Each node is stamped twice, once when it is first encountered
and another time when its visit is complete.

of the graph. The forest is a tree if the graph is connected
and a collection of two or more trees if it is not connected.
Figure 53 shows the DFS forest of the graph in Figure 52
which, in this case, consists of a single tree. The time-

7, 8

4, 5 12,13

11,14

10,152, 9

1,16

3, 6

Figure 53: Tree edges are solid and back edges are dotted.

stampsd are consistent with the preorder traversal of the
DFS forest. The time-stampsf are consistent with the
postorder traversal. The two stamps can be used to decide,
in constant time, whether two nodes in the forest live in
different subtrees or one is a descendent of the other.

NESTING LEMMA . Vertex j is a proper descendent of
vertexi in the DFS forest iffV [i].d < V [j].d as well
asV [j].f < V [i].f .

Similarly, if you have a tree and the preorder and postorder
numbers of the nodes, you can determine the relation be-
tween any two nodes in constant time.

Directed graphs and relations. As mentioned earlier,
we have adirected graphif all edges are directed. A
directed graph is a way to think and talk about a mathe-
matical relation. A typical problem where relations arise
is scheduling. Some tasks are in a definite order while
others are unrelated. An example is the scheduling of
undergraduate computer science courses, as illustrated in
Figure 54. Abstractly, arelation is a pair(V,E), where

Comput. Org.

and Programm.

Operating Distributed

110

214

212

Inform. Syst.

and Implementation

Program Design

and Analysis I

Program Design

and Analysis II

Software Design Comput. Networks

and Distr. Syst.

Systems

108

006 100

104

Figure 54: A subgraph of the CPS course offering. The courses
CPS104 and CPS108 are incomparable, CPS104 is a predecessor
of CPS110, and so on.

V = {0, 1, . . . , n − 1} is a finite set of elements and
E ⊆ V × V is a finite set of ordered pairs. Instead of

47

(i, j) ∈ E we write i ≺ j and instead of(V,E) we write
(V,≺). If i ≺ j theni is apredecessorof j andj is asuc-
cessorof i. The terms relation, directed graph, digraph,
and network are all synonymous.

Directed acyclic graphs. A cycle in a relation is a se-
quencei0 ≺ i1 ≺ . . . ≺ ik ≺ i0. Even i0 ≺ i0
is a cycle. A linear extensionof (V,≺) is an ordering
j0, j1, . . . , jn−1 of the elements that is consistent with the
relation. Formally this means thatjk ≺ jℓ impliesk < ℓ.
A directed graph without cycle is adirected acyclic graph.

EXTENSION LEMMA . (V,≺) has a linear extension iff it
contains no cycle.

PROOF. “=⇒” is obvious. We prove “⇐=” by induction.
A vertexs ∈ V is called asourceif it has no predecessor.
Assuming(V,≺) has no cycle, we can prove thatV has
a source by following edges against their direction. If we
return to a vertex that has already been visited, we have
a cycle and thus a contradiction. Otherwise we get stuck
at a vertexs, which can only happen becauses has no
predecessor, which meanss is a source.

LetU = V −{s} and note that(U,≺) is a relation that is
smaller than(V,≺). Hence(U,≺) has a linear extension
by induction hypothesis. Call this extensionX and note
thats,X is a linear extension of(V,≺).

Topological sorting with queue. The problem of con-
structing a linear extension is calledtopological sorting.
A natural and fast algorithm follows the idea of the proof:
find a sources, print s, removes, and repeat. To expedite
the first step of finding a source, each vertex maintains
its number of predecessors and a queue stores all sources.
First, we initialize this information.

forall verticesj do V [j].d = 0 endfor;
forall verticesi do
forall successorsj of i do V [j].d++ endfor

endfor;
forall verticesj do
if V [j].d = 0 then ENQUEUE(j) endif

endfor.

Next, we compute the linear extension by repeated dele-
tion of a source.

while queue is non-emptydo
s = DEQUEUE;
forall successorsj of s do
V [j].d--;
if V [j].d = 0 then ENQUEUE(j) endif

endfor
endwhile.

The running time is linear in the number of vertices and
edges, namely O(n+m). What happens if there is a cycle
in the digraph? We illustrate the above algorithm for the
directed acyclic graph in Figure 55. The sequence of ver-

3, 2, 1, 0

1, 0

3, 2, 1, 0 1, 0

01, 00

1, 0

a d

e

c

h

f

b

g

Figure 55: The numbers next to each vertex count the predeces-
sors, which decreases during the algorithm.

tices added to the queue is also the linear extension com-
puted by the algorithm. If the process starts at vertexa
and if the successors of a vertex are ordered by name then
we geta, f, d, g, c, h, b, e, which we can check is indeed a
linear extension of the relation.

Topological sorting with DFS. Another algorithm that
can be used for topological sorting is depth-first search.
We output a vertex when its visit has been completed, that
is, when all its successors and their successors and so on
have already been printed. The linear extension is there-
fore generated from back to front. Figure 56 shows the

4, 5 6, 7 11, 12

1, 142, 915, 16

3, 8

10, 13

e

g

a

c

b h

fd

Figure 56: The numbers next to each vertex are the two time
stamps applied by the depth-first search algorithm. The first
number gives the time the vertex is encountered, and the second
when the visit has been completed.

same digraph as Figure 55 and labels vertices with time

48

stamps. Consider the sequence of vertices in the order of
decreasing second time stamp:

a(16), f(14), g(13), h(12), d(9), c(8), e(7), b(5).

Although this sequence is different from the one computed
by the earlier algorithm, it is also a linear extension of the
relation.

49

14 Shortest Paths

One of the most common operations in graphs is finding
shortest paths between vertices. This section discusses
three algorithms for this problem: breadth-first search
for unweighted graphs, Dijkstra’s algorithm for weighted
graphs, and the Floyd-Warshall algorithm for computing
distances between all pairs of vertices.

Breadth-first search. We call a graphconnectedif there
is a path between every pair of vertices. A(connected)
componentis a maximal connected subgraph. Breadth-
first search, or BFS, is a way to search a graph. It is sim-
ilar to depth-first search, but while DFS goes as deep as
quickly as possible, BFS is more cautious and explores a
broad neighborhood before venturing deeper. The starting
point is a vertexs. An example is shown in Figure 57. As

e a d

f b c g

2

2 1

1 1

0 1

2

s

Figure 57: A sample graph with eight vertices and ten edges
labeled by breath-first search. The label increases from a vertex
to its successors in the search.

before, we call and edge atree edgeif it is traversed by the
algorithm. The tree edges define theBFS tree, which we
can use to redraw the graph in a hierarchical manner, as in
Figure 58. In the case of an undirected graph, no non-tree
edge can connect a vertex to an ancestor in the BFS tree.
Why? We use a queue to turn the idea into an algorithm.

1 1

2

1

2

0

2

1

Figure 58: The tree edges in the redrawing of the graph in Figure
57 are solid, and the non-tree edges are dotted.

First, the graph and the queue are initialized.

forall verticesi do V [i].d = −1 endfor;
V [s].d = 0;
MAKEQUEUE; ENQUEUE(s); SEARCH.

A vertex is processed by adding its unvisited neighbors to
the queue. They will be processed in turn.

void SEARCH

while queue is non-emptydo
i = DEQUEUE;
forall neighborsj of i do
if V [j].d = −1 then
V [j].d = V [i].d+ 1; V [j].π = i;
ENQUEUE(j)

endif
endfor

endwhile.

The labelV [i].d assigned to vertexi during the traversal is
the minimum number of edges of any path froms to i. In
other words,V [i].d is the length of the shortest path from
s to i. The running time of BFS for a graph withn vertices
andm edges is O(n+m).

Single-source shortest path. BFS can be used to find
shortest paths in unweighted graphs. We now extend the
algorithm to weighted graphs. AssumeV andE are the
sets of vertices and edges of a simple, undirected graph
with a positive weighting functionw : E → R+. The
length or weight of a path is the sum of the weights of
its edges. Thedistancebetween two vertices is the length
of the shortest path connecting them. For a given source
s ∈ V , we study the problem of finding the distances and
shortest paths to all other vertices. Figure 59 illustratesthe
problem by showing the shortest paths to the sources. In

5 5 5

44 104
10 10

f b c g

e a s d

6

Figure 59: The bold edges form shortest paths and together the
shortest path tree with roots. It differs by one edge from the
breadth-first tree shown in Figure 57.

the non-degenerate case, in which no two paths have the
same length, the union of all shortest paths tos is a tree,
referred to as theshortest path tree. In the degenerate case,
we can break ties such that the union of paths is a tree.

As before, we grow a tree starting froms. Instead of a
queue, we use a priority queue to determine the next vertex
to be added to the tree. It stores all vertices not yet in the

50

tree and usesV [i].d for the priority of vertexi. First, we
initialize the graph and the priority queue.

V [s].d = 0; V [s].π = −1; INSERT(s);
forall verticesi 6= s do
V [i].d = ∞; INSERT(i)

endfor.

After initialization the priority queue storess with priority
0 and all other vertices with priority∞.

Dijkstra’s algorithm. We mark vertices in the tree to
distinguish them from vertices that are not yet in the tree.
The priority queue stores all unmarked verticesi with pri-
ority equal to the length of the shortest path that goes from
i in one edge to a marked vertex and then tos using only
marked vertices.

while priority queue is non-emptydo
i = EXTRACTM IN; marki;
forall neighborsj of i do
if j is unmarkedthen
V [j].d = min{w(ij) + V [i].d, V [j].d}

endif
endfor

endwhile.

Table 3 illustrates the algorithm by showing the informa-
tion in the priority queue after each iteration of the while-
loop operating on the graph in Figure 59. The mark-

s 0
a ∞ 5 5
b ∞ 10 10 9 9
c ∞ 4
d ∞ 5 5 5
e ∞ ∞ ∞ 10 10 10
f ∞ ∞ ∞ 15 15 15 15
g ∞ ∞ ∞ ∞ 15 15 15 15

Table 3: Each column shows the contents of the priority queue.
Time progresses from left to right.

ing mechanism is not necessary but clarifies the process.
The algorithm performsn EXTRACTM IN operations and
at mostm DECREASEKEY operations. We compare the
running time under three different data structures used to
represent the priority queue. The first is a linear array, as
originally proposed by Dijkstra, the second is a heap, and
the third is a Fibonacci heap. The results are shown in
Table 4. We get the best result with Fibonacci heaps for
which the total running time is O(n logn+m).

array heap F-heap
EXTRACTM INs n2 n log n n log n

DECREASEKEYs m m log m m

Table 4: Running time of Dijkstra’s algorithm for three different
implementations of the priority queue holding the yet unmarked
vertices.

Correctness. It is not entirely obvious that Dijkstra’s al-
gorithm indeed finds the shortest paths tos. To show that
it does, we inductively prove that it maintains the follow-
ing two invariants.

(A) For every unmarked vertexj, V [j].d is the length of
the shortest path fromj to s that uses only marked
vertices other thanj.

(B) For every marked vertexi, V [i].d is the length of the
shortest path fromi to s.

PROOF. Invariant (A) is true at the beginning of Dijkstra’s
algorithm. To show that it is maintained throughout the
process, we need to make sure that shortest paths are com-
puted correctly. Specifically, if we assume Invariant (B)
for vertexi then the algorithm correctly updates the prior-
itiesV [j].d of all neighborsj of i, and no other priorities
change.

i

y

s

Figure 60: The vertexy is the last unmarked vertex on the hypo-
thetically shortest, dashed path that connectsi to s.

At the moment vertexi is marked, it minimizesV [j].d
over all unmarked verticesj. Suppose that, at this mo-
ment,V [i].d is not the length of the shortest path fromi to
s. Because of Invariant (A), there is at least one other un-
marked vertex on the shortest path. Let the last such vertex
bey, as shown in Figure 60. But thenV [y].d < V [i].d,
which is a contradiction to the choice ofi.

We used (B) to prove (A) and (A) to prove (B). To make
sure we did not create a circular argument, we parametrize
the two invariants with the numberk of vertices that are

51

marked and thus belong to the currently constructed por-
tion of the shortest path tree. To prove (Ak) we need (Bk)
and to prove (Bk) we need (Ak−1). Think of the two in-
variants as two recursive functions, and for each pair of
calls, the parameter decreases by one and thus eventually
becomes zero, which is when the argument arrives at the
base case.

All-pairs shortest paths. We can run Dijkstra’s algo-
rithmn times, once for each vertex as the source, and thus
get the distance between every pair of vertices. The run-
ning time is O(n2 logn+nm) which, for dense graphs, is
the same as O(n3). Cubic running time can be achieved
with a much simpler algorithm using the adjacency matrix
to store distances. The idea is to iteraten times, and after
thek-th iteration, the computed distance between vertices
i andj is the length of the shortest path fromi to j that,
other thani andj, contains only vertices of indexk or less.

for k = 1 to n do
for i = 1 to n do
for j = 1 to n do
A[i, j] = min{A[i, j], A[i, k] +A[k, j]}

endfor
endfor

endfor.

The only information needed to updateA[i, j] during the
k-th iteration of the outer for-loop are its old value and
values in thek-th row and thek-th column of the prior
adjacency matrix. This row remains unchanged in this it-
eration and so does this column. We therefore do not have
to use two arrays, writing the new values right into the old
matrix. We illustrate the algorithm by showing the adja-
cency, or distance matrix before the algorithm in Figure
61 and after one iteration in Figure 62.

d

c

b

a

s

e

f

g

s a b c d e f g

0

0

0

0

0

0

0

0

5 4 5

5

10

10

4

4

5

4

4

6

5

10

6

10

1054

10

Figure 61: Adjacency, or distance matrix of the graph in Figure
57. All blank entries store∞.

s a b c d e f g

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

s a b c d e f g s a b c d e f g

d

c

b

a

s

e

f

g

s a b c d e f g

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

d

c

b

a

s

e

f

g

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

0

0

0

0

0

0

0

0

5 4 5

5

10

10

4

4

5

4

4

6

5

10

6

10

1054

s a b c d e f g s a b c d e f g

d

c

b

a

s

e

f

g

d

c

b

a

s

e

f

g

10 10

1010

9 10

1514

9

10

14

15

9

9

10

15 19 20

15149

14 15 20

191413

13 14 9

1510

9 10

9

10

9 10 15

9 10

9 13 14 9 14

14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

14

14 14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

0

0

0

0

0

0

0

0

5 4 5

5

4

4

5

4

4

6

5

10

6

10

1054

10

9 10 15

9 10

9 13 14 9 14

9 13 14 19

10 14 15 20

10 9 14 15

15 19 20

15 20 24 14 25 30

30

25

14

24

20

15

14

Figure 62: Matrix after each iteration. Thek-th row and colum
are shaded and the new, improved distances are high-lighted.

The algorithm works for weighted undirected as well
as for weighted directed graphs. Its correctness is easily
verified inductively. The running time is O(n3).

52

15 Minimum Spanning Trees

When a graph is connected, we may ask how many edges
we can delete before it stops being connected. Depending
on the edges we remove, this may happen sooner or later.
The slowest strategy is to remove edges until the graph
becomes a tree. Here we study the somewhat more dif-
ficult problem of removing edges with a maximum total
weight. The remaining graph is then a tree with minimum
total weight. Applications that motivate this question can
be found in life support systems modeled as graphs or net-
works, such as telephone, power supply, and sewer sys-
tems.

Free trees. An undirected graph(U, T) is a free treeif
it is connected and contains no cycle. We could impose a
hierarchy by declaring any one vertex as the root and thus
obtain arooted tree. Here, we have no use for a hierarchi-
cal organization and exclusively deal with free trees. The

g

c

h

f

e

d

a b

i

Figure 63: Adding the edgedg to the tree creates a single cycle
with verticesd, g, h, f, e, a.

number of edges of a free tree is always one less than the
number of vertices. Whenever we add a new edge (con-
necting two old vertices) we create exactly one cycle. This
cycle can be destroyed by deleting any one of its edges,
and we get a new free tree, as in Figure 63. Let(V,E) be
a connected and undirected graph. Asubgraphis another
graph(U, T) with U ⊆ V andT ⊆ E. It is a spanning
tree if it is a free tree withU = V .

Minimum spanning trees. For the remainder of this
section, we assume that we also have a weighting func-
tion, w : E → R. The weight of subgraph is then the
total weight of its edges,w(T) =

∑

e∈T w(e). A mini-
mum spanning tree, or MST of G is a spanning tree that
minimizes the weight. The definitions are illustrated in
Figure 64 which shows a graph of solid edges with a min-
imum spanning tree of bold edges. A generic algorithm
for constructing an MST grows a tree by adding more and

1.9

1.1

1.3

1.2
2.5

1.6

1.5

0.9 1.4 2.8

1.6

1.4

a

d

e

f

1.3

b

1.2

c

g h i

3.6

Figure 64: The bold edges form a spanning tree of weight0.9 +
1.2 + 1.3 + 1.4 + 1.1 + 1.2 + 1.6 + 1.9 = 10.6.

more edges. LetA ⊆ E be a subset of some MST of a
connected graph(V,E). An edgeuv ∈ E − A is safe for
A if A ∪ {uv} is also subset of some MST. The generic
algorithm adds safe edges until it arrives at an MST.

A = ∅;
while (V,A) is not a spanning treedo

find a safe edgeuv; A = A ∪ {uv}
endwhile.

As long asA is a proper subset of an MST there are safe
edges. Specifically, if(V, T) is an MST andA ⊆ T then
all edges inT − A are safe forA. The algorithm will
therefore succeed in constructing an MST. The only thing
that is not yet clear is how to find safe edges quickly.

Cuts. To develop a mechanism for identifying safe
edges, we define acut, which is a partition of the vertex
set into two complementary sets,V = W ∪̇ (V −W). It is
crossedby an edgeuv ∈ E if u ∈W andv ∈ V −W , and
it respectsan edge setA if A contains no crossing edge.
The definitions are illustrated in Figure 65.

Figure 65: The vertices inside and outside the shaded regions
form a cut that respects the collection of solid edges. The dotted
edges cross the cut.

53

CUT LEMMA . LetA be subset of an MST and consider a
cutW ∪̇ (V −W) that respectsA. If uv is a crossing
edge with minimum weight thenuv is safe forA.

PROOF. Consider a minimum spanning tree(V, T) with
A ⊆ T . If uv ∈ T then we are done. Otherwise, let
T ′ = T ∪ {uv}. BecauseT is a tree, there is a unique
path fromu to v in T . We haveu ∈ W andv ∈ V −W ,
so the path switches at least once between the two sets.
Suppose it switches alongxy, as in Figure 66. Edgexy

u

v

x

y

Figure 66: Addinguv creates a cycle and deletingxy destroys
the cycle.

crosses the cut, and sinceA contains no crossing edges we
havexy 6∈ A. Becauseuv has minimum weight among
crossing edges we havew(uv) ≤ w(xy). DefineT ′′ =
T ′ − {xy}. Then(V, T ′′) is a spanning tree and because

w(T ′′) = w(T) − w(xy) + w(uv) ≤ w(T)

it is a minimum spanning tree. The claim follows because
A ∪ {uv} ⊆ T ′′.

A typical application of the Cut Lemma takes a compo-
nent of(V,A) and definesW as the set of vertices of that
component. The complementary setV −W contains all
other vertices, and crossing edges connect the component
with its complement.

Prim’s algorithm. Prim’s algorithm chooses safe edges
to grow the tree as a single component from an arbitrary
first vertexs. Similar to Dijkstra’s algorithm, the vertices
that do not yet belong to the tree are stored in a priority
queue. For each vertexi outside the tree, we define its
priority V [i].d equal to the minimum weight of any edge
that connectsi to a vertex in the tree. If there is no such
edge thenV [i].d = ∞. In addition to the priority, we store
the index of the other endpoint of the minimum weight
edge. We first initialize this information.

V [s].d = 0; V [s].π = −1; INSERT(s);
forall verticesi 6= s do
V [i].d = ∞; INSERT(i)

endfor.

The main algorithm expands the tree by one edge at a time.
It uses marks to distinguish vertices in the tree from ver-
tices outside the tree.

while priority queue is non-emptydo
i = EXTRACTM IN; marki;
forall neighborsj of i do
if j is unmarkedand w(ij) < V [j].d then
V [j].d = w(ij); V [j].π = i

endif
endfor

endwhile.

After running the algorithm, the MST can be recovered
from theπ-fields of the vertices. The algorithm together
with its initialization phase performsn = |V | insertions
into the priority queue,n extractmin operations, and at
mostm = |E| decreasekey operations. Using the Fi-
bonacci heap implementation, we get a running time of
O(n logn+m), which is the same as for constructing the
shortest-path tree with Dijkstra’s algorithm.

Kruskal’s algorithm. Kruskal’s algorithm is another
implementation of the generic algorithm. It adds edges in
a sequence of non-decreasing weight. At any moment, the
chosen edges form a collection of trees. These trees merge
to form larger and fewer trees, until they eventually com-
bine into a single tree. The algorithm uses a priority queue
for the edges and a set system for the vertices. In this
context, the term ‘system’ is just another word for ‘set’,
but we will use it exclusively for sets whose elements are
themselves sets. Implementations of the set system will
be discussed in the next lecture. Initially,A = ∅, the pri-
ority queue contains all edges, and the system contains a
singleton set for each vertex,C = {{u} | u ∈ V }. The
algorithm finds an edge with minimum weight that con-
nects two components defined byA. We setW equal to
the vertex set of one component and use the Cut Lemma
to show that this edge is safe forA. The edge is added to
A and the process is repeated. The algorithm halts when
only one tree is left, which is the case whenA contains
n− 1 = |V | − 1 edges.

A = ∅;
while |A| < n− 1 do
uv = EXTRACTM IN;
findP,Q ∈ C with u ∈ P andv ∈ Q;
if P 6= Q then
A = A ∪ {uv}; mergeP andQ

endif
endwhile.

54

The running time is O(m logm) for the priority queue op-
erations plus some time for maintainingC. There are two
operations for the set system, namely finding the set that
contains a given element, and merging two sets into one.

An example. We illustrate Kruskal’s algorithm by ap-
plying it to the weighted graph in Figure 64. The sequence
of edges sorted by weight iscd, fi, fh, ad, ae, hi, de, ef ,
ac, gh, dg, bf , eg, bi, ab. The evolution of the set system

b

ig

c d e

a

f

h

Figure 67: Eight union operations merge the nine singleton sets
into one set.

is illustrated in Figure 67, and the MST computed with
Kruskal’s algorithm and indicated with dotted edges is the
same as in Figure 64. The edgescd, fi, fh, ad, ae are all
added to the tree. The next two edge,hi andde, are not
added because they each have both endpoints in the same
component, and adding either edge would create a cycle.
Edgeef is added to the tree giving rise to a set in the sys-
tem that contains all vertices other thang andb. Edgeac
is not added,gh is added,dg is not, and finallybf is added
to the tree. At this moment the system consists of a single
set that contains all vertices of the graph.

As suggested by Figure 67, the evolution of the con-
struction can be interpreted as a hierarchical clustering of
the vertices. The specific method that corresponds to the
evolution created by Kruskal’s algorithm is referred to as
single-linkage clustering.

55

16 Union-Find

In this lecture, we present two data structures for the dis-
joint set system problem we encountered in the implemen-
tation of Kruskal’s algorithm for minimum spanning trees.
An interesting feature of the problem is thatm operations
can be executed in a time that is only ever so slightly more
than linear inm.

Abstract data type. A disjoint set systemis an abstract
data type that represents a partitionC of a set [n] =
{1, 2, . . . , n}. In other words,C is a set of pairwise dis-
joint subsets of[n] such that the union of all sets inC is
[n]. The data type supports

set FIND(i): return P ∈ C with i ∈ P ;
void UNION(P,Q) : C = C − {P,Q} ∪ {P ∪Q}.

In most applications, the sets themselves are irrelevant,
and it is only important to know when two elements be-
long to the same set and when they belong to different sets
in the system. For example, Kruskal’s algorithm executes
the operations only in the following sequence:

P = FIND(i); Q = FIND(j);
if P 6= Q then UNION(P,Q) endif.

This is similar to many everyday situations where it is usu-
ally not important to know what it is as long as we recog-
nize when two are the same and when they are different.

Linked lists. We construct a fairly simple and reason-
ably efficient first solution using linked lists for the sets.
We use a table of lengthn, and for eachi ∈ [n], we store
the name of the set that containsi. Furthermore, we link
the elements of the same set and use the name of the first
element as the name of the set. Figure 68 shows a sample
set system and its representation. It is convenient to also
store the size of the set with the first element.

To perform a UNION operation, we need to change the
name for all elements in one of the two sets. To save time,
we do this only for the smaller set. To merge the two lists
without traversing the longer one, we insert the shorter list
between the first two elements of the longer list.

5

4

12 7

9
21

6

10 3 8 11

1 2 3 4 8 105 6 7 9 11 12

3 3 3 8 3 88 11 11 3 11 8

5 4 3C.size

C.set

C.next

Figure 68: The system consists of three sets, each named by the
bold element. Each element stores the name of its set, possibly
the size of its set, and possibly a pointer to the next elementin
the same set.

void UNION(int P, Q)
if C[P].size< C[Q].sizethen P ↔ Q endif;
C[P].size= C[P].size+ C[Q].size;
second= C[P].next; C[P].next= Q; t = Q;
while t 6= 0 do
C[t].set= P ; u = t; t = C[t].next

endwhile; C[u].next= second.

In the worst case, a single UNION operation takes time
Θ(n). The amortized performance is much better because
we spend time only on the elements of the smaller set.

WEIGHTED UNION LEMMA . n − 1 UNION operations
applied to a system ofn singleton sets take time
O(n logn).

PROOF. For an element,i, we consider the cardinality of
the set that contains it,σ(i) = C[FIND(i)].size. Each time
the name of the set that containsi changes,σ(i) at least
doubles. After changing the namek times, we haveσ(i) ≥
2k and thereforek ≤ log2 n. In other words,i can be in
the smaller set of a UNION operation at mostlog2 n times.
The claim follows because a UNION operation takes time
proportional to the cardinality of the smaller set.

Up-trees. Thinking of names as pointers, the above data
structure stores each set in a tree of height one. We can
use more general trees and get more efficient UNION op-
erations at the expense of slower FIND operations. We
consider a class of algorithms with the following common-
alities:

56

• each set is a tree and the name of the set is the index
of the root;

• FIND traverses a path from a node to the root;

• UNION links two trees.

It suffices to store only one pointer per node, namely the
pointer to the parent. This is why these trees are called
up-trees. It is convenient to let the root point to itself.

5

6

1 3 4

7

2

11

8

12

9

10

Figure 69: The UNION operations create a tree by linking the
root of the first set to the root of the second set.

1 2 3 4 8 105 6 7 9 11 12

Figure 70: The table stores indices which function as pointers as
well as names of elements and of sets. The white dot represents
a pointer to itself.

Figure 69 shows the up-tree generated by executing the
following eleven UNION operations on a system of twelve
singleton sets:2 ∪ 3, 4 ∪ 7, 2 ∪ 4, 1 ∪ 2, 4 ∪ 10, 9 ∪ 12,
12 ∪ 2, 8 ∪ 11, 8 ∪ 2, 5 ∪ 6, 6 ∪ 1. Figure 70 shows the
embedding of the tree in a table. UNION takes constant
time and FIND takes time proportional to the length of the
path, which can be as large asn− 1.

Weighted union. The running time of FIND can be im-
proved by linking smaller to larger trees. This is the ide
of weighted unionagain. Assume a fieldC[i].p for the
index of the parent (C[i].p = i if i is a root), and a field
C[i].sizefor the number of elements in the tree rooted ati.
We need the size field only for the roots and we need the
index to the parent field everywhere except for the roots.
The FIND and UNION operations can now be implemented
as follows:

int FIND(int i)
if C[i].p 6= i then return FIND(C[i].p) endif;
return i.

void UNION(int i, j)
if C[i].size< C[j].sizethen i↔ j endif;
C[i].size= C[i].size+ C[j].size; C[j].p = i.

The size of a subtree increases by at least a factor of 2 from
a node to its parent. The depth of a node can therefore not
exceedlog2 n. It follows that FIND takes at most time
O(logn). We formulate the result on the height for later
reference.

HEIGHT LEMMA . An up-tree created fromn singleton
nodes byn− 1 weighted union operations has height
at mostlog2 n.

Path compression. We can further improve the time for
FIND operations by linking traversed nodes directly to the
root. This is the idea ofpath compression. The UNION

operation is implemented as before and there is only one
modification in the implementation of the FIND operation:

int FIND(int i)
if C[i].p 6= i then C[i].p = FIND(C[i].p) endif;
return C[i].p.

7

64
75
6

3

2

11

1 1

87

2

61
4232

3

5643

2

7

7

875643

2

5

3

2

6

1

43

2

4 643

2

7

5

6

Figure 71: The operations and up-trees develop from top to bot-
tom and within each row from left to right.

If i is not root then the recursion makes it the child of a
root, which is then returned. Ifi is a root, it returns itself

57

because in this caseC[i].p = i, by convention. Figure 71
illustrates the algorithm by executing a sequence of eight
operationsi ∪ j, which is short for finding the sets that
containi andj, and performing a UNION operation if the
sets are different. At the beginning, every element forms
its own one-node tree. With path compression, it is diffi-
cult to imagine that long paths can develop at all.

Iterated logarithm. We will prove shortly that the iter-
ated logarithm is an upper bound on the amortized time
for a FIND operation. We begin by defining the function
from its inverse. LetF (0) = 1 andF (i+ 1) = 2F (i). We
haveF (1) = 2, F (2) = 22, andF (3) = 222

. In general,
F (i) is the tower ofi 2s. Table 5 shows the values ofF
for the first six arguments. Fori ≤ 3, F is very small, but

i 0 1 2 3 4 5
F 1 2 4 16 65, 536 265,536

Table 5: Values ofF .

for i = 5 it already exceeds the number of atoms in our
universe. Note that the binary logarithm of a tower ofi 2s
is a tower ofi−1 2s. Theiterated logarithmis the number
of times we can take the binary logarithm before we drop
down to one or less. In other words, the iterated logarithm
is the inverse ofF ,

log∗ n = min{i | F (i) ≥ n}
= min{i | log2 log2 . . . log2 n ≤ 1},

where the binary logarithm is takeni times. Asn goes to
infinity, log∗ n goes to infinity, but very slowly.

Levels and groups. The analysis of the path com-
pression algorithm uses two Census Lemmas discussed
shortly. LetA1, A2, . . . , Am be a sequence of UNION and
FIND operations, and letT be the collection of up-trees
we get by executing the sequence, butwithout path com-
pression. In other words, the FIND operations have no
influence on the trees. Thelevelλ(µ) of a nodeµ is its
height of its subtree inT plus one.

LEVEL CENSUSLEMMA . There are at mostn/2ℓ−1

nodes at levelℓ.

PROOF. We use induction to show that a node at levelℓ
has a subtree of at least2ℓ−1 nodes. The claim follows
because subtrees of nodes on the same level are disjoint.

Note that ifµ is a proper descendent of another node
ν at some moment during the execution of the operation
sequence thenµ is a proper descendent ofν in T . In this
caseλ(µ) < λ(ν).

2
3
4
5
6

1

0
1
2
3
4

9

6

1
1
1
1

5
1
1

17

7

1

18

2
2

1

8

3
3
3
3
3

0

3
3
3
3
3

3

4
4

3

Figure 72: A schematic drawing of the treeT between the col-
umn of level numbers on the left and the column of group num-
bers on the right. The tree is decomposed into five groups, each
a sequences of contiguous levels.

Define thegroup numberof a nodeµ as the iterated
logarithm of the level,g(µ) = log∗ λ(µ). Because the
level does not exceedn, we haveg(µ) ≤ log∗ n, for every
nodeµ in T . The definition ofg decomposes an up-tree
into at most1 + log∗ n groups, as illustrated in Figure 72.
The number of levels in groupg isF (g)−F (g−1), which
gets large very fast. On the other hand, because levels get
smaller at an exponential rate, the number of nodes in a
group is not much larger than the number of nodes in the
lowest level of that group.

GROUPCENSUSLEMMA . There are at most2n/F (g)
nodes with group numberg.

PROOF. Each node with group numberg has level between
F (g− 1)+ 1 andF (g). We use the Level Census Lemma
to bound their number:

F (g)
∑

ℓ=F (g−1)+1

n

2ℓ−1
≤ n · (1 + 1

2 + 1
4 + . . .)

2F (g−1)

=
2n

F (g)
,

as claimed.

Analysis. The analysis is based on the interplay between
the up-trees obtained with and without path compression.

58

The latter are constructed by the weighted union opera-
tions and eventually form a single tree, which we denote
asT . The former can be obtained from the latter by the
application of path compression. Note that inT , the level
strictly increases from a node to its parent. Path compres-
sion preserves this property, so levels also increase when
we climb a path in the actual up-trees.

We now show that any sequence ofm ≥ n UNION and
FIND operations on a ground set[n] takes time at most
O(m log∗ n) if weighted union and path compression is
used. We can focus on FIND because each UNION opera-
tion takes only constant time. For a FIND operationAi, let
Xi be the set of nodes along the traversed path. The total
time for executing all FIND operations is proportional to

x =
∑

i

|Xi|.

Forµ ∈ Xi, letpi(µ) be the parent during the execution of
Ai. We partitionXi into the topmost two nodes, the nodes
just below boundaries between groups, and the rest:

Yi = {µ ∈ Xi | µ is root or child of root},
Zi = {µ ∈ Xi − Yi | g(µ) < g(pi(µ))},
Wi = {µ ∈ Xi − Yi | g(µ) = g(pi(µ))}.

Clearly, |Yi| ≤ 2 and|Zi| ≤ log∗ n. It remains to bound
the total size of theWi, w =

∑

i |Wi|. Instead of count-
ing, for eachAi, the nodes inWi, we count, for each node
µ, the FIND operationsAj for which µ ∈ Wj . In other
words, we count how oftenµ can change parent until its
parent has a higher group number thanµ. Each timeµ
changes parent, the new parent has higher level than the
old parent. If follows that the number of changes is at
mostF (g(µ)) − F (g(µ) − 1). The number of nodes with
group numberg is at most2n/F (g) by the Group Census
Lemma. Hence

w ≤
log∗ n
∑

g=0

2n

F (g)
· (F (g) − F (g − 1))

≤ 2n · (1 + log∗ n).

This implies that

x ≤ 2m+m log∗ n+ 2n(1 + log∗ n)

= O(m log∗ n),

assumingm ≥ n. This is an upper bound on the total time
it takes to executem FIND operations. The amortized cost
per FIND operation is therefore at most O(log∗ n), which
for all practical purposes is a constant.

Summary. We proved an upper bound on the time
needed form ≥ n UNION and FIND operations. The
bound is more than constant per operation, although for
all practical purposes it is constant. Thelog∗ n bound can
be improved to an even smaller function, usually referred
to asα(n) or the inverse of the Ackermann function, that
goes to infinity even slower than the iterated logarithm.
It can also be proved that (under some mild assumptions)
there is no algorithm that can execute general sequences
of UNION and FIND operations in amortized time that is
asymptotically less thanα(n).

59

Fourth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is October 30.

Problem 1. (20 = 10 + 10 points). Consider a free tree
and letd(u, v) be the number of edges in the path
connectingu to v. The diameterof the tree is the
maximumd(u, v) over all pairs of vertices in the tree.

(a) Give an efficient algorithm to compute the di-
ameter of a tree.

(b) Analyze the running time of your algorithm.

Problem 2. (20 points). Design an efficient algorithm to
find a spanning tree for a connected, weighted, undi-
rected graph such that the weight of the maximum
weight edge in the spanning tree is minimized. Prove
the correctness of your algorithm.

Problem 3. (7 + 6 + 7 points). A weighted graphG =
(V,E) is anear-treeif it is connected and has at most
n+ 8 edges, wheren is the number of vertices. Give
an O(n)-time algorithm to find a minimum weight
spanning tree forG.

Problem 4. (10 + 10 points). Given an undirected
weighted graph and verticess, t, design an algorithm
that computes the number of shortest paths froms to
t in the case:

(a) All weights are positive numbers.
(b) All weights are real numbers.

Analyze your algorithm for both (a) and (b).

Problem 5. (20 = 10 + 10 points). Theoff-line mini-
mum problemis about maintaining a subset of[n] =
{1, 2, . . . , n} under the operations INSERT and EX-
TRACTM IN. Given an interleaved sequence ofn in-
sertions andm min-extractions, the goal is to deter-
mine which key is returned by which min-extraction.
We assume that each elementi ∈ [n] is inserted ex-
actly once. Specifically, we wish to fill in an array
E[1..m] such thatE[i] is the key returned by thei-
th min-extraction. Note that the problem isoff-line,
in the sense that we are allowed to process the entire
sequence of operations before determining any of the
returned keys.

(a) Describe how to use a union-find data structure
to solve the problem efficiently.

(b) Give a tight bound on the worst-case running
time of your algorithm.

60

V TOPOLOGICAL ALGORITHMS

17 Geometric Graphs
18 Surfaces
19 Homology

Fifth Homework Assignment

61

17 Geometric Graphs

In the abstract notion of a graph, an edge is merely a pair of
vertices. The geometric (or topological) notion of a graph
is closer to our intuition in which we think of an edge as a
curve that connects two vertices.

Embeddings. Let G = (V,E) be a simple, undirected
graph and writeR2 for the two-dimensional real plane.
A drawing maps every vertexv ∈ V to a pointε(v) in
R2, and it maps every edge{u, v} ∈ E to a curve with
endpointsε(u) andε(v). The drawing is anembeddingif

1. different vertices map to different points;

2. the curves have no self-intersections;

3. the only points of a curve that are images of vertices
are its endpoints;

4. two curves intersect at most in their endpoints.

We can always map the vertices to points and the edges
to curves inR3 so they form an embedding. On the other
hand, not every graph has an embedding inR2. The graph
G is planar if it has an embedding inR2. As illustrated
in Figure 73, a planar graph has many drawings, not all of
which are embeddings. Astraight-linedrawing or embed-

Figure 73: Three drawings ofK4, the complete graph with four
vertices. From left to right: a drawing that is not an embedding,
an embedding with one curved edge, a straight-line embedding.

ding is one in which each edge is mapped to a straight line
segment. It is uniquely determined by the mapping of the
vertices,ε : V → R2. We will see later that every planar
graph has a straight-line embedding.

Euler’s formula. A faceof an embeddingε of G is a
component of the thus defined decomposition ofR2. We
write n = |V |, m = |E|, andℓ for the number of faces.
Euler’s formula says these numbers satisfy a linear rela-
tion.

EULER’ S FORMULA . If G is connected andε is an em-
bedding ofG in R2 thenn−m+ ℓ = 2.

PROOF. Choose a spanning tree(V, T) of G = (V,E). It
hasn vertices,|T | = n − 1 edges, and one (unbounded)
face. We haven− (n− 1) + 1 = 2, which proves the for-
mula ifG is a tree. Otherwise, draw the remaining edges,
one at a time. Each edge decomposes one face into two.
The number of vertices does not change,m increases by
one, andℓ increases by one. Since the graph satisfies the
linear relation before drawing the edge, it satisfies the re-
lation also after drawing the edge.

A planar graph ismaximally connectedif adding any
one new edge violates planarity. Not surprisingly, a planar
graph of three or more vertices is maximally connected
iff every face in an embedding is bounded by three edges.
Indeed, suppose there is a face bounded by four or more
edges. Then we can find two vertices in its boundary that
are not yet connected and we can connect them by draw-
ing a curve that passes through the face; see Figure 74.
For obvious reasons, we call an embedding of a maxi-

da

b c

Figure 74: Drawing the edge froma to c decomposes the quad-
rangle into two triangles. Note that we cannot draw the edge
from b to d since it already exists outside the quadrangle.

mally connected planar graph withn ≥ 3 vertices atri-
angulation. For such graphs, we have an additional linear
relation, namely3ℓ = 2m. We can thus rewrite Euler’s
formula and getn−m+ 2m

3 = 2 andn− 3ℓ
2 + ℓ = 2 and

therefore

m = 3n− 6;

ℓ = 2n− 4,

Every planar graph can be completed to a maximally con-
nected planar graph. Forn ≥ 3 this implies that the planar
graph has at most3n− 6 edges and at most2n− 4 faces.

Forbidden subgraphs. We can use Euler’s relation to
prove that the complete graph of five vertices is not planar.
It hasn = 5 vertices andm = 10 edges, contradicting the
upper bound of at most3n− 6 = 9 edges. Indeed, every
drawing ofK5 has at least two edges crossing; see Figure
75. Similarly, we can prove that the complete bipartite

62

Figure 75: A drawing ofK5 on the left and ofK3,3 on the right.

graph with three plus three vertices is not planar. It has
n = 6 vertices andm = 9 edges. Every cycle in a bipartite
graph has an even number of edges. Hence,4ℓ ≤ 2m.
Plugging this into Euler’s formula, we getn−m+ m

2 ≥ 2
and thereforem ≤ 2n− 4 = 8, again a contradiction.

In a sense,K5 andK3,3 are the quintessential non-
planar graphs. To make this concrete, we still need an
operation that creates or removes degree-2 vertices. Two
graphs arehomeomorphicif one can be obtained from the
other by a sequence of operations, each deleting a degree-2
vertex and replacing its two edges by the one that connects
its two neighbors, or the other way round.

KURATOWSKI’ S THEOREM. A graphG is planar iff no
subgraph ofG is homeomorphic toK5 or toK3,3.

The proof of this result is a bit lengthy and omitted.

Pentagons are star-convex. Euler’s formula can also be
used to show that every planar graph has a straight-line
embedding. Note that the sum of vertex degrees counts
each edge twice, that is,

∑

v∈V deg(v) = 2m. For planar
graphs, twice the number of edges is less than6n which
implies that the average degree is less than six. It follows
that every planar graph has at least one vertex of degree
5 or less. This can be strengthened by saying that every
planar graph withn ≥ 4 vertices has at least four vertices
of degree at most5 each. To see this, assume the planar
graph is maximally connected and note that every vertex
has degree at least3. The deficiency from degree6 is thus
at most3. The total deficiency is6n −∑v∈V deg(v) =
12 which implies that we have at least four vertices with
positive deficiency.

We need a little bit of geometry to prepare the construc-
tion of a straight-line embedding. A regionR ⊆ R2 is
convexif x, y ∈ R implies that the entire line segment
connectingx andy is contained inR. Figure 76 shows
regions of either kind. We callR star-convexof there is
a pointz ∈ R such that for every pointx ∈ R the line
segment connectingx with z is contained inR. The set of

x

y

z

Figure 76: A convex region on the left and a non-convex star-
convex region on the right.

such pointsz is thekernelof R. Clearly, every convex re-
gion is star-convex but not every star-convex region is con-
vex. Similarly, there are regions that are not star-convex,
even rather simple ones such as the hexagon in Figure 77.
However, every pentagon is star-convex. Indeed, the pen-

z

Figure 77: A non-star-convex hexagon on the left and a star-
convex pentagon on the right. The dark region inside the pen-
tagon is its kernel.

tagon can be decomposed into three triangles by drawing
two diagonals that share an endpoint. Extending the inci-
dent sides into the pentagon gives locally the boundary of
the kernel. It follows that the kernel is non-empty and has
interior points.

Fáry’s construction. We construct a straight-line em-
bedding of a planar graphG = (V,E) assumingG is
maximally connected. Choose three vertices,a, b, c, con-
nected by three edges to form the outer triangle. IfG has
only n = 3 vertices we are done. Else it has at least one
vertexu ∈ V = {a, b, c} with deg(u) ≤ 5.

Step 1. Removeu together with thek = deg(u) edges
incident tou. Add k − 3 edges to make the graph
maximally connected again.

Step 2. Recursively construct a straight-line embed-
ding of the smaller graph.

Step 3. Remove the addedk − 3 edges and mapu to
a pointε(u) in the interior of the kernel of the result-
ing k-gon. Connectε(u) with line segments to the
vertices of thek-gon.

63

Figure 78 illustrates the recursive construction. It is
straightforward to implement but there are numerical is-
sues in the choice ofε(u) that limit the usefulness of this
construction.

recurse

uremove

uadd back

u

a b

c

v

w x

y

Figure 78: We fix the outer triangle, remove the degree-5 vertex,
recursively construct a straight-line embedding of the rest, and
finally add the vertex back.

Tutte’s construction. A more useful construction of a
straight-line embedding goes back to the work of Tutte.
We begin with a definition. Given a finite set of points,
x1, x2, . . . , xj , theaverageis

x =
1

n

j
∑

i=1

xi.

For j = 2, it is the midpoint of the edge and forj = 3,
it is the centroid of the triangle. In general, the average
is a point somewhere between thexi. Let G = (V,E)
be a maximally connected planar graph anda, b, c three
vertices connected by three edges. We now follow Tutte’s
construction to get a mappingε : V → R

2 so that the
straight-line drawing ofG is a straight-line embedding.

Step 1. Map a, b, c to pointsε(a), ε(b), ε(c) spanning
a triangle inR2.

Step 2. For each vertexu ∈ V − {a, b, c}, letNu be
the set of neighbors ofu. Mapu to the average of the
images of its neighbors, that is,

ε(u) =
1

|Nu|
∑

v∈Nu

ε(v).

The fact that the resulting mappingε : V → R
2 gives a

straight-line embedding ofG is known as Tutte’s Theo-
rem. It holds even ifG is not quite maximally connected
and if the points are not quite the averages of their neigh-
bors. The proof is a bit involved and omitted.

The pointsε(u) can be computed by solving a system of
linear equations. We illustrate this for the graph in Figure
78. We setε(a) =

(

−1
−1

)

, ε(b) =
(

1
−1

)

, ε(c) =
(

0
1

)

. The
other five points are computed by solving the system of
linear equationsAv = 0, where

A =













0 0 1 −5 1 1 1 1
0 0 1 1 −3 1 0 0
1 1 1 1 1 −6 1 0
0 1 1 1 0 1 −5 1
0 0 1 1 0 0 1 −3













andv is the column vector of pointsε(a) to ε(y). There
are really two linear systems, one for the horizontal and
the other for the vertical coordinates. In each system, we
haven− 3 equations and a total ofn− 3 unknowns. This
gives a unique solution provided the equations are linearly
independent. Proving that they are is part of the proof of
Tutte’s Theorem. Solving the linear equations is a numeri-
cal problem that is studies in detail in courses on numerical
analysis.

64

18 Surfaces

Graphs may be drawn in two, three, or higher dimen-
sions, but they are still intrinsically only1-dimensional.
One step up in dimensions, we find surfaces, which are
2-dimensional.

Topological2-manifolds. The simplest kind of surfaces
are the ones that on a small scale look like the real plane.
A spaceM is a 2-manifold if every point x ∈ M is
locally homeomorphic toR2. Specifically, there is an
open neighborhoodN of x and a continuous bijection
h : N → R2 whose inverse is also continuous. Such a
bicontinuous map is called ahomeomorphism. Examples
of 2-manifolds are the open disk and the sphere. The for-
mer is not compact because it has covers that do not have
finite subcovers. Figure 79 shows examples of compact2-
manifolds. If we add the boundary circle to the open disk

Figure 79: Three compact2-manifolds, the sphere, the torus, and
the double torus.

we get a closed disk which is compact but not every point
is locally homeomorphic toR2. Specifically, a point on
the circle has an open neighborhood homeomorphic to the
closed half-plane,H2 = {(x1, x2) ∈ R2 | x1 ≥ 0}. A
space whose points have open neighborhoods homeomor-
phic to R

2 or H
2 is called a2-manifolds with boundary;

see Figure 80 for examples. Theboundaryis the subset

Figure 80: Three2-manifolds with boundary, the closed disk, the
cylinder, and the Möbius strip.

of points with neighborhoods homeomorphic toH2. It is
a 1-manifold (without boundary), that is, every point is
locally homeomorphic toR. There is only one type of
compact, connected1-manifold, namely the closed curve.
In topology, we do not distinguish spaces that are home-
omorphic to each other. Hence, every closed curve is like
every other one and they are all homeomorphic to the unit
circle,S1 = {x ∈ R2 | ‖x‖ = 1}.

Triangulations. A standard representation of a compact
2-manifold uses triangles that are glued to each other
along shared edges and vertices. A collectionK of tri-
angles, edges, and vertices is atriangulationof a compact
2-manifold if

I. for every triangle inK, its three edges belong toK,
and for every edge inK, its two endpoints are ver-
tices inK;

II. every edge belongs to exactly two triangles and every
vertex belongs to a single ring of triangles.

An example is shown in Figure 81. To simplify language,
we call each element ofK asimplex. If we need to be spe-
cific, we add the dimension, calling a vertex a0-simplex,
an edge a1-simplex, and a triangle a2-simplex. A face
of a simplexτ is a simplexσ ⊆ τ . For example, a trian-
gle has seven faces, its three vertices, its two edges, and
itself. We can now state Condition I more succinctly: if
σ is a face ofτ andτ ∈ K thenσ ∈ K. To talk about

Figure 81: A triangulation of the sphere. The eight triangles are
glued to form the boundary of an octahedron which is homeo-
morphic to the sphere.

the inverse of the face relation, we define thestar of a
simplexσ as the set of simplices that containσ as a face,
Stσ = {τ ∈ K | σ ⊆ τ}. Sometimes we think of the
star as a set of simplices and sometimes as a set of points,
namely the union of interiors of the simplices in the star.
With the latter interpretation, we can now express Condi-
tion II more succinctly: the star of every simplex inK is
homeomorphic toR2.

Data structure. When we store a2-manifold, it is use-
ful to keep track of which side we are facing and where
we are going so that we can move around efficiently.
The core piece of our data structure is a representation
of the symmetry group of a triangle. This group is iso-
morphic to the group of permutations of three elements,

65

the vertices of the triangle. We call each permutation
an ordered triangleand use cyclic shifts and transposi-
tions to move between them; see Figure 82. We store

ENEXT ENEXT

ENEXTENEXT

ENEXT

ENEXT

SYM SYM SYM

c a b

a b b c c a

b a c b a c

bac

Figure 82: The symmetry group of the triangle consists of six
ordered versions. Each ordered triangle has a lead vertex and a
lead directed edge.

the entire symmetry group in a single node of an abstract
graph, with arcs between neighboring triangles. Further-
more, we store the vertices in a linear array,V [1..n]. For
each ordered triangle, we store the index of the lead ver-
tex and a pointer to the neighboring triangle that shares
the same directed lead edge. A pointer in this context
is the address of a node together with a three-bit inte-
ger, ι, that identifies the ordered version of the triangle
we refer to. Suppose for example that we identify the
ordered versionsabc, bca, cab, bac, cba, acb of a triangle
with ι = 0, 1, 2, 4, 5, 6, in this sequence. Then we can
move between different ordered versions of the same tri-
angle using the following functions.

ordTri ENEXT(µ, ι)
if ι ≤ 2 then return (µ, (ι+ 1) mod 3)

else return (µ, (ι+ 1) mod 3 + 4)
endif.

ordTri SYM(µ, ι)
return (µ, (ι + 4) mod 8).

To get the index of the lead vertex, we use the integer func-
tion ORG(µ, ι) and to get the pointer to the neighboring
triangle, we useFNEXT(µ, ι).

Orientability. A 2-manifold isorientableif it has two
distinct sides, that is, if we move around on one we stay
there and never cross over to the other side. The one exam-
ple of a non-orientable manifold we have seen so far is the

Möbious strip in Figure 80. There are also non-orientable,
compact2-manifolds (without boundary), as we can see in
Figure 83. We use the data structure to decide whether or

Figure 83: Two non-orientable, compact2-manifolds, the pro-
jective plane on the left and the Klein bottle on the right.

not a2-manifold is orientable. Note that the cyclic shift
partitions the set of six ordered triangles into twoorien-
tations, each consisting of three triangles. We say two
neighboring triangles areconsistently orientedif they dis-
agree on the direction of the shared edge, as in Figure 81.
Using depth-first search, we visit all triangles and orient
them consistently, if possible. At the first visit, we ori-
ent the triangle consistent with the preceding, neighboring
triangle. At subsequence visits, we check for consistent
orientation.

boolean ISORNTBL(µ, ι)
if µ is unmarkedthen

markµ; choose the orientation that containsι;
bx = ISORNTBL(FNEXT(SYM(µ, ι)));
by = ISORNTBL(FNEXT(ENEXT(SYM(µ, ι))));
bz = ISORNTBL(FNEXT(ENEXT2(SYM(µ, ι))));
return bx and by and bz

else
return [orientation ofµ containsι]

endif.

There are two places where we return a boolean value. At
the second place, it indicates whether or not we have con-
sistent orientation in spite of the visited triangle being ori-
ented prior to the visit. At the first place, the boolean value
indicates whether or not we have found a contradiction to
orientablity so far. A value ofFALSE anywhere during the
computation is propagated to the root of the search tree
telling us that the2-manifold is non-orientable. The run-
ning time is proportional to the number of triangles in the
triangulation of the2-manifold.

Classification. For the sphere and the torus, it is easy
to see how to make them out of a sheet of paper. Twist-
ing the paper gives a non-orientable2-manifold. Perhaps

66

most difficult to understand is the projective plane. It is
obtained by gluing each point of the sphere to its antipodal
point. This way, the entire northern hemisphere is glued
to the southern hemisphere. This gives the disk except
that we still need to glue points of the bounding circle (the
equator) in pairs, as shown in the third paper construction
in Figure 84. The Klein bottle is easier to imagine as it
is obtained by twisting the paper just once, same as in the
construction of the Möbius strip.

b a

b

b b

a

b

a a

bb b

a a a a

Figure 84: From left to right: the sphere, the torus, the projective
plane, and the Klein bottle.

There is a general method here that can be used to clas-
sify the compact2-manifolds. Given two of them, we con-
struct a new one by removing an open disk each and glu-
ing the2-manifolds along the two circles. The result is
called theconnected sumof the two2-manifolds, denoted
asM#N. For example, the double torus is the connected
sum of two tori,T2#T2. We can cut up theg-fold torus
into a flat sheet of paper, and the canonical way of doing
this gives a4g-gon with edges identified in pairs as shown
in Figure 85 on the left. The numberg is called thegenus
of the manifold. Similarly, we can get new non-orientable

1

1

2

2

3

3

4

1

1

1

1

2

2

42

2

a a

aa

b b

b

a a

a

a

a

a

a a

b

Figure 85: The polygonal schema in standard form for the double
torus and the double Klein bottle.

manifolds from the projective plane,P2, by forming con-
nected sums. Cutting up theg-fold projective plane gives
a2g-gon with edges identified in pairs as shown in Figure
85 on the right. We note that the constructions of the pro-
jective plane and the Klein bottle in Figure 84 are both not
in standard form. A remarkable result which is now more
than a century old is that every compact2-manifold can be
cut up to give a standard polygonal schema. This implies
a classification of the possibilities.

CLASSIFICATION THEOREM. The members of the fami-
lies S2,T2,T2#T2, . . . andP2,P2#P2, . . . are non-
homeomorphic and they exhaust the family of com-
pact2-manifolds.

Euler characteristic. Suppose we are given a triangula-
tion, K, of a compact2-manifold,M. We already know
how to decide whether or notM is orientable. To deter-
mine its type, we just need to find its genus, which we do
by counting simplices. TheEuler characteristicis

χ = #vertices− #edges+ #triangles.

Let us look at the orientable case first. We have a4g-gon
which we triangulate. This is a planar graph withn −
m+ ℓ = 2. However,2g edge are counted double, the4g
vertices of the4g-gon are all the same, and the outer face
is not a triangle inK. Hence,

χ = (n− 4g + 1) − (m− 2g) + (ℓ− 1)

= (n−m+ ℓ) − 2g

which is equal to2 − 2g. The same analysis can be used
in the non-orientable case in which we getχ = (n− 2g+
1) − (m − g) + (ℓ − 1) = 2 − g. To decide whether
two compact2-manifolds are homeomorphic it suffices to
determine whether they are both orientable or both non-
orientable and, if they are, whether they have the same
Euler characteristic. This can be done in time linear in the
number of simplices in their triangulations.

This result is in sharp contrast to the higher-dimensional
case. The classification of compact3-manifolds has been
a longstanding open problem in Mathematics. Perhaps
the recent proof of the Poincaré conjecture by Perelman
brings us close to a resolution. Beyond three dimensions,
the situation is hopeless, that is, deciding whether or not
two triangulated compact manifolds of dimension four or
higher are homeomorphic is undecidable.

67

19 Homology

In topology, the main focus is not on geometric size but
rather on how a space is connected. The most elementary
notion distinguishes whether we can go from one place
to another. If not then there is a gap we cannot bridge.
Next we would ask whether there is a loop going around
an obstacle, or whether there is a void missing in the space.
Homology is a formalization of these ideas. It gives a way
to define and count holes using algebra.

The cyclomatic number of a graph. To motivate the
more general concepts, consider a connected graph,G,
with n vertices andm edges. A spanning tree hasn − 1
edges and every additional edge forms a unique cycle to-
gether with edges in this tree; see Figure 86. Every other

Figure 86: A tree with three additional edges defining the same
number of cycles.

cycle inG can be written as a sum of thesem − (n − 1)
cycles. To make this concrete, we define acycleas a sub-
set of the edges such that every vertex belongs to an even
number of these edges. A cycle does not need to be con-
nected. Thesumof two cycles is the symmetric difference
of the two sets such that multiple edges erase each other
in pairs. Clearly, the sum of two cycles is again a cy-
cle. Every cycle,γ, in G contains some positive number
of edges that do not belong to the spanning tree. Call-
ing these edgese1, e2, . . . , ek and the cycles they define
γ1, γ2, . . . , γk, we claim that

γ = γ1 + γ2 + . . .+ γk.

To see this assume thatδ = γ1 + γ2 + . . .+ γk is different
fromγ. Thenγ+δ is again a cycle but it contains no edges
that do not belong to the spanning tree. Henceγ + δ = ∅
and thereforeγ = δ, as claimed. This implies that the
m−n+1 cycles form a basis of the group of cycles which
motivates us to callm − n + 1 thecyclomatic numberof
the graph. Note that the basis depends on the choice of

spanning tree while the cyclomatic number is independent
of that choice.

Simplicial complexes. We begin with a combinatorial
representation of a topological space. Using a finite
ground set of vertices,V , we call a subsetσ ⊆ V an
abstract simplex. Its dimensionis one less than the car-
dinality,dim σ = |σ| − 1. A faceis a subsetτ ⊆ σ.

DEFINITION. An abstract simplicial complexoverV is a
systemK ⊆ 2V such thatσ ∈ K andτ ⊆ σ implies
τ ∈ K.

Thedimensionof K is the largest dimension of any sim-
plex inK. A graph is thus a1-dimensional abstract sim-
plicial complex. Just like for graphs, we sometimes think
of K as an abstract structure and at other times as a geo-
metric object consisting of geometric simplices. In the lat-
ter interpretation, we glue the simplices along shared faces
to form ageometric realizationof K, denoted as|K|. We
sayK triangulatesa spaceX if there is a homeomorphism
h : X → |K|. We have seen1- and2-dimensional exam-
ples in the preceding sections. Theboundaryof a simplex
σ is the collection of co-dimension one faces,

∂σ = {τ ⊆ σ | dim τ = dim σ − 1}.

If dimσ = p then the boundary consists ofp+ 1 (p− 1)-
simplices. Every(p− 1)-simplex hasp (p− 2)-simplices
in its own boundary. This way we get(p + 1)p (p − 2)-
simplices, counting each of the

(

p+1
p−1

)

=
(

p+1
2

)

(p − 2)-
dimensional faces ofσ twice.

Chain complexes. We now generalize the cycles in
graphs to cycles of different dimensions in simplicial com-
plexes. Ap-chain is a set ofp-simplices inK. Thesum
of two p-chains is their symmetric difference. We usually
write the sets as formal sums,

c = a1σ1 + a2σ2 + . . .+ anσn;

d = b1σ1 + b2σ2 + . . .+ bnσn,

where theai andbi are either0 or 1. Addition can then be
done using modulo2 arithmetic,

c+2 d = (a1 +2 b1)σ1 + . . .+ (an +2 bn)σn,

whereai +2 bi is the exclusive or operation. We simplify
notation by dropping the subscript but note that the two
plus signs are different, one modulo two and the other a
formal notation separating elements in a set. Thep-chains

68

form a group, which we denote as(Cp,+) or simplyCp.
Note that the boundary of ap-simplex is a(p − 1)-chain,
an element ofCp−1. Extending this concept linearly, we
define the boundary of ap-chain as the sum of boundaries
of its simplices,∂c = a1∂σ1+. . .+an∂σn. The boundary
is thus a map between chain groups and we sometimes
write the dimension as index for clarity,

∂p : Cp → Cp−1.

It is a homomorphism since∂p(c+ d) = ∂pc+ ∂pd. The
infinite sequence of chain groups connected by boundary
homomorphisms is called thechain complexof K. All
groups of dimension smaller than0 and larger than the di-
mension ofK are trivial. It is convenient to keep them
around to avoid special cases at the ends. Ap-cycle is a
p-chain whose boundary is zero. The sum of twop-cycles
is again ap-cycle so we get a subgroup,Zp ⊆ Cp. A
p-boundaryis ap-chain that is the boundary of a(p+ 1)-
chain. The sum of twop-boundaries is again ap-boundary
so we get another subgroup,Bp ⊆ Cp, Taking the bound-
ary twice in a row gives zero for every simplex and thus
for every chain, that is,(∂p(∂p+1d) = 0. It follows that
Bp is a subgroup ofZp. We can therefore draw the chain
complex as in Figure 87.

B

Z

Cp+1

p+1

p+1

C

Z

B

p

p

p

C

Z

B

p−1

p−1

p−1

0 0 0

p+2 p+1 p p−1

Figure 87: The chain complex consisting of a linear sequence
of chain, cycle, and boundary groups connected by homomor-
phisms.

Homology groups. We would like to talk about cycles
but ignore the boundaries since they do not go around a
hole. At the same time, we would like to consider two
cycles the same if they differ by a boundary. See Figure
88 for a few1-cycles, some of which are1-boundaries and
some of which are not. This is achieved by taking the
quotient of the cycle group and the boundary group. The
result is thep-th homology group,

Hp = Zp/Bp.

Its elements are of the form[c] = c + Bp, wherec is ap-
cycle. [c] is called ahomology class, c is a representative
of [c], and any two cycles in[c] arehomologousdenoted

γ

δ

ε

Figure 88: The1-cyclesγ andδ are not1-boundaries. Adding
the1-boundaryε to δ gives a1-cycle homologous toδ.

asc ∼ c′. Note that[c] = [c′] wheneverc ∼ c′. Also note
that [c + d] = [c′ + d′] wheneverc ∼ c′ andd ∼ d′. We
use this as a definition of addition for homology classes, so
we again have a group. For example, the1-st homology
group of the torus consists of four elements,[0] = B1,
[γ] = γ+B1, [δ] = δ+B1, and[γ+ δ] = γ+ δ+B1. We
often draw the elements as the corners of a cube of some
dimension; see Figure 89. If the dimension isβ then it has

[0]

[γ] [γ+δ]

[γ]

Figure 89: The four homology classes ofH1 are generated by
two classes,[γ] and[δ].

2β corners. The dimension is also the number of classes
needed to generate the group, the size of the basis. For
thep-th homology group, this number isβp = rankHp =
log2 |Hp|, thep-th Betti number. For the torus we have

β0 = 1;

β1 = 2;

β2 = 1,

andβp = 0 for all p 6= 0, 1, 2. Every 0-chain is a0-
cycle. Two0-cycles are homologous if they are both the
sum of an even number or both of an odd number of ver-
tices. Henceβ0 = log2 2 = 1. We have seen the reason
for β1 = 2 before. Finally, there are only two2-cycles,
namely0 and the set of all triangles. The latter is not a
boundary, henceβ2 = log2 2 = 1.

Boundary matrices. To compute homology groups and
Betti numbers, we use a matrix representation of the sim-
plicial complex. Specifically, we store the boundary ho-
momorphism for each dimension, setting∂p[i, j] = 1 if

69

the i-th (p − 1)-simplex is in the boundary of thej-th p-
simplex, and∂p[i, j] = 0, otherwise. For example, if the
complex consists of all faces of the tetrahedron, then the
boundary matrices are

∂0 =
[

0 0 0 0
]

;

∂1 =









1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1









;

∂2 =

















1 1 0 0
1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
0 0 1 1

















;

∂3 =









1
1
1
1









.

Given ap-chain as a column vector,v, its boundary is
computed by matrix multiplication,∂pv. The result is a
combination of columns in thep-th boundary matrix, as
specified byv. Thus,v is ap-cycle iff ∂pv = 0 andv is a
p-boundary iff there isu such that∂p+1u = v.

Matrix reduction. Letting np be the number ofp-
simplices inK, we note that it is also the rank of thep-th
chain group,np = rankCp. The p-th boundary matrix
thus hasnp−1 rows andnp columns. To figure the sizes of
the cycle and boundary groups, and thus of the homology
groups, we reduce the matrix to normal form, as shown
in Figure 90. The algorithm of choice uses column and

Z

rankB

C

C

−1p

p

rank

rank
rank

p

p−1

Figure 90: Thep-th boundary matrix in normal form. The entries
in the shaded portion of the diagonal are1 and all other entries
are0.

row operations similar to Gaussian elimination for solv-

ing a linear system. We write it recursively, calling it with
m = 1.

void REDUCE(m)
if ∃k, l ≥ m with ∂p[k, l] = 1 then

exchange rowsm andk and columnsm andl;
for i = m+ 1 to np−1 do
if ∂p[i,m] = 1 then

add rowm to row i
endif

endfor;
for j = m+ 1 to np do
if ∂p[m, j] = 1 then

add columnm to columnj
endif

endfor;
REDUCE(m+ 1)

endif.

For each recursive call, we have at most a linear number
of row and column operations. The total running time is
therefore at most cubic in the number of simplices. Figure
90 shows how we interpret the result. Specifically, the
number of zero columns is the rank of the cycle group,
Zp, and the number of1s in the diagonal is the rank of the
boundary group,Bp−1. The Betti number is the difference,

βp = rankZp − rankBp,

taking the rank of the boundary group from the reduced
matrix one dimension up. Working on our example, we
get the following reduced matrices.

∂0 =
[

0 0 0 0
]

;

∂1 =









1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0









;

∂2 =

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

















;

∂3 =









1
0
0
0









.

Writing zp = rankZp andbp = rankBp, we getz0 = 4
from the zeroth andb0 = 3 from the first reduced bound-
ary matrix. Henceβ0 = z0 = b0 = 1. Furthermore,

70

z1 = 3 andb1 = 3 giving β1 = 0, z2 = 1 andb2 = 1
giving β2 = 0, andz3 = 0 giving β3 = 0. These are the
Betti numbers of the closed ball.

Euler-Poincaré Theorem. TheEuler characteristicof a
simplicial complex is the alternating sum of simplex num-
bers,

χ =
∑

p≥0

(−1)pnp.

Recalling thatnp is the rank of thep-th chain group and
that it equals the rank of thep-th cycle group plus the rank
of the(p− 1)-st boundary group, we get

χ =
∑

p≥0

(−1)p(zp + bp−1)

=
∑

p≥0

(−1)p(zp − bp),

which is the same as the alternating sum of Betti num-
bers. To appreciate the beauty of this result, we need to
know that the Betti numbers do not depend on the trian-
gulation chosen for the space. The proof of this property
is technical and omitted. This now implies that the Euler
characteristic is an invariant of the space, same as the Betti
numbers.

EULER-POINCARÉ THEOREM. χ =
∑

(−1)pβp.

71

Fifth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is November 13.

Problem 1. (20 points). LetG = (V,E) be a maxi-
mally connected planar graph and recall that[k] =
{1, 2, . . . , k}. A vertexk-coloring is a mappingγ :
V → [k] such thatγ(u) 6= γ(v) wheneveru 6= v
are adjacent, and anedgek-coloring is a mapping
η : E → [k] such thatη(e) 6= η(f) whenevere 6= f
bound a common triangle. Prove that ifG has a ver-
tex4-coloring then it also has an edge3-coloring.

Problem 2. (20 = 10 + 10 points). LetK be a set of
triangles together with their edges and vertices. The
vertices are represented by a linear array, as usual, but
there is no particular ordering information in the way
the edges and triangles are given. In other words, the
edges are just a list of index pairs and the triangles
are a list of index triplets into the vertex array.

(a) Give an algorithm that decides whether or not
K is a triangulation of a2-manifold.

(b) Analyze your algorithm and collect credit
points if the running time of your algorithm is
linear in the number of triangles.

Problem 3. (20 = 5+7+8 points). Determine the type of
2-manifold with boundary obtained by the following
constructions.

(a) Remove a cylinder from a torus in such a way
that the rest of the torus remains connected.

(b) Remove a disk from the projective plane.

(c) Remove a Möbius strip from a Klein bottle.

Whenever we remove a piece, we do this like cutting
with scissors so that the remainder is still closed, in
each case a2-manifold with boundary.

Problem 4. (20 = 5 + 5 + 5 + 5 points). Recall that the
sphere is the space of points at unit distance from the
origin in three-dimensional Euclidean space,S2 =
{x ∈ R3 | ‖x‖ = 1}.

(a) Give a triangulation ofS2.

(b) Give the corresponding boundary matrices.

(c) Reduce the boundary matrices.

(d) Give the Betti numbers ofS2.

Problem 5. (20 = 10 + 10 points). Thedunce capis ob-
tained by gluing the three edges of a triangular sheet
of paper to each other. [After gluing the first two
edges you get a cone, with the glued edges forming a
seam connecting the cone point with the rim. In the
final step, wrap the seam around the rim, gluing all
three edges to each other. To imagine how this work,
it might help to think of the final result as similar to
the shell of a snale.]

(a) Is the dunce cap a2-manifold? Justify your an-
swer.

(b) Give a triangulation of the dunce cap, making
sure that no two edges connect the same two
vertices and no two triangles connect the same
three vertices.

72

VI GEOMETRIC ALGORITHMS

20 Plane-Sweep
21 Delaunay Triangulations
22 Alpha Shapes

Sixth Homework Assignment

73

20 Plane-Sweep

Plane-sweep is an algorithmic paradigm that emerges in
the study of two-dimensional geometric problems. The
idea is to sweep the plane with a line and perform the com-
putations in the sequence the data is encountered. In this
section, we solve three problems with this paradigm: we
construct the convex hull of a set of points, we triangulate
the convex hull using the points as vertices, and we test a
set of line segments for crossings.

Convex hull. LetS be a finite set of points in the plane,
each given by its two coordinates. Theconvex hullof S,
denoted byconvS, is the smallest convex set that con-
tainsS. Figure 91 illustrates the definition for a set of
nine points. Imagine the points as solid nails in a planar
board. An intuitive construction stretches a rubber band
around the nails. After letting go, the nails prevent the
complete relaxation of the rubber band which will then
trace the boundary of the convex hull.

6

7

4
1

2 9

8

3

5

Figure 91: The convex hull of nine points, which we represent
by the counterclockwise sequence of boundary vertices: 1, 3, 6,
8, 9, 2.

To construct the counterclockwise cyclic sequence of
boundary vertices representing the convex hull, we sweep
a vertical line from left to right over the data. At any mo-
ment in time, the points in front (to the right) of the line
are untouched and the points behind (to the left) of the line
have already been processed.

Step 1. Sort the points from left to right and relabel
them in this sequence asx1, x2, . . . , xn.

Step 2. Construct a counterclockwise triangle from
the first three points:x1x2x3 or x1x3x2.

Step 3. For i from 4 ton, add the next pointxi to the
convex hull of the preceding points by finding the
two lines that pass throughxi and support the con-
vex hull.

The algorithm is illustrated in Figure 92, which shows the
addition of the sixth point in the data set.

6

5

41

2 9

8

3

7

Figure 92: The vertical sweep-line passes through point 6. To
add 6, we substitute 6 for the sequence of vertices on the bound-
ary between 3 and 5.

Orientation test. A critical test needed to construct the
convex hull is to determine the orientation of a sequence
of three points. In other words, we need to be able to dis-
tinguish whether we make a left-turn or a right-turn as we
go from the first to the middle and then the last point in
the sequence. A convenient way to determine the orien-
tation evaluates the determinant of a three-by-three ma-
trix. More precisely, the pointsa = (a1, a2), b = (b1, b2),
c = (c1, c2) form a left-turn iff

det





1 a1 a2

1 b1 b2
1 c1 c2



 > 0.

The three points form a right-turn iff the determinant is
negative and they lie on a common line iff the determinant
is zero.

boolean LEFT(Points a, b, c)
return [a1(b2 − c2) + b1(c2 − a2)

+ c1(a2 − b2) > 0].

To see that this formula is correct, we may convince our-
selves that it is correct for three non-collinear points, e.g.
a = (0, 0), b = (1, 0), andc = (0, 1). Remember also
that the determinant measures the area of the triangle and
is therefore a continuous function that passes through zero
only when the three points are collinear. Since we can
continuously move every left-turn to every other left-turn
without leaving the class of left-turns, it follows that the
sign of the determinant is the same for all of them.

Finding support lines. We use a doubly-linked cyclic
list of vertices to represent the convex hull boundary. Each

74

node in the list contains pointers to the next and the previ-
ous nodes. In addition, we have a pointerlast to the last
vertex added to the list. This vertex is also the rightmost
in the list. We add thei-th point by connecting it to the
verticesµ → pt andλ → pt identified in a counterclock-
wise and a clockwise traversal of the cycle starting atlast ,
as illustrated in Figure 93. We simplify notation by using

last

µ

ν

λ

Figure 93: The upper support line passes through the first point
µ → pt that forms a left-turn fromν → pt to µ → next → pt .

nodes in the parameter list of the orientation test instead
of the points they store.

µ = λ = last ; create new node withν → pt = i;
while RIGHT(ν, µ, µ→ next) do
µ = µ→ next

endwhile;
while LEFT(ν, λ, λ→ prev) do
λ = λ→ prev

endwhile;
ν → next = µ; ν → prev = λ;
µ→ prev = λ→ next = ν; last = ν.

The effort to add thei-th point can be large, but if it is
then we remove many previously added vertices from the
list. Indeed, each iteration of the for-loop adds only one
vertex to the cyclic list. We charge $2 for the addition,
one dollar for the cost of adding and the other to pay for
the future deletion, if any. The extra dollars pay for all
iterations of the while-loops, except for the first and the
last. This implies that we spend only constant amortized
time per point. After sorting the points from left to right,
we can therefore construct the convex hull ofn points in
time O(n).

Triangulation. The same plane-sweep algorithm can be
used to decompose the convex hull into triangles. All
we need to change is that points and edges are never re-
moved and a new point is connected to every point exam-
ined during the two while-loops. We define a(geometric)
triangulationof a finite set of pointsS in the plane as a

maximally connected straight-line embedding of a planar
graph whose vertices are mapped to points inS. Figure 94
shows the triangulation of the nine points in Figure 91 con-
structed by the plane-sweep algorithm. A triangulation is

3

8

92

1

5

4

7

6

Figure 94: Triangulation constructed with the plane-sweepalgo-
rithm.

not necessarily a maximally connected planar graph since
the prescribed placement of the points fixes the boundary
of the outer face to be the boundary of the convex hull.
Letting k be the number of edges of that boundary, we
would have to addk − 3 more edges to get a maximally
connected planar graph. It follows that the triangulation
hasm = 3n − (k + 3) edges andℓ = 2n − (k + 2)
triangles.

Line segment intersection. As a third application of the
plane-sweep paradigm, we consider the problem of decid-
ing whether or notn given line segments have pairwise
disjoint interiors. We allow line segments to share end-
points but we do not allow them to cross or to overlap. We
may interpret this problem as deciding whether or not a
straight-line drawing of a graph is an embedding. To sim-
plify the description of the algorithm, we assume no three
endpoints are collinear, so we only have to worry about
crossings and not about other overlaps.

How can we decide whether or not a line segment
with endpointu = (u1, u2) and v = (v1, v2) crosses
another line segment with endpointsp = (p1, p2) and
q = (q1, q2)? Figure 95 illustrates the question by show-
ing the four different cases of how two line segments and
the lines they span can intersect. The line segments cross
iff uv intersects the line ofpq andpq intersects the line of
uv. This condition can be checked using the orientation
test.

boolean CROSS(Points u, v, p, q)
return [(L EFT(u, v, p) xor LEFT(u, v, q)) and

(LEFT(p, q, u) xor LEFT(p, q, v))].

We can use the above function to test all
(

n
2

)

pairs of line
segments, which takes time O(n2).

75

u

q

v

p

u

v

q

p

q
q v

u p

v

u

p

Figure 95: Three pairs of non-crossing and one pair of crossing
line segments.

Plane-sweep algorithm. We obtain a faster algorithm
by sweeping the plane with a vertical line from left to
right, as before. To avoid special cases, we assume that
no two endpoints are the same or lie on a common verti-
cal line. During the sweep, we maintain the subset of line
segments that intersect the sweep-line in the order they
meet the line, as shown in Figure 96. We store this subset

Figure 96: Five of the line segments intersect the sweep-line at
its current position and two of them cross.

in a dictionary, which is updated at every endpoint. Only
line segments that are adjacent in the ordering along the
sweep-line are tested for crossings. Indeed, two line seg-
ments that cross are adjacent right before the sweep-line
passes through the crossing, if not earlier.

Step 1. Sort the2n endpoints from left to right and re-
label them in this sequence asx1, x2, . . . , x2n. Each
point still remembers the index of the other endpoint
of its line segment.

Step 2. For i from 1 to 2n, process thei-th endpoint
as follows:

Case 2.1 xi is left endpoint of the line segment
xixj . Therefore,i < j. Insert xixj into
the dictionary and letuv andpq be its prede-
cessor and successor. If CROSS(u, v, xi, xj)
or CROSS(p, q, xi, xj) then report the crossing
and stop.

Case 2.2 xi is right endpoint of the line segment
xixj . Therefore,i > j. Let uv and pq be
the predecessor and the successor ofxixj . If
CROSS(u, v, p, q) then report the crossing and
stop. Deletexixj from the dictionary.

We do an insertion into the dictionary for each left end-
point and a deletion from the dictionary for each right
endpoint, both in time O(logn). In addition, we do at
most two crossing tests per endpoint, which takes constant
time. In total, the algorithm takes time O(n logn) to test
whether a set ofn line segments contains two that cross.

76

21 Delaunay Triangulations

The triangulations constructing by plane-sweep are typi-
cally of inferior quality, that is, there are many long and
skinny triangles and therefore many small and many large
angles. We study Delaunay triangulations which distin-
guish themselves from all other triangulations by a num-
ber of nice properties, including they have fast algorithms
and they avoid small angles to the extent possible.

Plane-sweep versus Delaunay triangulation. Figures
97 and 98 show two triangulations of the same set of
points, one constructed by plane-sweep and the other the
Delaunay triangulation. The angles in the Delaunay trian-

Figure 97: Triangulation constructed by plane-sweep. Points on
the same vertical line are processed from bottom to top.

gulation seem consistently larger than those in the plane-
sweep triangulation. This is not a coincidence and it can
be proved that the Delaunay triangulation maximizes the
minimum angle for every input set. Both triangulations

Figure 98: Delaunay triangulation of the same twenty-one points
triangulated in Figure 97.

contain the edges that bound the convex hull of the input
set.

Voronoi diagram. We introduce the Delaunay triangu-
lation indirectly, by first defining a particular decomposi-
tion of the plane into regions, one per point in the finite
data setS. The region of the pointu in S contains all
pointsx in the plane that are at least as close tou as to any
other point inS, that is,

Vu = {x ∈ R
2 | ‖x− u‖ ≤ ‖x− v‖, v ∈ S},

where‖x− u‖ = [(x1 − u1)
2 +(x2 − u2)

2]1/2 is the Eu-
clidean distance between the pointsx andu. We refer to
Vu as theVoronoi regionof u. It is closed and its bound-
ary consists ofVoronoi edgeswhichVu shares with neigh-
boring Voronoi regions. A Voronoi edge ends inVoronoi
verticeswhich it shares with other Voronoi edges. The
Voronoi diagramof S is the collection of Voronoi regions,
edges and vertices. Figure 99 illustrates the definitions.
Let n be the number of points inS. We list some of the
properties that will be important later.

Figure 99: The (solid) Voronoi diagram drawn above the (dot-
ted) Delaunay triangulation of the same twenty-one points trian-
gulated in Figures 97 and 98. Some of the Voronoi edges are too
far out to fit into the picture.

• Each Voronoi region is a convex polygon constructed
as the intersection ofn− 1 closed half-planes.

• The Voronoi regionVu is bounded (finite) iffu lies in
the interior of the convex hull ofS.

• The Voronoi regions have pairwise disjoint interiors
and together cover the entire plane.

Delaunay triangulation. We define theDelaunay trian-
gulationas the straight-line dual of the Voronoi diagram.
Specifically, for every pair of Voronoi regionsVu andVv

that share an edge, we draw the line segment fromu to v.
By construction, every Voronoi vertex,x, hasj ≥ 3 clos-
est input points. Usually there are exactly three closest

77

points,u, v, w, in which case the triangle they span be-
longs to the Delaunay triangulation. Note thatx is equally
far from u, v, andw and further from all other points in
S. This implies theempty circle propertyof Delaunay tri-
angles: all points ofS − {u, v, w} lie outside the circum-
scribed circle ofuvw. Similarly, for each Delaunay edge
uv, there is a circle that passes throughu andv such that
all points ofS − {u, v} lie outside the circle. For exam-
ple, the circle centered at the midpoint of the Voronoi edge
shared byVu andVv is empty in this sense. This property
can be used to prove that the edge skeleton of the Delau-
nay triangulation is a straight-line embedding of a planar
graph.

Figure 100: A Voronoi vertex of degree 5 and the corresponding
pentagon in the Delaunay triangulation. The dotted edges com-
plete the triangulation by decomposing the pentagon into three
triangles.

Now suppose there is a vertex with degreej > 3. It cor-
responds to a polygon withj > 3 edges in the Delaunay
triangulation, as illustrated in Figure 100. Strictly speak-
ing, the Delaunay triangulation is no longer a triangulation
but we can complete it to a triangulation by decompos-
ing eachj-gon intoj − 2 triangles. This corresponds to
perturbing the data points every so slightly such that the
degree-j Voronoi vertices are resolved into trees in which
j − 2 degree-3 vertices are connected byj − 3 tiny edges.

Local Delaunayhood. Given a triangulation of a finite
point setS, we can test whether or not it is the Delaunay
triangulation by testing each edge against the two trian-
gles that share the edge. Suppose the edgeuv in the tri-
angulationT is shared by the trianglesuvp anduvq. We
call uv locally Delaunay, or lD for short, if q lies on or
outside the circle that passes throughu, v, p. The condi-
tion is symmetric inp andq because the circle that passes
throughu, v, p intersects the first circle in pointsu andv.
It follows thatp lies on or outside the circle ofu, v, q iff q
lies on or outside the circle ofu, v, p. We also calluv lo-

cally Delaunay if it bounds the convex hull ofS and thus
belongs to only one triangle. The local condition on the
edges implies a global property.

DELAUNAY LEMMA . If every edge in a triangulationK
of S is locally Delaunay thenK is the Delaunay tri-
angulation ofS.

Although every edge of the Delaunay triangulation is lo-
cally Delaunay, the Delaunay Lemma is not trivial. In-
deed,K may contain edges that are locally Delaunay but
do not belong to the Delaunay triangulation, as shown in
Figure 101. We omit the proof of the lemma.

u v

Figure 101: The edgeuv is locally Delaunay but does not belong
to the Delaunay triangulation.

Edge-flipping. The Delaunay Lemma suggests we con-
struct the Delaunay triangulation by first constructing an
arbitrary triangulation of the point setS and then modify-
ing it locally to make all edges lD. The idea is to look for
non-lD edges and to flip them, as illustrated in Figure 102.
Indeed, ifuv is a non-lD edge shared by trianglesuvp and

v

p

u

q

Figure 102: The edgeuv is non-lD and can be flipped to the edge
pq, which is lD.

uvq thenupvq is a convex quadrilateral andflipping uv
means substituting one diagonal for the other, namelypq

78

for uv. Note that ifuv is non-lD thenpq is lD. It is im-
portant that the algorithm finds non-lD edges quickly. For
this purpose, we use a stack of edges. Initially, we push
all edges on the stack and mark them.

while stack is non-emptydo
pop edgeuv from stack and unmark it;
if uv is non-lDthen

substitutepq for uv;
for ab ∈ {up, pv, vq, qu} do
if ab is unmarkedthen

pushab on the stack and mark it
endif

endfor
endif

endwhile.

The marks avoid multiple copies of the same edge on the
stack. This implies that at any one moment the size of the
stack is less than3n. Note also that initially the stack con-
tains all non-lD edges and that this property is maintained
as an invariant of the algorithm. The Delaunay Lemma
implies that when the algorithm halts, which is when the
stack is empty, then the triangulation is the Delaunay tri-
angulation. However, it is not yet clear that the algorithm
terminates. Indeed, the stack can grow and shrink dur-
ing the course of the algorithm, which makes it difficult to
prove that it ever runs empty.

In-circle test. Before studying the termination of the al-
gorithm, we look into the question of distinguishing lD
from non-lD edges. As before we assume that the edgeuv
is shared by the trianglesuvp anduvq in the current trian-
gulation. Recall thatuv is lD iff q lies outside the circle
that passes throughu, v, p. Let f : R2 → R be defined by
f(x) = x2

1 + x2
2. As illustrated in Figure 103, the graph

of this function is a paraboloid in three-dimensional space
and we writex+ = (x1, x2, f(x)) for the vertical projec-
tion of the pointx onto the paraboloid. Assuming the three
pointsu, v, p do not lie on a common line then the points
u+, v+, p+ lie on a non-vertical plane that is the graph of
a functionh(x) = αx1 + βx2 + γ. The projection of the
intersection of the paraboloid and the plane back intoR2

is given by

0 = f(x) − h(x)

= x2
1 + x2

2 − αx1 − βx2 − γ,

which is the equation of a circle. This circle passes
throughu, v, p so it is the circle we have to compareq

u p

v

q

Figure 103: The plane passing throughu+, v+, p+ intersects the
paraboloid in an ellipse whose projection intoR

2 passes through
the pointsu, v, p. The pointq+ lies below the plane iffq lies
inside the circle.

against. We note thatq lies inside the circle iffq+ lies be-
low the plane. The latter test can be based on the sign of
the determinant of the 4-by-4 matrix

∆ =









1 u1 u2 u2
1 + u2

2

1 v1 v2 v2
1 + v2

2

1 p1 p2 p2
1 + p2

2

1 q1 q2 q21 + q22









.

Exchanging two rows in the matrix changes the sign.
While the in-circle test should be insensitive to the order
of the first three points, the sign of the determinant is not.
We correct the change using the sign of the determinant of
the 3-by-3 matrix that keeps track of the ordering ofu, v, p
along the circle,

Γ =





1 u1 u2

1 v1 v2
1 p1 p2



 .

Now we claim thats is inside the circle ofu, v, p iff the
two determinants have opposite signs:

boolean INCIRCLE(Points u, v, p, q)
return det Γ · det ∆ < 0.

We first show that the boolean function is correct foru =
(0, 0), v = (1, 0), p = (0, 1), andq = (0, 0.5). The sign
of the product of determinants remains unchanged if we
continuously move the points and avoid the configurations
that make either determinant zero, which are whenu, v, p
are collinear and whenu, v, p, q are cocircular. We can
change any configuration whereq is inside the circle of
u, v, p continuously into the special configuration without
going through zero, which implies the correctness of the
function for general input points.

79

Termination and running time. To prove the edge-flip
algorithm terminates, we imagine the triangulation lifted
to R3. We do this by projecting the vertices vertically
onto the paraboloid, as before, and connecting them with
straight edges and triangles in space. Letuv be an edge
shared by trianglesuvp anduvq that is flipped topq by
the algorithm. It follows the line segmentsuv andpq cross
and their endpoints form a convex quadrilateral, as shown
in Figure 104. After lifting the two line segments, we get

q

v

u
p

Figure 104: A flip in the plane lifts to a tetrahedron in space in
which the lD edge passes below the non-lD edge.

u+v+ passing abovep+q+. We may thus think of the flip
as gluing the tetrahedronu+v+p+q+ underneath the sur-
face obtained by lifting the triangulation. The surface is
pushed down by each flip and never pushed back up. The
removed edge is now above the new surface and can there-
fore not be reintroduced by a later flip. It follows that the
algorithm performs at most

(

n
2

)

flips and thus takes at most
time O(n2) to construct the Delaunay triangulation ofS.
There are faster algorithms that work in time O(n logn)
but we prefer the suboptimal method because it is simpler
and it reveals more about Delaunay triangulations than the
other algorithms.

The lifting of the input points toR3 leads to an interest-
ing interpretation of the edge-flip algorithm. Starting with
a monotone triangulated surface passing through the lifted
points, we glue tetrahedra below the surface until we reach
the unique convex surface that passes through the points.
The projection of this convex surface is the Delaunay tri-
angulation of the points in the plane. This also gives a
reinterpretation of the Delaunay Lemma in terms of con-
vex and concave edges of the surface.

80

22 Alpha Shapes

Many practical applications of geometry have to do with
the intuitive but vague concept of the shape of a finite point
set. To make this idea concrete, we use the distances be-
tween the points to identify subcomplexes of the Delaunay
triangulation that represent that shape at different levels of
resolution.

Union of disks. Let S be a set ofn points inR2. For
eachr ≥ 0, we writeBu(r) = {x ∈ R2 | ‖x− u‖ ≤
r} for the closed disk with centeru and radiusr. Let
U(r) =

⋃

u∈S Bu(r) be the union of then disks. We de-
compose this union into convex sets of the formRu(r) =
Bu(r) ∩ Vu. Then

(i) Ru(r) is closed and convex for every pointu ∈ S
and every radiusr ≥ 0;

(ii) Ru(r) andRv(r) have disjoint interiors whenever the
two points,u andv, are different;

(iii) U(r) =
⋃

u∈S Ru(r).

We illustrate this decomposition in Figure 105. Each re-
gionRu(r) is the intersection ofn− 1 closed half-planes
and a closed disk. All these sets are closed and convex,
which implies (i). The Voronoi regions have disjoint inte-
riors, which implies (ii). Finally, take a pointx ∈ U(r)
and letu be a point inS with x ∈ Vu. Thenx ∈ Bu(r)
and thereforex ∈ Ru(x). This implies (iii).

Figure 105: The Voronoi decomposition of a union of eight disks
in the plane and superimposed dual alpha complex.

Nerve. Similar to defining the Delaunay triangulation as
the dual of the Voronoi diagram, we define the alpha com-

plex as the dual of the Voronoi decomposition of the union
of disks. This time around, we do this more formally. Let-
ting C be a finite collection of sets, thenerveof C is the
system of subcollections that have a non-empty common
intersection,

NrvC = {X ⊆ C |
⋂

X 6= ∅}.

This is an abstract simplicial complex since
⋂

X 6= ∅ and
Y ⊆ X implies

⋂

Y 6= ∅. For example, ifC is the collec-
tion of Voronoi regions thenNrvC is an abstract version
of the Delaunay triangulation. More specifically, this is
true provide the points are in general position and in par-
ticular no four points lie on a common circle. We will as-
sume this for the remainder of this section. We say the De-
launay triangulation is ageometric realizationof NrvC,
namely the one obtained by mapping each Voronoi region
(a vertex in the abstract simplicial complex) to the gener-
ating point. All edges and triangles are just convex hulls
of their incident vertices. To go from the Delaunay trian-
gulation to the alpha complex, we substitute the regions
Ru(r) for theVu. Specifically,

Alpha(r) = Nrv {Ru(r) | u ∈ S}.

Clearly, this is isomorphic to a subcomplex of the nerve
of Voronoi regions. We can therefore drawAlpha(r) as
a subcomplex of the Delaunay triangulation; see Figure
105. We call this geometric realization ofAlpha(r) the
alpha complexfor radiusr, denoted asA(r). Thealpha
shapefor the same radius is the underlying space of the
alpha complex,|A(r)|.

The nerve preserves the way the union is connected.
In particular, their Betti numbers are the same, that is,
βp(U(r)) = βp(A(r)) for all dimensionsp and all radii
r. This implies that the union and the alpha shape have
the same number of components and the same number of
holes. For example, in Figure 105 both have one compo-
nent and two holes. We omit the proof of this property.

Filtration. We are interested in the sequence of alpha
shapes as the radius grows from zero to infinity. Since
growing r grows the regionsRu(r), the nerve can only
get bigger. In other words,A(r) ⊆ A(s) wheneverr ≤ s.
There are only finitely many subcomplexes of the Delau-
nay triangulation. Hence, we get a finite sequence of alpha
complexes. WritingAi for thei-th alpha complex, we get
the following nested sequence,

S = A1 ⊂ A2 ⊂ . . . ⊂ Ak = D,

81

whereD denotes the Delaunay triangulation ofS. We
call such a sequence of complexes afiltration. We illus-
trate this construction in Figure 106. The sequence of al-

b
d

a

c

e

fg

h

Figure 106: A finite sequence of unions of disks, all decomposed
by the same Voronoi diagram.

pha complexes begins with a set ofn isolated vertices, the
points inS. To go from one complex to the next, we either
add an edge, we add a triangle, or we add a pair consisting
of a triangle with one of its edges. In Figure 106, we be-
gin with eight vertices and get the following sequence of
alpha complexes.

A1 = {a, b, c, d, e, f, g, h};
A2 = A1 ∪ {ah};
A3 = A2 ∪ {bc};
A4 = A3 ∪ {ab, ef };
A5 = A4 ∪ {de};
A6 = A5 ∪ {gh};
A7 = A6 ∪ {cd};
A8 = A7 ∪ {fg};
A9 = A8 ∪ {cg}.

Going fromA7 to A8, we get for the first time a1-cycle,
which bounds a hole in the embedding. InA9, this hole is
cut into two. This is the alpha complex depicted in Figure
105. We continue.

A10 = A9 ∪ {cf };
A11 = A10 ∪ {abh, bh};
A12 = A11 ∪ {cde, ce};
A13 = A12 ∪ {cfg};
A14 = A13 ∪ {cef };
A15 = A14 ∪ {bch, ch};
A16 = A15 ∪ {cgh}.

At this moment, we have a triangulated disk but not yet the
entire Delaunay triangulation since the trianglebcd and the
edgebd are still missing. Each step is generic except when
we add two equally long edges toA3.

Compatible ordering of simplices. We can represent
the entire filtration of alpha complexes compactly by sort-
ing the simplices in the order they join the growing com-
plex. An orderingσ1, σ2, . . . , σm of the Delaunay sim-
plices iscompatiblewith the filtration if

1. the simplices inAi precede the ones not inAi for
eachi;

2. the faces of a simplex precede the simplex.

For example, the sequence

a, b, c, d, e, f, g, h; ah; bc; ab, ef ;

de; gh; cd; fg; cg; cf ; bh, abh; ce,

cde; cfg ; cef ; ch, bch; cgh; bd; bcd

is compatible with the filtration in Figure 106. Every alpha
complex is a prefix of the compatible sequence but not
necessarily the other way round. Condition 2 guarantees
that every prefix is a complex, whether an alpha complex
or not. We thus get a finer filtration of complexes

∅ = K0 ⊂ K1 ⊂ . . . ⊂ Km = D,

whereKi is the set of simplices fromσ1 to σi. To con-
struct the compatible ordering, we just need to compute
for each Delaunay simplex the radiusri = r(σi) such that
σi ∈ A(r) iff r ≥ ri. For a vertex, this radius is zero.
For a triangle, this is the radius of the circumcircle. For

ϕ ψ ϕ
ψ

Figure 107: Left: the middle edge belongs to two acute triangles.
Right: it belongs to an obtuse and an acute triangle.

an edge, we have two cases. Letϕ andψ be the angles
opposite the edgeσi inside the two incident triangles. We
haveϕ+ ψ > 180◦ because of the empty circle property.

CASE 1. ϕ < 90◦ andψ < 90◦. Thenri = r(σi) is half
the length of the edge.

82

CASE 2. ϕ ≥ 90◦. Thenri = rj , whereσj is the incident
triangle with angleϕ.

Both cases are illustrated in Figure 107. In Case 2, the
edgeσi enters the growing alpha complex together with
the triangleσj . The total number of simplices in the De-
launay triangulation ism < 6n. The threshold radii can
be computed in time O(n). Sorting the simplices into
the compatible ordering can therefore be done in time
O(n logn).

Betti numbers. In two dimensions, Betti numbers can
be computed directly, without resorting to boundary matri-
ces. The only two possibly non-zero Betti numbers areβ0,
the number of components, andβ1, the number of holes.
We compute the Betti numbers ofKj by adding the sim-
plices in order.

β0 = β1 = 0;
for i = 1 to j do
switch dim σi:
case 0: β0 = β0 + 1;
case 1: let u, v be the endpoints ofσi;
if FIND(u) = FIND(v) then β1 = β1 + 1

else β0 = β0 − 1;
UNION(u, v)

endif
case 2: β1 = β1 − 1

endswitch
endfor.

All we need is tell apart the two cases whenσi is an edge.
This is done using a union-find data structure maintaining
the components of the alpha complex in amortized time
α(n) per simplex. The total running time of the algorithm
for computing Betti numbers is therefore O(nα(n)).

83

Sixth Homework Assignment

Write the solution to each problem on a single page. The
deadline for handing in solutions is November 25.

Problem 1. (20 points). LetS be a set ofn unit disks
in the Euclidean plane, each given by its center and
radius, which is one. Give an algorithm that decides
whether any two of the disks inS intersect.

Problem 2. (20 = 10 + 10 points). LetS be a set of
n points in the Euclidean plane. TheGabriel graph
connects pointsu, v ∈ S with a straight edge if

‖u− v‖2 ≤ ‖u− p‖2 + ‖v − p‖2

for every pointp in S.

(a) Show that the Grabriel graph is a subgraph of
the edge skeleton of the Delaunay triangulation.

(b) Is the Gabriel graph necessarily connected?
Justify your answer.

Problem 3. (20 = 10+ 10 points). Consider a set ofn ≥
3 closed disks in the Euclidean plane. The disks are
allowed to touch but no two of them have an interior
point in common.

(a) Show that the number of touching pairs of disks
is at most3n− 6.

(b) Give a construction that achieves the upper
bound in (a) for anyn ≥ 3.

Problem 4. (20 = 10 + 10 points). LetK be a triangula-
tion of a set ofn ≥ 3 points in the plane. LetL be a
line that avoids all the points.

(a) Prove thatL intersects at most2n − 4 of the
edges inK.

(b) Give a construction for whichL achieves the
upper bound in (a) for anyn ≥ 3.

Problem 5. (20 points). LetS be a set ofn points in the
Euclidean plane, consider its Delaunay triangulation
and the corresponding filtration of alpha complexes,

S = A1 ⊂ A2 ⊂ . . . ⊂ Ak.

Under what conditions is it true thatAi andAi+1 dif-
fer by a single simplex for every1 ≤ i ≤ m− 1?

84

VII NP-COMPLETENESS

23 Easy and Hard Problems
24 NP-Complete Problems
25 Approximation Algorithms

Seventh Homework Assignment

85

23 Easy and Hard Problems

The theory ofNP-completeness is an attempt to draw a
line between tractable and intractable problems. The most
important question is whether there is indeed a difference
between the two, and this question is still unanswered.
Typical results are therefore relative statements such as “if
problemB has a polynomial-time algorithm then so does
problemC” and its equivalent contra-positive “if prob-
lemC has no polynomial-time algorithm then neither has
problemB”. The second formulation suggests we remem-
ber hard problemsC and for a new problemB we first see
whether we can prove the implication. If we can then we
may not want to even try to solve problemB efficiently. A
good deal of formalism is necessary for a proper descrip-
tion of results of this kind, of which we will introduce only
a modest amount.

What is a problem? An abstract decision problemis a
function I → {0, 1}, whereI is the set of problem in-
stances and0 and1 are interpreted to meanFALSE and
TRUE, as usual. To completely formalize the notion, we
encode the problem instances in strings of zeros and ones:
I → {0, 1}∗. A concrete decision problemis then a func-
tion Q : {0, 1}∗ → {0, 1}. Following the usual conven-
tion, we map bit-strings that do not correspond to mean-
ingful problem instances to 0.

As an example consider the shortest-path problem. A
problem instance is a graph and a pair of vertices,u and
v, in the graph. A solution is a shortest path fromu and
v, or the length of such a path. The decision problem ver-
sion specifies an integerk and asks whether or not there
exists a path fromu to v whose length is at mostk. The
theory of NP-completeness really only deals with deci-
sion problems. Although this is a loss of generality, the
loss is not dramatic. For example, given an algorithm for
the decision version of the shortest-path problem, we can
determine the length of the shortest path by repeated de-
cisions for different values ofk. Decision problems are
always easier (or at least not harder) than the correspond-
ing optimization problems. So in order to prove that an
optimization problem is hard it suffices to prove that the
corresponding decision problem is hard.

Polynomial time. An algorithmsolvesa concrete deci-
sion problemQ in time T (n) if for every instancex ∈
{0, 1}∗ of lengthn the algorithm producesQ(x) in time
at mostT (n). Note that this is the worst-case notion of
time-complexity. The problemQ is polynomial-time solv-

ableif T (n) = O(nk) for some constantk independent of
n. The first important complexity class of problems is

P = set of concrete decision problems

that are polynomial-time solvable.

The problemsQ ∈ P are calledtractableor easyand the
problemsQ 6∈ P are calledintractableor hard. Algo-
rithms that take only polynomial time are calledefficient
and algorithms that require more than polynomial time
are inefficient. In other words, until now in this course
we only talked about efficient algorithms and about easy
problems. This terminology is adapted because the rather
fine grained classification of algorithms by complexity we
practiced until now is not very useful in gaining insights
into the rather coarse distinction between polynomial and
non-polynomial.

It is convenient to recast the scenario in a formal lan-
guage framework. Alanguageis a setL ⊆ {0, 1}∗. We
can think of it as the set of problem instances,x, that
have an affirmative answer,Q(x) = 1. An algorithm
A : {0, 1}∗ → {0, 1} acceptsx ∈ {0, 1}∗ if A(x) = 1
and itrejectsx if A(x) = 0. The languageacceptedbyA
is the set of stringsx ∈ {0, 1}∗ with A(x) = 1. There is
a subtle difference between accepting anddecidinga lan-
guageL. The latter means thatA accepts everyx ∈ L and
rejects everyx 6∈ L. For example, there is an algorithm
that accepts every program that halts, but there is no algo-
rithm that decides the language of such programs. Within
the formal language framework we redefine the class of
polynomial-time solvable problems as

P = {L ⊆ {0, 1}∗ | L is accepted by

a polynomial-time algorithm}
= {L ⊆ {0, 1}∗ | L is decided by

a polynomial-time algorithm}.

Indeed, a language that can be accepted in polynomial
time can also be decided in polynomial time: we keep
track of the time and if too much goes by withoutx be-
ing accepted, we turn around and rejectx. This is a non-
constructive argument since we may not know the con-
stants in the polynomial. However, we know such con-
stants exist which suffices to show that a simulation as
sketched exists.

Hamiltonian cycles. We use a specific graph problem to
introduce the notion of verifying a solution to a problem,
as opposed to solving it. LetG = (V,E) be an undi-
rected graph. Ahamiltonian cyclecontains every vertex

86

v ∈ V exactly once. The graphG is hamiltonianif it has
a hamiltonian cycle. Figure 108 shows a hamiltonian cy-
cle of the edge graph of a Platonic solid. How about the
edge graphs of the other four Platonic solids? DefineL =

Figure 108: The edge graph of the dodecahedron and one of its
hamiltonian cycles.

{G | G is hamiltonian}. We can thus ask whether or not
L ∈ P, that is, whether or not there is a polynomial-time
algorithm that decides whether or not a graph is hamilto-
nian. The answer to this question is currently not known,
but there is evidence that the answer might be negative. On
the other hand, supposey is a hamiltonian cycle ofG. The
languageL′ = {(G, y) | y is a hamiltonian cycle ofG} is
certainly in P because we just need to make sure thaty
andG have the same number of vertices and every edge of
y is also an edge ofG.

Non-deterministic polynomial time. More generally, it
seems easier to verify a given solution than to come up
with one. In a nutshell, this is whatNP-completeness is
about, namely finding out whether this is indeed the case
and whether the difference between accepting and verify-
ing can be used to separate hard from easy problems.

Call y ∈ {0, 1}∗ a certificate. An algorithmA verifies
a problem instancex ∈ {0, 1}∗ if there exists a certificate
y with A(x, y) = 1. The languageverifiedbyA is the set
of stringsx ∈ {0, 1}∗ verified byA. We now define a new
class of problems,

NP = {L ⊆ {0, 1}∗ | L is verified by

a polynomial-time algorithm}.

More formally,L is in NP if for every problem instance
x ∈ L there is a certificatey whose length is bounded
from above by a polynomial in the length ofx such that
A(x, y) = 1 andA runs in polynomial time. For exam-
ple, deciding whether or notG is hamiltonian is inNP.

The nameNP is an abbreviation fornon-deterministic
polynomial time, because a non-deterministic computer
can guess a certificate and then verify that certificate. In a
parallel emulation, the computer would generate all possi-
ble certificates and then verify them in parallel. Generat-
ing one certificate is easy, because it only has polynomial
length, but generating all of them is hard, because there
are exponentially many strings of polynomial length.

P =

co−NP
NPNP NP co−NP

P = NP = co−NP NP = co−NPP

P

Figure 109: Four possible relations between the complexity
classesP, NP, andco-NP.

Non-deterministic machine are at least as powerful as
deterministic machines. It follows that every problem in
P is also inNP, P ⊆ NP. Define

co-NP = {L | L = {x 6∈ L} ∈ NP},

which is the class of languages whose complement can
be verified in non-deterministic polynomial time. It is
not known whether or notNP = co-NP. For example,
it seems easy to verify that a graph is hamiltonian but
it seems hard to verify that a graph is not hamiltonian.
We said earlier that ifL ∈ P thenL ∈ P. Therefore,
P ⊆ co-NP. Hence, only the four relationships between
the three complexity classes shown in Figure 109 are pos-
sible, but at this time we do not know which one is correct.

Problem reduction. We now develop the concept of re-
ducing one problem to another, which is key in the con-
struction of the class ofNP-complete problems. The idea
is to map or transform an instance of a first problem to an
instance of a second problem and to map the solution to
the second problem back to a solution to the first problem.
For decision problems, the solutions are the same and need
no transformation.

LanguageL1 is polynomial-time reducibleto language
L2, denotedL1 ≤P L2, if there is a polynomial-time com-
putable functionf : {0, 1}∗ → {0, 1}∗ such thatx ∈ L1

iff f(x) ∈ L2, for all x ∈ {0, 1}∗. Now suppose that

87

L1 is polynomial-time reducible toL2 and thatL2 has a
polynomial-time algorithmA2 that decidesL2,

x
f−→ f(x)

A2−→ {0, 1}.

We can compose the two algorithms and obtain a poly-
nomial-time algorithmA1 = A2 ◦ f that decidesL1. In
other words, we gained an efficient algorithm forL1 just
by reducing it toL2.

REDUCTION LEMMA . If L1 ≤P L2 andL2 ∈ P then
L1 ∈ P.

In words, if L1 is polynomial-time reducible toL2 and
L2 is easy thenL1 is also easy. Conversely, if we know
thatL1 is hard then we can conclude thatL2 is also hard.
This motivates the following definition. A languageL ⊆
{0, 1}∗ is NP-completeif

(1) L ∈ NP;

(2) L′ ≤P L, for everyL′ ∈ NP.

SinceeveryL′ ∈ NP is polynomial-time reducible toL,
all L′ have to be easy forL to have a chance to be easy.
The L′ thus only provide evidence thatL might indeed
be hard. We sayL is NP-hard if it satisfies (2) but not
necessarily (1). The problems that satisfy (1) and (2) form
the complexity class

NPC = {L | L is NP-complete}.

All these definitions would not mean much if we could
not find any problems inNPC. The first step is the most
difficult one. Once we have one problem inNPC we can
get others using reductions.

Satisfying boolean formulas. Perhaps surprisingly, a
first NP-complete problem has been found, namely the
problem of satisfiability for logical expressions. A
boolean formula, ϕ, consists of variables,x1, x2, . . ., op-
erators,¬,∧,∨,=⇒, . . ., and parentheses. Atruth assign-
mentmaps each variable to a boolean value,0 or 1. The
truth assignmentsatisfiesif the formula evaluates to 1. The
formula issatisfiableif there exists a satisfying truth as-
signment. Define SAT= {ϕ | ϕ is satisfiable}. As an
example consider the formula

ψ = (x1 =⇒ x2) ⇐⇒ (x2 ∨ ¬x1).

If we setx1 = x2 = 1 we get(x1 =⇒ x2) = 1, (x2 ∨
¬x1) = 1 and thereforeψ = 1. It follows thatψ ∈ SAT.

In fact, all truth assignments evaluate to1, which means
that ψ is really a tautology. More generally, a boolean
formula,ϕ, is satisfyable iff¬ϕ is not a tautology.

SATISFIABILITY THEOREM. We have SAT∈ NP and
L′ ≤P SAT for everyL′ ∈ NP.

That SAT is in the classNP is easy to prove: just guess an
assignment and verify that it satisfies. However, to prove
that everyL′ ∈ NP can be reduced to SAT in polynomial
time is quite technical and we omit the proof. The main
idea is to use the polynomial-time algorithm that verifies
L′ and to construct a boolean formula from this algorithm.
To formalize this idea, we would need a formal model of a
computer, a Touring machine, which is beyond the scope
of this course.

88

24 NP-Complete Problems

In this section, we discuss a number ofNP-complete prob-
lems, with the goal to develop a feeling for what hard
problems look like. Recognizing hard problems is an im-
portant aspect of a reliable judgement for the difficulty of
a problem and the most promising approach to a solution.
Of course, forNP-complete problems, it seems futile to
work toward polynomial-time algorithms and instead we
would focus on finding approximations or circumventing
the problems altogether. We begin with a result on differ-
ent ways to write boolean formulas.

Reduction to 3-satisfiability. We call a boolean vari-
able or its negation aliteral. The conjunctive normal
form is a sequence of clauses connected by∧s, and each
clauseis a sequence of literals connected by∨s. A for-
mula is in3-CNF if it is in conjunctive normal form and
each clause consists of three literals. It turns out that de-
ciding the satisfiability of a boolean formula in 3-CNF
is no easier than for a general boolean formula. Define
3-SAT = {ϕ ∈ SAT | ϕ is in 3-CNF}. We prove the
above claim by reducing SAT to 3-SAT.

SATISFIABILITY LEMMA . SAT ≤P 3-SAT.

PROOF. We take a boolean formulaϕ and transform it into
3-CNF in three steps.

Step 1. Think ofϕ as an expression and represent it as
a binary tree. Each node is an operation that gets the
input from its two children and forwards the output
to its parent. Introduce a new variable for the output
and define a new formulaϕ′ for each node, relating
the two input edges with the one output edge. Figure
110 shows the tree representation of the formulaϕ =
(x1 =⇒ x2) ⇐⇒ (x2 ∨ ¬x1). The new formula is

ϕ′ = (y2 ⇐⇒ (x1 =⇒ x2))

∧(y3 ⇐⇒ (x2 ∨ ¬x1))

∧(y1 ⇐⇒ (y2 ⇐⇒ y3)) ∧ y1.

It should be clear that there is a satisfying assignment
for ϕ iff there is one forϕ′.

Step 2. Convert each clause into disjunctive normal
form. The most mechanical way uses the truth table
for each clause, as illustrated in Table 6. Each clause
has at most three literals. For example, the negation
of y2 ⇐⇒ (x1 =⇒ x2) is equivalent to the disjunc-
tion of the conjunctions in the rightmost column. It

x2x21 1x

y1

2y 3

x

y

Figure 110: The tree representation of the formulaϕ. Inciden-
tally, ϕ is a tautology, which means it is satisfied by every truth
assignment. Equivalently,¬ϕ is not satisfiable.

y2 x1 x2 y2 ⇔ (x1 ⇒ x2) prohibited
0 0 0 0 ¬y2 ∧ ¬x1 ∧ ¬x2

0 0 1 0 ¬y2 ∧ ¬x1 ∧ x2

0 1 0 1
0 1 1 0 ¬y2 ∧ x1 ∧ x2

1 0 0 1
1 0 1 1
1 1 0 0 y2 ∧ x1 ∧ ¬x2

1 1 1 1

Table 6: Conversion of a clause into a disjunction of conjunctions
of at most three literals each.

follows thaty2 ⇐⇒ (x1 =⇒ x2) is equivalent to the
negation of that disjunction, which by de Morgan’s
law is(y2∨x1 ∨x2)∧ (y2 ∨x1∨¬x2)∧ (y2 ∨¬x1 ∨
¬x2) ∧ (¬y2 ∨ ¬x1 ∨ x2).

Step 3. The clauses with fewer than three literals can
be expanded by adding new variables. For example
a ∨ b is expanded to(a ∨ b ∨ p) ∧ (a ∨ b ∨ ¬p) and
(a) is expanded to(a ∨ p ∨ q) ∧ (a ∨ p ∨ ¬q) ∧ (a ∨
¬p ∨ q) ∧ (a ∨ ¬p ∨ ¬q).

Each step takes only polynomial time. At the end, we get
an equivalent formula in 3-conjunctive normal form.

We note that clauses of length three are necessary to
make the satisfiability problem hard. Indeed, there is a
polynomial-time algorithm that decides the satisfiability
of a formula in 2-CNF.

NP-completeness proofs. Using polynomial-time re-
ductions, we can show fairly mechanically that problems
areNP-complete, if they are. A key property is the tran-
sitivity of ≤P , that is, if L′ ≤P L1 andL1 ≤P L2

thenL′ ≤P L2, as can be seen by composing the two
polynomial-time computable functions to get a third one.

REDUCTION LEMMA . LetL1, L2 ⊆ {0, 1}∗ and assume
L1 ≤P L2. If L1 is NP-hard andL2 ∈ NP then
L2 ∈ NPC.

89

A genericNP-completeness proof thus follows the steps
outline below.

Step 1. Prove thatL2 ∈ NP.

Step 2. Select a knownNP-hard problem,L1, and find
a polynomial-time computable function,f , with x ∈
L1 iff f(x) ∈ L2.

This is what we did forL2 = 3-SAT andL1 = SAT.
Therefore 3-SAT∈ NPC. Currently, there are thousands
of problems known to beNP-complete. This is often con-

NPC

NP

P

Figure 111: Possible relation betweenP, NPC, andNP.

sidered evidence thatP 6= NP, which can be the case only
if P ∩ NPC = ∅, as drawn in Figure 111.

Cliques and independent sets. There are manyNP-
complete problems on graphs. A typical such problem
asks for the largest complete subgraph. Define aclique
in an undirected graphG = (V,E) as a subgraph(W,F)
with F =

(

W
2

)

. GivenG and an integerk, the CLIQUE

problem asks whether or not there is a clique ofk or more
vertices.

CLAIM . CLIQUE ∈ NPC.

PROOF. Given k vertices inG, we can verify in poly-
nomial time whether or not they form a complete graph.
Thus CLIQUE ∈ NP. To prove property (2), we show
that 3-SAT≤P CLIQUE. Let ϕ be a boolean formula in
3-CNF consisting ofk clauses. We construct a graph as
follows:

(i) each clause is replaced by three vertices;

(ii) two vertices are connected by an edge if they do not
belong to the same clause and they are not negations
of each other.

In a satisfying truth assignment, there is at least one true
literal in each clause. The true literals form a clique. Con-
versely, a clique ofk or more vertices covers all clauses
and thus implies a satisfying truth assignment.

It is easy to decide in timeO(k2nk+2) whether or not a
graph ofn vertices has a clique of sizek. If k is a constant,
the running time of this algorithm is polynomial inn. For
the CLIQUE problem to beNP-complete it is therefore es-
sential thatk be a variable that can be arbitrarily large.
We use theNP-completeness of finding large cliques to
prove theNP-completeness of large sets of pairwise non-
adjacent vertices. LetG = (V,E) be an undirected graph.
A subsetW ⊆ V is independentif none of the vertices in
W are adjacent or, equivalently, ifE ∩

(

W
2

)

= ∅. Given
G and an integerk, the INDEPENDENTSET problem asks
whether or not there is an independent set ofk or more
vertices.

CLAIM . INDEPENDENTSET ∈ NPC.

PROOF. It is easy to verify that there is an independent set
of sizek: just guess a subset ofk vertices and verify that
no two are adjacent.

Figure 112: The four shaded vertices form an independent setin
the graph on the left and a clique in the complement graph on the
right.

We complete the proof by reducing the CLIQUE to the
INDEPENDENTSET problem. As illustrated in Figure 112,
W ⊆ V is independent iffW defines a clique in the com-
plement graph,G = (V,

(

V
2

)

−E). To prove CLIQUE ≤P

INDEPENDENTSET, we transform an instanceH, k of the
CLIQUE problem to the instanceG = H, k of the INDE-
PENDENTSET problem.G has an independent set of size
k or larger iffH has a clique of sizek or larger.

Various NP-complete graph problems. We now de-
scribe a fewNP-complete problems for graphs without
proving that they are indeedNP-complete. LetG =
(V,E) be an undirected graph withn vertices andk a pos-
itive integer, as before. The following problems defined
forG andk areNP-complete.

An ℓ-coloring of G is a functionχ : V → [ℓ] with
χ(u) 6= χ(v) wheneveru andv are adjacent. The CHRO-
MATIC NUMBER problem asks whether or notG has anℓ-
coloring with ℓ ≤ k. The problem remainsNP-complete

90

for fixed k ≥ 3. For k = 2, the CHROMATIC NUMBER

problem asks whether or notG is bipartite, for which there
is a polynomial-time algorithm.

The bandwidthof G is the minimumℓ such that there
is a bijectionβ : V → [n] with |β(u) − β(v)| ≤ ℓ for
all adjacent verticesu andv. The BANDWIDTH problem
asks whether or not the bandwidth ofG is k or less. The
problem arises in linear algebra, where we permute rows
and columns of a matrix to move all non-zero elements of
a square matrix as close to the diagonal as possible. For
example, if the graph is a simple path then the bandwidth
is 1, as can be seen in Figure 113. We can transform the

1

0 1

1 0 1

1 0 1

0

1

1 0 1

1 0 1

1

1

10

0

0

0

2

1 3

4 7

8

6

5

Figure 113: Simple path and adjacency matrix with rows and
columns ordered along the path.

adjacency matrix ofG such that all non-zero diagonals are
at most the bandwidth ofG away from the main diagonal.

Assume now that the graphG is complete,E =
(

V
2

)

, and that each edge,uv, has a positive integer
weight, w(uv). The TRAVELING SALESMAN problem
asks whether there is a permutationu0, u1, . . . , un−1 of
the vertices such that the sum of edges connecting con-
tiguous vertices (and the last vertex to the first) isk or
less,

n−1
∑

i=0

w(uiui+1) ≤ k,

where indices are taken modulon. The problem remains
NP-complete ifw : E → {1, 2} (reduction to HAMILTO -
NIAN CYCLE problem), and also if the vertices are points
in the plane and the weight of an edge is the Euclidean
distance between the two endpoints.

Set systems. Simple graphs are set systems in which the
sets contain only two elements. We now list a fewNP-
complete problems for more general set systems. Letting
V be a finite set,C ⊆ 2V a set system, andk a positive
integer, the following problems areNP-complete.

The PACKING problem asks whether or notC hask or
more mutually disjoint sets. The problem remainsNP-

complete if no set inC contains more than three elements,
and there is a polynomial-time algorithm if every set con-
tains two elements. In the latter case, the set system is a
graph and a maximum packing is a maximum matching.

The COVERING problem asks whether or notC hask
or fewer subsets whose union isV . The problem remains
NP-complete if no set inC contains more than three ele-
ments, and there is a polynomial-time algorithm if every
sets contains two elements. In the latter case, the set sys-
tem is a graph and the minimum cover can be constructed
in polynomial time from a maximum matching.

Suppose every elementv ∈ V has a positive integer
weight, w(v). The PARTITION problem asks whether
there is a subsetU ⊆ V with

∑

u∈U

w(u) =
∑

v∈V −U

w(v).

The problem remainsNP-complete if we require thatU
andV − U have the same number of elements.

91

25 Approximation Algorithms

Many important problems areNP-hard and just ignoring
them is not an option. There are indeed many things one
can do. For problems of small size, even exponential-
time algorithms can be effective and special subclasses
of hard problems sometimes have polynomial-time algo-
rithms. We consider a third coping strategy appropriate
for optimization problems, which is computing almost op-
timal solutions in polynomial time. In case the aim is
to maximize a positive cost, a̺(n)-approximation algo-
rithm is one that guarantees to find a solution with cost
C ≥ C∗/̺(n), whereC∗ is the maximum cost. For mini-
mization problems, we would requireC ≤ C∗̺(n). Note
that̺(n) ≥ 1 and if̺(n) = 1 then the algorithm produces
optimal solutions. Ideally,̺ is a constant but sometime
even this is not achievable in polynomial time.

Vertex cover. The first problem we consider is finding
the minimum set of vertices in a graphG = (V,E) that
covers all edges. Formally, a subsetV ′ ⊆ V is a ver-
tex coverif every edge has at least one endpoint inV ′.
Observe thatV ′ is a vertex cover iffV − V ′ is an inde-
pendent set. Finding a minimum vertex cover is therefore
equivalent to finding a maximum independent set. Since
the latter problem isNP-complete, we conclude that find-
ing a minimum vertex cover is alsoNP-complete. Here is
a straightforward algorithm that achieves approximation
ratio̺(n) = 2, for all n = |V |.

V ′ = ∅; E′ = E;
while E′ 6= ∅ do

select an arbitrary edgeuv in E′;
addu andv to V ′;
remove all edges incident tou or v fromE′

endwhile.

Clearly,V ′ is a vertex cover. Using adjacency lists with
links between the two copies of an edge, the running time
is O(n + m), wherem is the number of edges. Further-
more, we have̺ = 2 because every cover must pick at
least one vertex of each edgeuv selected by the algorithm,
henceC ≤ 2C∗. Observe that this result does not imply
a constant approximation ratio for the maximum indepen-
dent set problem. We have|V −V ′| = n−C ≥ n−2C∗,
which we have to compare withn − C∗, the size of the
maximum independent set. ForC∗ = n

2 , the approxima-
tion ratio is unbounded.

Let us contemplate the argument we used to relateC
andC∗. The set of edgesuv selected by the algorithm is

a matching, that is, a subset of the edges so that no two
share a vertex. The size of the minimum vertex cover is
at least the size of the largest possible matching. The al-
gorithm finds a matching and since it picks two vertices
per edge, we are guaranteed at most twice as many ver-
tices as needed. This pattern of boundingC∗ by the size
of another quantity (in this case the size of the largest
matching) is common in the analysis of approximation al-
gorithms. Incidentally, for bipartite graphs, the size of the
largest matching is equal to the size of the smallest vertex
cover. Furthermore, there is a polynomial-time algorithm
for computing them.

Traveling salesman. Second, we consider the traveling
salesman problem, which is formulated for a complete
graphG = (V,E) with a positive integer cost function
c : E → Z+. A tour in this graph is a Hamiltonian
cycle and the problem is finding the tour,A, with mini-
mum total cost,c(A) =

∑

uv∈A c(uv). Let us first as-
sume that the cost function satisfies the triangle inequal-
ity, c(uw) ≤ c(uv) + c(vw) for all u, v, w ∈ V . It can
be shown that the problem of finding the shortest tour
remainsNP-complete even if we restrict it to weighted
graphs that satisfy this inequality. We formulate an al-
gorithm based on the observation that the cost of every
tour is at least the cost of the minimum spanning tree,
C∗ ≥ c(T).

1 Construct the minimum spanning treeT of G.

2 Return the preorder sequence of vertices inT .

Using Prim’s algorithm for the minimum spanning tree,
the running time is O(n2). Figure 114 illustrates the algo-
rithm. The preorder sequence is only defined if we have

Figure 114: The solid minimum spanning tree, the dotted traver-
sal using each edge of the tree twice, and the solid tour obtained
by taking short-cuts.

a root and the neighbors of each vertex are ordered, but

92

we may choose both arbitrarily. The cost of the returned
tour is at most twice the cost of the minimum spanning
tree. To see this, consider traversing each edge of the min-
imum spanning tree twice, once in each direction. When-
ever a vertex is visited more than once, we take the direct
edge connecting the two neighbors of the second copy as a
short-cut. By the triangle inequality, this substitution can
only decrease the overall cost of the traversal. It follows
thatC ≤ 2c(T) ≤ 2C∗.

The triangle inequality is essential in finding a constant
approximation. Indeed, without it we can construct in-
stances of the problem for which finding a constant ap-
proximation isNP-hard. To see this, transform an un-
weighted graphG′ = (V ′, E′) to the complete weighted
graphG = (V,E) with

c(uv) =

{

1 if uv ∈ E′,
̺n+ 1 otherwise.

Any ̺-approximation algorithm must return the Hamilto-
nian cycle ofG′, if there is one.

Set cover. Third, we consider the problem of covering
a setX with sets chosen from a set systemF . We as-
sume the set is the union of sets in the system,X =

⋃F .
More precisely, we are looking for a smallest subsystem
F ′ ⊆ F with X =

⋃F ′. Thecostof this subsystem is
the number of sets it contains,|F ′|. See Figure 115 for
an illustration of the problem. The vertex cover problem

Figure 115: The setX of twelve dots can be covered with four
of the five sets in the system.

is a special case:X = E andF contains all subsets of
edges incident to a common vertex. It is special because
each element (edge) belongs to exactly two sets. Since we
no longer have a bound on the number of sets containing
a single element, it is not surprising that the algorithm for
vertex covers does not extend to a constant-approximation
algorithm for set covers. Instead, we consider the follow-

ing greedy approach that selects, at each step, the set con-
taining the maximum number of yet uncovered elements.

F ′ = ∅; X ′ = X ;
whileX ′ 6= ∅ do

selectS ∈ F maximizing|S ∩X ′|;
F ′ = F ′ ∪ {S}; X ′ = X ′ − S

endwhile.

Using a sparse matrix representation of the set system
(similar to an adjacency list representation of a graph), we
can run the algorithm in time proportional to the total size
of the sets in the system,n =

∑

S∈F |S|. We omit the
details.

Analysis. More interesting than the running time is the
analysis of the approximation ratio the greedy algorithm
achieves. It is convenient to have short notation for thed-
th harmonic number,Hd =

∑d
i=1

1
i for d ≥ 0. Recall that

Hd ≤ 1 + ln d for d ≥ 1. Let the size of the largest set in
the system bem = max{|S| | S ∈ F}.

CLAIM . The greedy method is anHm-approximation al-
gorithm for the set cover problem.

PROOF. For each setS selected by the algorithm, we dis-
tribute $1 over the|S ∩X ′| elements covered for the first
time. Letcx be the cost allocated this way tox ∈ X . We
have|F ′| =

∑

x∈X cx. If x is covered the first time by the
i-th selected set,Si, then

cx =
1

|Si − (S1 ∪ . . . ∪ Si−1)|
.

We have|F ′| ≤ ∑

S∈F∗

∑

x∈S cx because the optimal
cover,F∗, contains each elementx at least once. We will
prove shortly that

∑

x∈S cx ≤ H|S| for every setS ∈ F .
It follows that

|F ′| ≤
∑

S∈F∗

H|S| ≤ Hm|F∗|,

as claimed.

Form = 3, we get̺ = H3 = 11
6 . This implies that

for graphs with vertex-degrees at most 3, the greedy algo-
rithm guarantees a vertex cover of size at most11

6 times
the optimum, which is better than the ratio 2 guaranteed
by our first algorithm.

We still need to prove that the sum of costscx over the
elements of a setS in the system is bounded from above
by H|S|. Let ui be the number of elements inS that are

93

not covered by the firsti selected sets,ui = |S − (S1 ∪
. . . ∪ Si)|, and observe that the numbers do not increase.
Let uk−1 be the last non-zero number in the sequence, so
|S| = u0 ≥ . . . ≥ uk−1 > uk = 0. Sinceui−1 − ui is the
number of elements inS covered the first time bySi, we
have

∑

x∈S

cx =

k
∑

i=1

ui−1 − ui

|Si − (S1 ∪ . . . ∪ Si−1)|
.

We also haveui−1 ≤ |Si − (S1 ∪ . . . ∪ Si−1)|, for all
i ≤ k, because of the greedy choice ofSi. If this were
not the case, the algorithm would have chosenS instead
of Si in the construction ofF ′. The problem thus reduces
to bounding the sum of ratiosui−1−ui

ui−1

. It is not difficult
to see that this sum can be at least logarithmic in the size
of S. Indeed, if we chooseui about half the size ofui−1,
for all i ≥ 1, then we have logarithmically many terms,
each roughly1

2 . We use a sequence of simple arithmetic
manipulations to prove that this lower bound is asymptot-
ically tight:

∑

x∈S

cx ≤
k
∑

i=1

ui−1 − ui

ui−1

=

k
∑

i=1

ui−1
∑

j=ui+1

1

ui−1
.

We now replace the denominator byj ≤ ui−1 to form a
telescoping series of harmonic numbers and get

∑

x∈S

cx ≤
k
∑

i=1

ui−1
∑

j=ui+1

1

j

=

k
∑

i=1





ui−1
∑

j=1

1

j
−

ui
∑

j=1

1

j





=

k
∑

i=1

(Hui−1
−Hui

).

This is equal toHu0
− Huk

= H|S|, which fills the gap
left in the analysis of the greedy algorithm.

94

Seventh Homework Assignment

The purpose of this assignment is to help you prepare for
the final exam. Solutions will neither be graded nor even
collected.

Problem 1. (20 = 5 + 15 points). Consider the class
of satisfiable boolean formulas in conjunctive nor-
mal form in which each clause contains two literals,
2-SAT = {ϕ ∈ SAT | ϕ is 2-CNF}.

(a) Is 2-SAT∈ NP?

(b) Is there a polynomial-time algorithm for decid-
ing whether or not a boolean formula in 2-CNF
is satisfiable? If your answer is yes, then de-
scribe and analyze your algorithm. If your an-
swer is no, then show that 2-SAT∈ NPC.

Problem 2. (20 points). LetA be a finite set andf a func-
tion that maps everya ∈ A to a positive integerf(a).
The PARTITION problem asks whether or not there is
a subsetB ⊆ A such that

∑

b∈B

f(b) =
∑

a∈A−B

f(a).

We have learned that the PARTITION problem is
NP-complete. Given positive integersj andk, the
SUM OF SQUARES problem asks whether or not
A can be partitioned intoj disjoint subsets,A =
B1 ∪̇B2 ∪̇ . . . ∪̇Bj , such that

j
∑

i=1

(

∑

a∈Bi

f(a)

)2

≤ k.

Prove that the SUM OF SQUARES problem isNP-
complete.

Problem 3. (20 = 10+10 points). LetG be an undirected
graph. A path inG is simpleif it contains each ver-
tex at most once. Specifying two verticesu, v and a
positive integerk, the LONGESTPATH problem asks
whether or not there is a simple path connectingu
andv whose length isk or longer.

(a) Give a polynomial-time algorithm for the
LONGESTPATH problem or show that it isNP-
hard.

(b) Revisit (a) under the assumption thatG is di-
rected and acyclic.

Problem 4. (20 = 10 + 10 points). LetA ⊆ 2V be an
abstract simplicial complex over the finite setV and
let k be a positive integer.

(a) Is itNP-hard to decide whetherA hask or more
disjoint simplices?

(b) Is it NP-hard to decide whetherA has k or
fewer simplices whose union isV ?

Problem 5. (20 points). LetG = (V,E) be an undi-
rected, bipartite graph and recall that there is a
polynomial-time algorithm for constructing a max-
imum matching. We are interested in computing a
minimum set of matchings such that every edge of
the graph is a member of at least one of the selected
matchings. Give a polynomial-time algorithm con-
structing anO(logn) approximation for this prob-
lem.

95

