Relations binaires sur un ensemble

1.1 Généralités sur les relations binaires

Soient E, F deux ensembles

Définition 1.1. Une relation binaire noté $:\mathcal{R}$ d'un ensemble E vers un ensemble F est toute assertion reliant un élément de E à un élément de F pouvant être vérifiée ou non.

Notation 1.1. Nous mettons ce qui suit

- ightarrow L'ensemble E s'appelle l'ensemble de départ de $\mathcal{R}.$
- $m{+}$ L'ensemble F s'appelle l'ensemble de d'arrivée de \mathcal{R} .

1.1.1 Propriétés des relations binaires dans un ensemble

Soit \mathcal{R} une relation binaire sur E.

- **Réflexivité** : On dit que \mathcal{R} est réflexive si :

$$\forall x \in E, x \mathcal{R} x.$$

– **Symétrie** : On dit que \mathcal{R} est symétrique si :

$$\forall x,y \in E, x\mathcal{R}y = y\mathcal{R}x.$$

– **Transitivité** : On dit que \mathcal{R} est transitive si :

$$\forall x, y, z \in E, (x\mathcal{R}y \text{ et } y\mathcal{R}z) \Rightarrow x\mathcal{R}z.$$

- **Anti-symétrie** : On dit que \mathcal{R} est anti-symétrique si :

$$\forall x, y \in E, x \mathcal{R} y \text{ et } y \mathcal{R} x \implies x = y.$$

1.1.2 Relation d'équivalence

Définition 1.2. Soit \mathcal{R} une relation binaire dans un ensemble E. On dit que \mathcal{R} est une **relation d'équivalence** si \mathcal{R} est :

- 1. réflexive,
- 2. symétrique,
- 3. transitive.

Exemple 1.1. Soit la relation suivante :

 $\forall x, y \in \mathbb{N}, \ x\mathcal{R}y \Leftrightarrow x = y$, est une relation d'équivalence.

en effet:

- 1. $\forall x \in \mathbb{N}, \ x = x \Leftrightarrow x\mathcal{R}x \Leftrightarrow \mathcal{R} \text{ est réflexive.}$
- 2. $\forall x, y \in \mathbb{N}, \ x = y \Leftrightarrow y = x \Leftrightarrow y \mathcal{R}x \Leftrightarrow \mathcal{R} \text{ est symétrique.}$
- 3. $\forall x, y, z \in \mathbb{N}, (x = y) \land (y = z) \Leftrightarrow x = z \Leftrightarrow \mathcal{R} \text{ est transitive.}$

Donc, la relation \mathcal{R} est une relation d'équivalence.

1.1.2.1 Classe d'équivalence

Soit \mathcal{R} une relation d'équivalence sur un ensemble E.

Définition 1.3. La classe d'équivalence d'un élément x, noté : \overline{x} , \dot{x} , C_x , est l'ensemble des éléments de E qui sont en relation avec x. Autrement dit

$$\dot{x} = \left\{ y \in E : y \mathcal{R} \dot{x} \right\}.$$

Remarque 1.1. L'ensemble des classes d'équivalence n'est jamais vide.

3

1.1.2.2 Ensemble quotient

Soit E un ensemble munit d'une relation d'équivalence \mathcal{R} .

Définition 1.4. L'ensemble quotient est l'ensemble des classes d'équivalence de tous les éléments de E. On le note $E_{/\mathcal{R}}$, et on a :

$$E_{/\mathcal{R}} = \left\{ \left\{ \dot{x} \right\}, x \in E \right\}$$

Exemple 1.2. D'après l'exemple précédent (1.1), on a la classe d'équivalence $x = a \in \mathcal{R}$ comme,

$$\dot{x} = \dot{a} = \{x \in \mathbb{R} : x\mathcal{R}a\}$$

Nous avons,

$$x\mathcal{R}a \Leftrightarrow x = a$$

alors,

$$\dot{a} = \{a, \ a \in \mathbb{R}\}$$

et l'ensemble quotient $\mathbb{R}_{/\mathcal{R}}$ est donné par :

$$\mathbb{R}_{/\mathcal{R}} = \{\{a\}, a \in \mathbb{R}\}$$

1.1.3 Relation d'ordre

Définition 1.5. Une relation est dite relation d'ordre si elle est :

- 1. réflexive,
- 2. anti-symétrique,
- 3. transitive.

Exemple 1.3. Soit la relation suivante,

 $\forall x, y \in \mathbb{R}, x\mathcal{R}y \Leftrightarrow x \leq y$, est une relation d'ordre.

En effet:

- 1. $\forall x \in \mathbb{R}, \ x \leq x \Leftrightarrow x\mathcal{R}x \Leftrightarrow \mathcal{R} \text{ est r\'eflexive.}$
- 2. $\forall x, y \in \mathbb{N}, (x \leq y) \land (x \leq y) \Leftrightarrow x = y \Leftrightarrow \mathcal{R} \text{ est antisymétrique.}$

3. $\forall x, y, z \in \mathbb{N}, (x \leq y) \land (y \leq z) \Leftrightarrow x \leq z \Leftrightarrow \mathcal{R} \text{ est transitive.}$

Donc, la relation \mathcal{R} est une relation d'ordre.

Proposition 1.1. Soit R une relation d'ordre sur un ensemble E.

 \square On dit que \mathbb{R} est d'ordre total si :

$$\forall x, y \in E; x\mathcal{R}y \vee y\mathcal{R}x.$$

On dit qu'elle est d'ordre partiel si elle n'est pas d'ordre total, c'est à dire :

$$\exists x, y \in E; x \mathcal{R}y \land y \mathcal{R}x.$$

Exemple 1.4. D'après l'exemple (1.3), on a la relation \mathcal{R} est une relation d'ordre total, car :

- xRy est une relation d'ordre.
- ou
- $y\mathcal{R}x$ est une relation d'ordre.

Donc, n'est pas une relation d'ordre partiel.