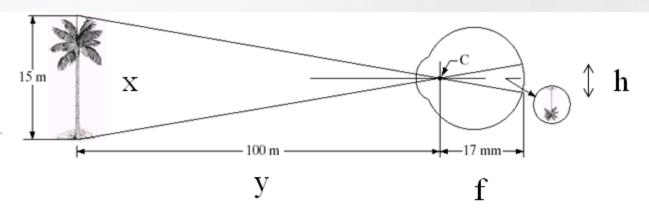
Chapitre 2

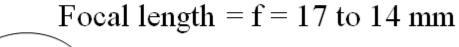
Représentation des graphiques et images

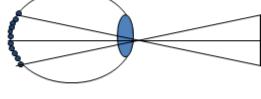
Sommaire

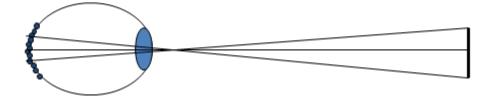

- Introduction
- Digital image acquisition process
- Image digitalization
- Representing Digital Images
- Image 1-bit: Taille et Usage
- Image 8-bits: Un exemple
- Tableau récapitulatif
- •

Introduction

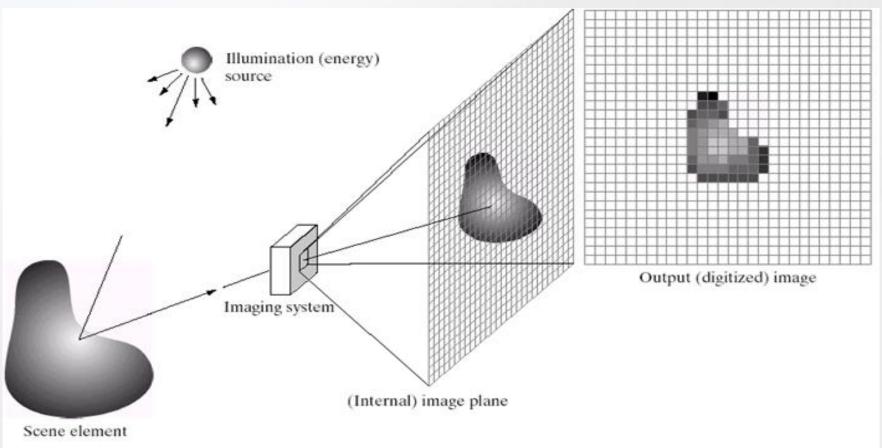
- In many image processing applications, the objective is to help a human observer perceive the visual information in an image. Therefore, it is important to understand the human visual system.
- The human visual system consists mainly of the eye (image sensor or camera), optic nerve (transmission path), and brain (image information processing unit or computer).
- It is one of the most sophisticated image processing and analysis systems.


Image Foundation in the Eye

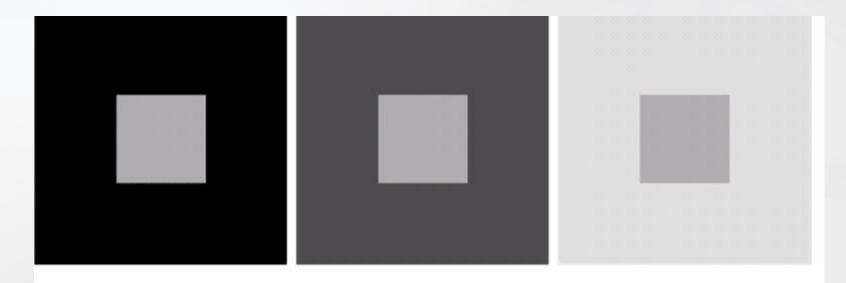

Graphical representation of the eye looking at a palm tree. Point *C* is the optical center of the lens.



$$\frac{x}{y} = \frac{h}{f}$$

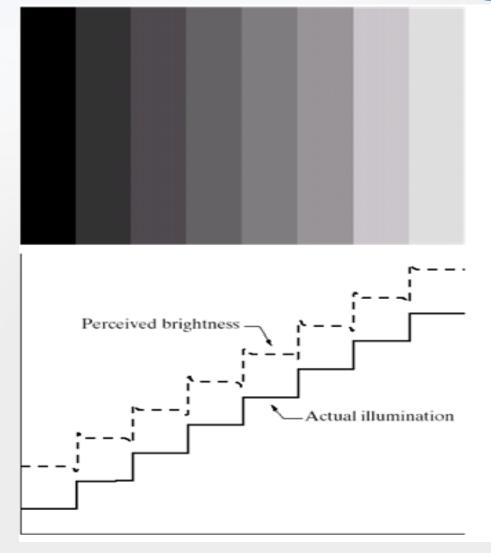

$$h = 2.55 \text{ mm}$$

Digital image acquisition process



An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Perceived brightness


Two phenomena clearly demonstrate that perceived brightness is not a simple function of intensity.

Simultaneous contrast

Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

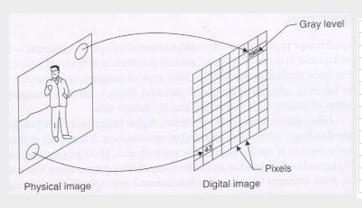
Perceived brightness

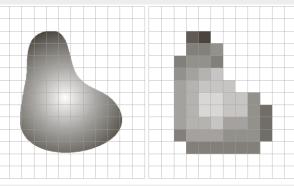
(a) An example showing that perceived brightness is not a simple function of intensity. The relative vertical positions between the two profiles in (b) have no special significance; they were chosen for clarity.

Image formation process

There are two parts to the image formation process:

- The geometry, which determines where in the image plane the projection of a point in the scene will be located.
- (2) The physics of light, which determines the brightness of a point in the image plane.


A Simple Image Formation Model


Mathematical representation of monochromatic images.

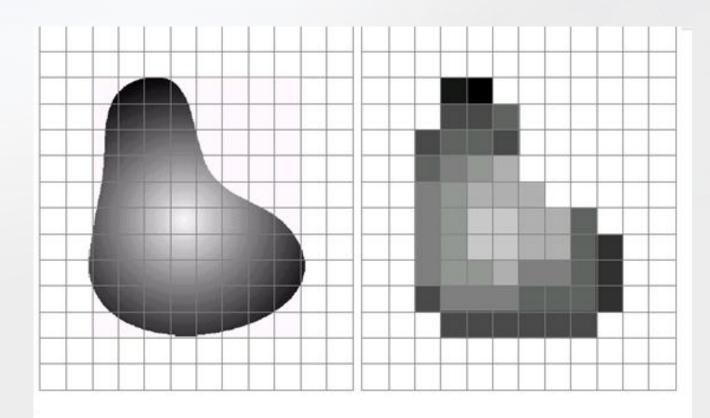
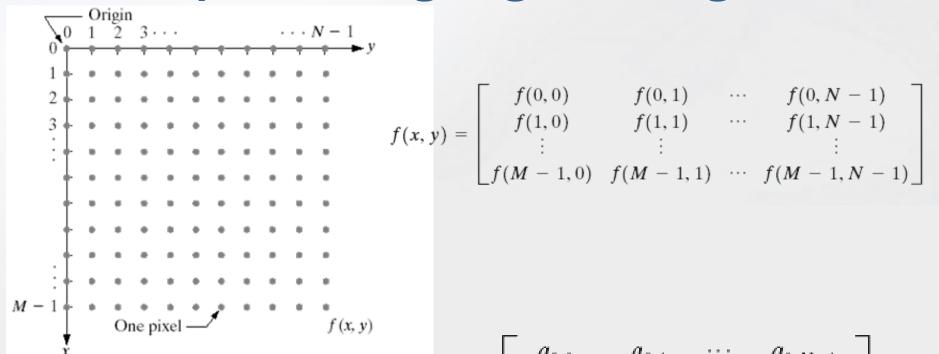

- Two dimensional function f(x,y), where If is the gray level of a pixel at location x and y.
- The values of the function f at different locations are proportional to the energy radiated from the imaged object.

Image digitization

- The output of most sensors is continuous in amplitude and spatial coordinates.
- Converting an analog image to a digital image require sampling and quantization
 - **Sampling:** is digitizing the coordinate values, measuring the value of an image at a finite number points.
 - **Quantization:** is digitizing the amplitude values, representing a measure value at the sampled point by a number.



(a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

Representing Digital Images

$$\mathbf{A} = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,N-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{1,N-1} \\ \vdots & \vdots & & \vdots \\ a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1,N-1} \end{bmatrix}$$

Representing Digital Images

The pixel intensity levels (gray scale levels) are in the interval of [0, L-1].

$$0 \le a_{i,j} \le L-1$$
 Where $L = 2^k$

The dynamic range of an image is the range of values spanned by the gray scale.

The number, b, of bits required to store a digitized image of size M by N is

$$b = M \times N \times k$$

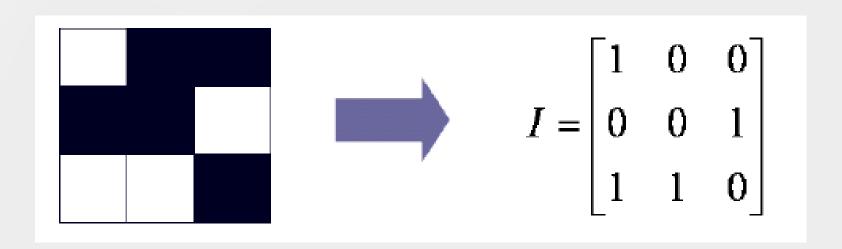

Image 1-bit: Examples

Image 1-bit: Features

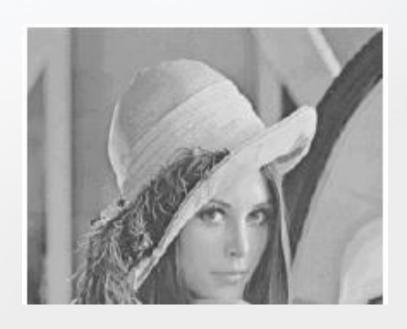

- Consiste aux états on et off (Oui et Non) des pixels
- Pixel: le plus petit élément picture de l'image digitale (picture element)
- Chaque pixel est stocké dans un bit (ou comme étant un bit) o ou 1, o--noir, 1—blanc.

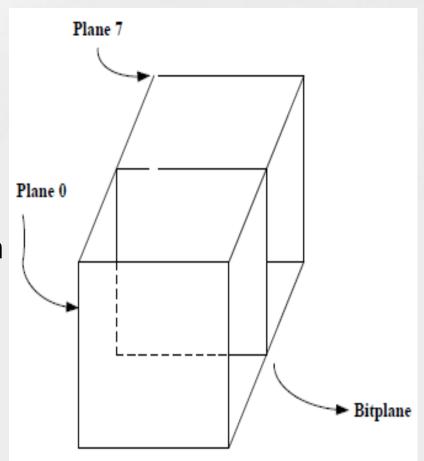
Image 1-bit: Taille et Usage

- Stockage
 - Les images Monochromes avec une résolution : 640×480
 - 640*480=307200 bits
 - $640 \times 480/8 = 38400$ octets
 - L'espace de Stockage requis est : 37.5 KB
- Usage
 - Les images contenant des graphiques simples et/ou du texte

Images Niveaux de gris 8-Bit: Exemples

Images Niveaux de gris 8-Bit: Exemples

Image Niveaux de Gris 8-Bit VS Image 1-Bit


Images Niveaux de gris 8-Bit: Features

- Chaque pixel est représenté par un octet
 - Les valeurs des niveaux de gris sont situées entre o et 255
- Limage peut-être vue comme un tableau bidimensionnel de valeurs de pixels
 - Ce tableau est appelé bitmap

$$I = \begin{bmatrix} 0 & 150 & 200 \\ 120 & 50 & 180 \\ 250 & 220 & 100 \end{bmatrix}$$

Images Niveaux de gris 8-Bit: Features

- L'image 8-Bit est vue comme un ensemble de bitplans de 1-bit
- Chaque plan est une Représentation 1-bit de l'image à un niveau
- Tous les bitplans constituent un octet qui stocke les niveaux entre o ~ 255

Images Niveaux de gris 8-Bit: Taille

• Elaine image of size 512 by 512 pixels (5 by 5 inches), The dynamic range is [0, 255].

77	66	68	67	98	93	79	81
79	61	61	71	61	78	88	94
79	93	84	64	72	76	95	94
97	65	71	75	75	72	95	111
120	81	82	76	72	77	78	83
150	146	112	83	78	62	91	85
156	145	158	125	107	121	95	86
158	166	147	146	153	149	129	107

- Find the following:
 - The number of bits required to represent a pixel
 - The size of the image in bits?

Representing digital images

Number of storage bits for various values of N and k.

N/k	1(L=2)	2(L=4)	3(L = 8)	4(L=16)	5(L = 32)	6(L = 64)	7 (L = 128)	8(L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

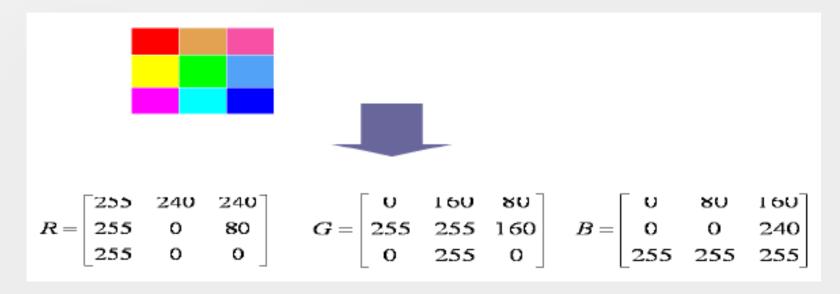
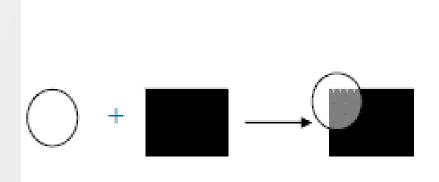

Image couleur 24-Bit : exemple

Image couleur 24-Bit : Feature


Chaque pixel utilise trois octets: représentant RGB

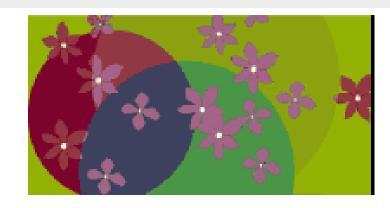

- Valeur de o à 255;
- Supporte 256×256×256 couleurs, 16,777,216
- Chaque pixel est décrit par les différents niveaux de RGB

Image couleur 24-Bit : Taille

- Image couleur 24-Bits de résolution 640×480 soit 640×480×3 bytes ou 921.6KB
- La majorité des images couleurs 24-bits de nos jours sont stockées sur 32-bits, incluant des données suplémentaires de chaque pixel (valeur α, transparence, semi transparence, etc...)

Image couleur 8-Bit : Exemple

Appelée aussi image 256 couleurs

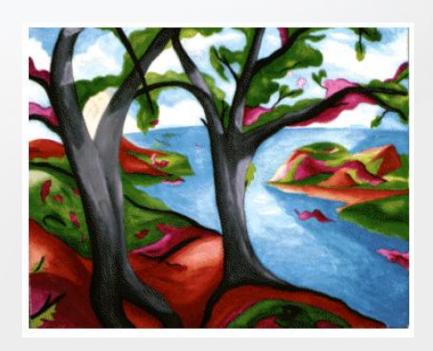
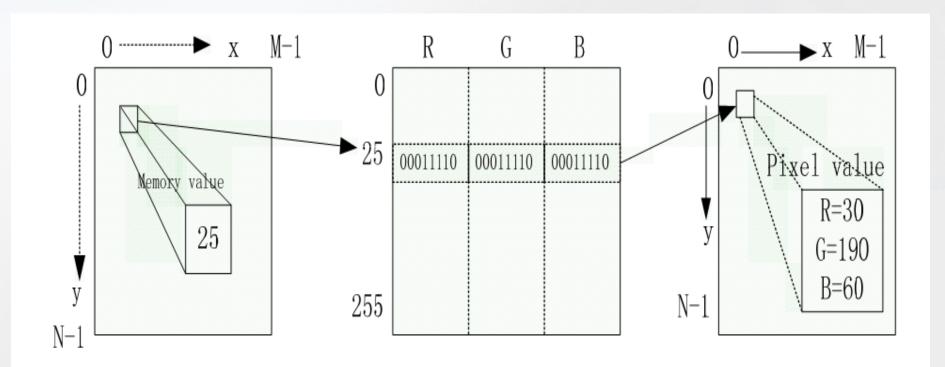


Image couleur 8-bits

Image couleur 24-bits

Image couleur 8-Bit

- Plusieurs systèmes utilisent 8 bits de couleurs (appelé aussi 256 couleurs") pour produire des images à l'écran.
- Ces images utilisent le concept de la table de recherche ou palette (en anglais lookup table) pour stocker une information sur la couleur.
- En principe, l'image stocke non pas des couleurs, mais seulement un ensemble d'octets, chaque octet est un index dans une table ayant des valeurs de 3 octets qui désignent la couleur RGB d'un pixel.


Concept du la palette Lookup table

- L'image stocke un ensemble d'octets et non la couleur réelle
- La valeur de l'octet est un index vers une table de couleur de 3octets
- Le choix des couleurs de la table (palette) est très important
 - On choisit les 256 couleurs les plus importantes
 - Peut être générée par la technique du clustering de 256×256×256 couleurs

Palette de couleurs

- L'idée utilisée dans les images couleurs 8-bit est de stocker seulement l'index ou le code de la valeur de chaque pixel.
- Par exemple: si un pixel stocke la valeur 25, ceci signifie qu'il faut aller à la ligne 25 de la palette des couleurs ou look-up table (LUT).

Palette de couleurs (suite)

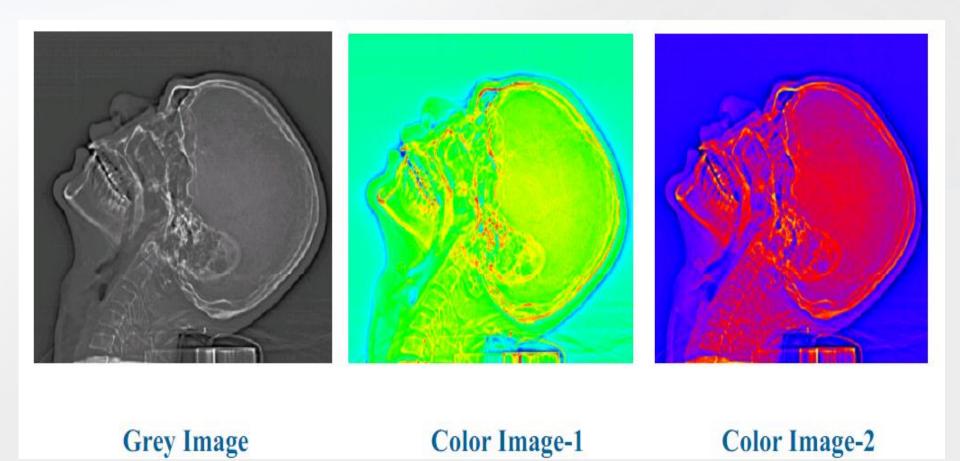
Value as the Index to Table

Get the color values by Searching

The RGB value of the pixel

Palette de couleurs: application

- Changement de la couleur par ajustement de la table LUT
- Exemple : Modifier la LUT


Index	R	G	В
1	255	0	0
Index	R	G	В
1	0	255	0

en

Pour l'index 1, c'est convertir le rouge au vert

 Une application importante : images médicales Convertir les images grey en images couleurs

Application médicale

Formats d'images

GIF Image: Exemple

GIF Image : Caractéristiques

- GIF (Graphics Interchange Format)
- Inventé par UNISYS Corporation et Compuserve en 1987.
- Initialement, il transmet des images graphiques à travaers les lignes téléphoniques (fax).
- Il ne provient d'aucune application informatique, mais actuellement il est utilisé par la majorité des programmes.

Il utilise l'algorithme de compression LZW (Lempel-Ziv-Welch).

Limité à 8-bit (256) image couleur.

- GIF image de 1bit à 8bit
- GIF image peut utiliser 256 couleurs

GIF Image: Analyse d'un exemple

Une image GIF de résolution 120*160


```
Offset Length Contents

o 3 bytes "GIF"

3 3 bytes "87a" or "89a"

6 2 bytes <Logical Screen Width>

8 2 bytes <Logical Screen Height>

10 1 byte bit o: Global Color Table Flag (GCTF)

bit 1..3: Color Resolution

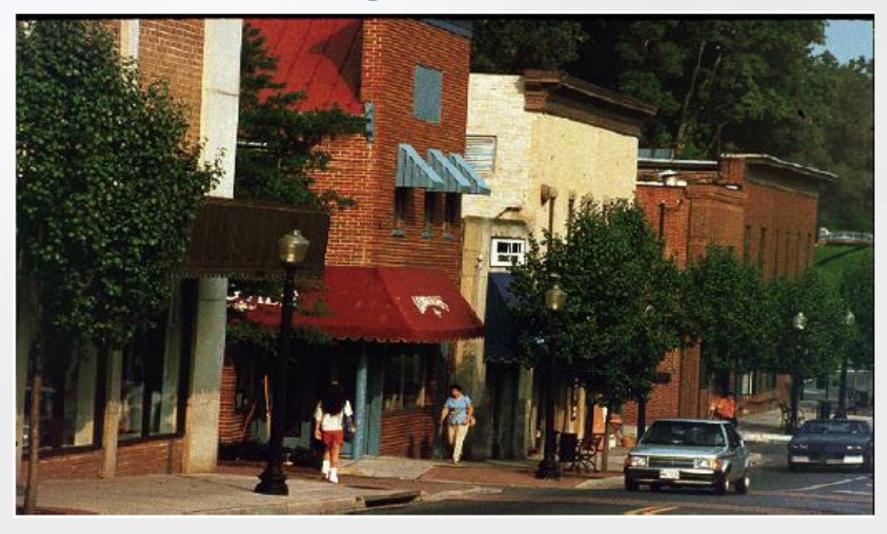
bit 4: Sort Flag to Global Color Table

bit 5..7: Size of Global Color Table: 2^(1+n)

1 1 byte <Background Color Index>

......

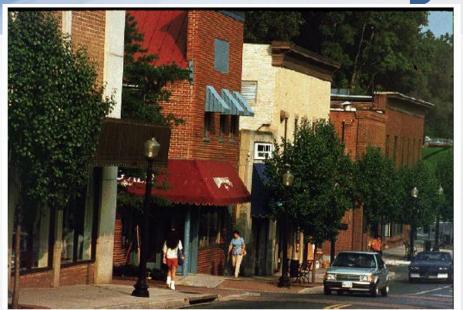
Gif: Informations de l'entête du fichier
```


GIF signature
Screen descriptor
Global color map
Image descriptor
Local color map

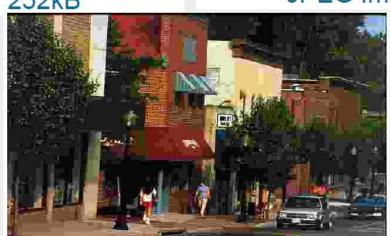
Raster area

GIF terminator

Gif file format


JPEG Image: Un exemple

JPEG Image : Caractéristiques


- JPEG (Joint Photographic Experts Group)
- Créé par le Groupe de Recherche de « International Standard Organization » (ISO)
- Tient son avantage des limitations de la vision humaine
- JPEG assure un taux élevé de compression
- JPEG utilise une méthode de compression avec perte
- Permet à l'utilisateur de choisir le niveau de qualité désirée, ou taux de compression.

JPEG Image: Exemples

JPEG Image (1): 252kB

JPEG Image(2): 45.2kB

JPEG Image (3): 9.21kB

BMP Image

- Créé par Microsoft comme le format principal des images de Windows.
- Il peut stocker des images de 1bit, 4bits, 8bits, ainsi que les couleurs réelles
- Le fichier BMP possède trois forma de stockage:
- Données originales sans compression, le plus utilisé
- Run Length Encoding: utilisé pour des images couleurs 8-bits (256 couleurs), appellé: BI-RLE8
- RLE: utilisé pour des images 4-bits (16 couleurs), appellé:BI_RLE4

Fichier BMP Image: contenu

- Le fichier BMP consiste en quatre composants:
- Entête du fichier: type et informations diverses
- Informations du bitmap : longueur, largeur, algorithmes de compression, etc
- Palette : Color LUT table, ou sans palette: image
 24-bits couleurs réelles
- Données de l'Image : Image de couleurs réelles stocke les codes (R,G,B), image avec palette stocke l'index de la palette.

Fichier BMP Image: exemple

• Fichier BMP : Image niveaux de gris 128*128


```
Offset Length Contents
0 2 bytes "BM"
2 4 bytes Total size included "BM"
6 2 bytes Reserved1
8 2 bytes Reserved2
10 4 bytes Offset Bytes
14 4 bytes Header size (n)
18 n-4 bytes Header (See right)
14+n..s-1 Image data
```

Format du fichier BMP

```
Offset Length Contents
    18
   22
         4 bytes Heiht
Bitmap head format
    26
         2 bytes Planes
    28
         2 bytes Bits per Pixel
         4 bytes Compression
    30
   34
         4 bytes Image size
   38
         4 bytes X Pixels per meter
         4 bytes Y Pixels per meter
   42
          4 bytes Number of Colors
    46
    50
          4 bytes Colors Important
    54 (n-40) bytes OS/2 new xtentional
   fields
```

Autres formats d'images

- PNG (Portable Network Graphics)
- TIFF (Tagged Image File Format)
- EXIF (Exchange Image File)

•