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• Why Compression? 
All media, be it text, audio, graphics or video has “redundancy”. 
Compression attempts to eliminate this redundancy. 
• What is Redundancy? 
If one representation of a media content, M, takes X bytes and 

another takes Y bytes(Y< X), then X is a redundant 
representation relative to Y. 

Other forms of Redundancy 
If the representation of a media captures content that is not 
perceivable by humans, then removing such content will not 
affect the quality of the content. 
• For example, capturing audio frequencies outside the human 

hearing range can be avoided without any harm to the 
audio’s quality. 

Is there a representation with an optimal size Z that cannot be 
improved upon? This question is tackled by information theory. 

Compression 



Compression 



According to Shannon, the entropy of an information source S is 
defined as: 

H(S) = Σi (pi log 2 (1/pi )) 
 log 2 (1/pi ) indicates the amount of information contained in 
symbol Si, i.e., the number of bits needed to code symbol Si. 
 
• For example, in an image with uniform distribution of gray level 
intensity, i.e. pi = 1/256, with the number of bits needed to code each 

gray level being 8 bits. The entropy of the image is 8. 
 
Q: What is the entropy of a source with M symbols where 
each symbol is equally likely? 
• Entropy, H(S) = log2 M 
Q: How about an image in which half of the pixels are white 
and half are black? 
• Entropy, H(S) = 1 

Information Theory 



Entropy coding features 



Discussion: 
Entropy is a measure of how much information is encoded in a 

message. Higher the entropy, higher the information content. 
• We could also say entropy is a measure of uncertainty in a message. 

Information and Uncertainty are equivalent concepts. 
The units (in coding theory) of entropy are bits per symbol. 
• It is determined by the base of the logarithm: 

2: binary (bit); 
10: decimal (digit). 

Entropy gives the actual number of bits of information contained in a 
message source. 

• Example: If the probability of the character ‘e’ appearing in 
this slide is 1/16, then the information content of this character is 4 

bits. So, the character string “eeeee” has a total content of 20 bits 
(contrast this to using an 8-bit ASCII coding that could result in 40 
bits to represent “eeeee”). 

Information Theory 



Data Compression consists of taking a stream of symbols and transforming 
them into codes. 
• The model is a collection of data and rules used to process input 

symbols and determine their probabilities. 
• A coder uses a model (probabilities) to spit out codes when its given 

input symbols 
Let’s take Huffman coding to demonstrate the distinction: 
 
 
 
 
The output of the Huffman encoder is determined by the Model 

(probabilities). Higher the probability shorter the code. 
• Model A could determine raw probabilities of each symbol occurring 

anywhere in the input stream. 
•  (pi = # of occurrences of Si / Total number of Symbols ) 

• Model B could determine prob. based on the last 10 symbols in the  i/p 
stream. (continuously re-computes the probabilities ) 

Data Compression = Modeling + Coding 



The Shannon-Fano Encoding Algorithm 



The Huffman Algorithm 



Decoding for the above two algorithms is trivial as long as the 
coding table (the statistics) is sent before the data. There 
is an overhead for sending this, negligible if the data file is 
big. 
Unique Prefix Property: no code is a prefix to any other code 
(all symbols are at the leaf nodes) 
--> great for decoder, unambiguous; unique Decipherability? 
 
If prior statistics are available and accurate, then Huffman 
coding is very good. 
• Number of bits (per symbol) needed for Huffman Coding is: 
•                      87 / 39 = 2.23 
• Number of bits (per symbol)needed for Shannon-Fano 
• Coding is:  
•                     89 / 39 = 2.28 

Huffman Alg.: Discussion 



• RLC (Run-Length Coding) 
• La forme la plus simple de compression de 

données 
• Principe: 

• SI un ensemble de symboles tend à former un 
groupe, coder un symbole ainsi que la longueur 
du groupe, au lieu de coder chaque symbole. 

• Exemple: Une image à deux niveaux de gris, peut-
être codée par RLC. 

• RLC à deux dimensions est souvent utilisé pour 
coder une image à 2 niveaux de gris. 
 

Codage à longueur  statique (RLC) 



Codage à longueur  statique (RLC) 



• Alphabet: is a collection of symbols. 
• Letters (symbols): is an element of an alphabet. 
• Coding: the assignment of binary sequences to 
elements of an alphabet. 
• Code: A set of binary sequences. 
• Codewords: Individual members of the set of binary 
sequences. 

Definitions 



• English alphabets: 
• 26 uppercase and 26 lowercase letters and 

punctuation 
• marks. 
• ASCII code for the letter “a” is 1000011 
• ASCII code for the letter “A” is 1000001 
• ASCII code for the letter “,” is 0011010 

• Note:  
• All the letters (symbols) in this case use the same 
number of bits (7). These are called fixed length codes. 
• The average number of bits per symbol (letter) is 

called the rate of the code. 

Examples of Binary Codes 



• Average length of the code is important in 
compression. 

• Suppose our source alphabet consists of four letters 
a1, a2, a3, and a4 with probabilities  

P(a1) = 0.5 P(a2) = 0.25, and P(a3) = P(a4) = 0.125. 
• The average length of the code is given by 

 
 
 

• n(ai) is the number of bits in the codeword for letter 
ai 

Code Rate 



 
 
 
 
 
 
 

• Code 1: not unique a1 and a2 have the same codeword 
• Code 2: not uniquely decodable: 100 could mean a2a3 or 

a2a1a1 
• Codes 3 and 4: uniquely decodable: What are the rules? 
• Code 3 is called instantaneous code since the decoder 

knows the codeword the moment a code is complete. 

Uniquely Decodable Codes 



• Consider two codewords: 011 and 011101 
• Prefix: 011 
• Dangling suffix: 101 

 
• Algorithm: 
• 1. Construct a list of all the codewords. 
• 2. Examine all pairs of codewords to see if any codeword is a 

prefix of another one. If there exists such a pair, add the 
dangling suffix to the list unless there is one already. 

• 3. Continue this procedure using the larger list until: 
 1. Either a dangling suffix is a codeword -> not uniquely 

decodable. 
 2. There are no more unique dangling suffixes -> uniquely 

decodable. 

How do we know a uniquely decodable 
code? 



• Consider {0,01,11} 
• Dangling suffix is 1 from 0 and 01 
• New list: {0,01,11,1} 
• Dangling suffix is 1 (from 0 and 01, and also 1 and 

11), and is already included in previous iteration. 
• Since the dangling suffix is not a codeword, {0,01, 

11} is uniquely decodable. 

Examples of Unique Decodability 



• Consider {0,01,10} 
• Dangling suffix is 1 from 0 and 01 
• New list: {0,01,10,1} 
• The new dangling suffix is 0 (from 10 and 1). 

• Since the dangling suffix 0 is a codeword, {0,01, 10} 
is not uniquely decodable. 

Examples of Unique Decodability 



• Prefix codes: A code in which no codeword is a prefix 
to another codeword. 

• A prefix code can be defined by a binary tree 
• Example: 

 

Prefix Codes 



 

Decoding a Prefix Codeword 



 

Decoding a Prefix Codeword 



• Suppose a, b, and c occur with probabilities 
1/8, 1/4, and 5/8, respectively. 
 

How good is the code? 


