
Lossless Compression

Département Informatique Année Universitaire 2022-2023

Chapitre 3

• Compression
• With loss
• Without loss

• Shannon: Information Theory
• Shannon-Fano Coding Algorithm
• Huffman Coding Algorithm

Sommaire

• Why Compression?
All media, be it text, audio, graphics or video has “redundancy”.
Compression attempts to eliminate this redundancy.
• What is Redundancy?
If one representation of a media content, M, takes X bytes and

another takes Y bytes(Y< X), then X is a redundant
representation relative to Y.

Other forms of Redundancy
If the representation of a media captures content that is not
perceivable by humans, then removing such content will not
affect the quality of the content.
• For example, capturing audio frequencies outside the human

hearing range can be avoided without any harm to the
audio’s quality.

Is there a representation with an optimal size Z that cannot be
improved upon? This question is tackled by information theory.

Compression

Compression

According to Shannon, the entropy of an information source S is
defined as:

H(S) = Σi (pi log 2 (1/pi))
 log 2 (1/pi) indicates the amount of information contained in
symbol Si, i.e., the number of bits needed to code symbol Si.

• For example, in an image with uniform distribution of gray level
intensity, i.e. pi = 1/256, with the number of bits needed to code each

gray level being 8 bits. The entropy of the image is 8.

Q: What is the entropy of a source with M symbols where
each symbol is equally likely?
• Entropy, H(S) = log2 M
Q: How about an image in which half of the pixels are white
and half are black?
• Entropy, H(S) = 1

Information Theory

Entropy coding features

Discussion:
Entropy is a measure of how much information is encoded in a

message. Higher the entropy, higher the information content.
• We could also say entropy is a measure of uncertainty in a message.

Information and Uncertainty are equivalent concepts.
The units (in coding theory) of entropy are bits per symbol.
• It is determined by the base of the logarithm:

2: binary (bit);
10: decimal (digit).

Entropy gives the actual number of bits of information contained in a
message source.

• Example: If the probability of the character ‘e’ appearing in
this slide is 1/16, then the information content of this character is 4

bits. So, the character string “eeeee” has a total content of 20 bits
(contrast this to using an 8-bit ASCII coding that could result in 40
bits to represent “eeeee”).

Information Theory

Data Compression consists of taking a stream of symbols and transforming
them into codes.
• The model is a collection of data and rules used to process input

symbols and determine their probabilities.
• A coder uses a model (probabilities) to spit out codes when its given

input symbols
Let’s take Huffman coding to demonstrate the distinction:

The output of the Huffman encoder is determined by the Model

(probabilities). Higher the probability shorter the code.
• Model A could determine raw probabilities of each symbol occurring

anywhere in the input stream.
• (pi = # of occurrences of Si / Total number of Symbols)

• Model B could determine prob. based on the last 10 symbols in the i/p
stream. (continuously re-computes the probabilities)

Data Compression = Modeling + Coding

The Shannon-Fano Encoding Algorithm

The Huffman Algorithm

Decoding for the above two algorithms is trivial as long as the
coding table (the statistics) is sent before the data. There
is an overhead for sending this, negligible if the data file is
big.
Unique Prefix Property: no code is a prefix to any other code
(all symbols are at the leaf nodes)
--> great for decoder, unambiguous; unique Decipherability?

If prior statistics are available and accurate, then Huffman
coding is very good.
• Number of bits (per symbol) needed for Huffman Coding is:
• 87 / 39 = 2.23
• Number of bits (per symbol)needed for Shannon-Fano
• Coding is:
• 89 / 39 = 2.28

Huffman Alg.: Discussion

• RLC (Run-Length Coding)
• La forme la plus simple de compression de

données
• Principe:

• SI un ensemble de symboles tend à former un
groupe, coder un symbole ainsi que la longueur
du groupe, au lieu de coder chaque symbole.

• Exemple: Une image à deux niveaux de gris, peut-
être codée par RLC.

• RLC à deux dimensions est souvent utilisé pour
coder une image à 2 niveaux de gris.

Codage à longueur statique (RLC)

Codage à longueur statique (RLC)

• Alphabet: is a collection of symbols.
• Letters (symbols): is an element of an alphabet.
• Coding: the assignment of binary sequences to
elements of an alphabet.
• Code: A set of binary sequences.
• Codewords: Individual members of the set of binary
sequences.

Definitions

• English alphabets:
• 26 uppercase and 26 lowercase letters and

punctuation
• marks.
• ASCII code for the letter “a” is 1000011
• ASCII code for the letter “A” is 1000001
• ASCII code for the letter “,” is 0011010

• Note:
• All the letters (symbols) in this case use the same
number of bits (7). These are called fixed length codes.
• The average number of bits per symbol (letter) is

called the rate of the code.

Examples of Binary Codes

• Average length of the code is important in
compression.

• Suppose our source alphabet consists of four letters
a1, a2, a3, and a4 with probabilities

P(a1) = 0.5 P(a2) = 0.25, and P(a3) = P(a4) = 0.125.
• The average length of the code is given by

• n(ai) is the number of bits in the codeword for letter
ai

Code Rate

• Code 1: not unique a1 and a2 have the same codeword
• Code 2: not uniquely decodable: 100 could mean a2a3 or

a2a1a1
• Codes 3 and 4: uniquely decodable: What are the rules?
• Code 3 is called instantaneous code since the decoder

knows the codeword the moment a code is complete.

Uniquely Decodable Codes

• Consider two codewords: 011 and 011101
• Prefix: 011
• Dangling suffix: 101

• Algorithm:
• 1. Construct a list of all the codewords.
• 2. Examine all pairs of codewords to see if any codeword is a

prefix of another one. If there exists such a pair, add the
dangling suffix to the list unless there is one already.

• 3. Continue this procedure using the larger list until:
 1. Either a dangling suffix is a codeword -> not uniquely

decodable.
 2. There are no more unique dangling suffixes -> uniquely

decodable.

How do we know a uniquely decodable
code?

• Consider {0,01,11}
• Dangling suffix is 1 from 0 and 01
• New list: {0,01,11,1}
• Dangling suffix is 1 (from 0 and 01, and also 1 and

11), and is already included in previous iteration.
• Since the dangling suffix is not a codeword, {0,01,

11} is uniquely decodable.

Examples of Unique Decodability

• Consider {0,01,10}
• Dangling suffix is 1 from 0 and 01
• New list: {0,01,10,1}
• The new dangling suffix is 0 (from 10 and 1).

• Since the dangling suffix 0 is a codeword, {0,01, 10}
is not uniquely decodable.

Examples of Unique Decodability

• Prefix codes: A code in which no codeword is a prefix
to another codeword.

• A prefix code can be defined by a binary tree
• Example:

Prefix Codes

Decoding a Prefix Codeword

Decoding a Prefix Codeword

• Suppose a, b, and c occur with probabilities
1/8, 1/4, and 5/8, respectively.

How good is the code?

