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Compression

* Why Compression?
All media, be it text, audio, graphics or video has “redundancy”.
Compression attempts to eliminate this redundancy.

* What is Redundancy?

If one representation of a media content, M, takes X bytes and
another takes Y bytes(Y< X), then Xiis a redundant
representation relative to Y.

Other forms of Redundancy

If the representation of a media captures content that is not

perceivable by humans, then removing such content will not

affect the quality of the content.

e For example, capturing audio frequencies outside the human
hearing range can be avoided without any harm to the
audio’s quality.

Is there a representation with an optimal size Z that cannot be

improved upon? This question is tackled by information theory.



Compression




Information Theory

According to Shannon, the entropy of an information source S is

defined as:
H(S) = Zi (pi Io? 2 (1/pi))
log 2 (1/pi ) indicates the amount of information contained in
symbol Si, i.e., the number of bits needed to code symbol Si.

* For example, in an image with uniform distribution of gray level
intensity, i.e. pi = 1/256, with the number of bits needed to code each
gray level being 8 bits. The entropy of the image is 8.

Q: What is the entropy of a source with M symbols where
each symbol is equally likely?

e Entropy, H(S) =log2 M

Q: How about an image in which half of the pixels are white
and half are black?

* Entropy, H(S) =1



Entropy coding features

Average codeword length ¢ for uniquely decodable codes is bounded
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i=10

Redundancy of a code is given by the difference
o=F¢—H(S)=0

Redundancy is zero only, if the first and second term on the right side of
are equal to 0
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Information Theory

Discussion:
Entropy is a measure of how much information is encoded in a
message. Higher the entropy, higher the information content.
e We could also say entropy is a measure of uncertainty in a message.
Information and Uncertainty are equivalent concepts.
The units (in coding theory) of entropy are bits per symbol.
e [t is determined by the base of the logarithm:
2: binary (bit);
10: decimal (digit).
Entropy gives the actual number of bits of information contained in a
message source.
e Example: If the probability of the character ‘e’ appearing in
this slide is 1/16, then the information content of this character is 4
bits. So, the character string "eeeee” has a total content of 20 bits
(contrast this to using an 8-bit ASCII coding that could result in 40
bits to represent “eeeee”).



Data Compression = Modeling + Coding

Data Compression consists of taking a stream of symbols and transforming
them into codes.
* The modelis a collection of data and rules used to process input
symbols and determine their probabilities.
* A coder uses a model (probabilities) to spit out codes when its given
input symbols
Let’s take Huffman coding to demonstrate the distinction:

The output of the Huffman encoder is determined by the Model
(probabilities). Higher the probability shorter the code.
* Model A could determine raw probabilities of each symbol occurring
anywhere in the input stream.
* (pi=# of occurrences of Si/ Total number of Symbols )
* Model B could determine prob. based on the last 10 symbols in the i/p
stream. (continuously re-computes the probabilities)



Calculate the frequencies

of the list of symbeols
(organize as a list).

Sort the list in
(decreasing) order of
frequencies.

Divide list into two

halfs, with the total
freq. Counts of each half

being as close as
possible to the other.
The upper half is
assigned a code of 0 and
lower a code of 1.
Recursively apply steps 3

and 4 to each of the
halves, until each symbol

has become a

corresponding code leaf
on a tree,.

The Shannon-Fano Encoding Algorithm

Symbol
Count
Symbol | Count | Info. Code Subtotal
- loa2( i #H of
og2(pi) Bite
A 15 ¥ 138 00 30
B 7 ¥ 248 01 14
C 6 §F 270 10 12
D & ¥ 270 110 18
E 5 ¥ 296 111 15
3525 %

It takes a total of 89 bits to encode
85.25 bits of information (Pretty

good huhl)




The Huffman Algorithm

Initialization: Put all

nodes in an OPEN list L,
keep 1t sorted at all

times (e.g., ABCDE).
Repeat the following
steps until the list L
has only one node left:

1. From L pick two nodes
having the lowest
frequencies, create a
parent node of them.

2. Assign the sum of the
children's frequencies
to the parent node and
insert it into L.

3. Assign code 0, 1 to
the two branches of

the tree, and delete
the children from L.

Count 15 6 5
Symbol A B D E
Symbel | Count | Info. Code | Subtotal
-loga(pi) # of
Bits

A 15 x 138 1 15

B 7 % 248 000 21

C 6 ¥ 270 001 18

D 6 F 270 010 18

E h ¥ 296 011 15

85.25




Huffman Alg.: Discussion

Decoding for the above two algorithms is trivial as long as the
coding table (the statistics) is sent before the data. There

is an overhead for sending this, negligible if the data file is
big.

Ugique Prefix Property: no code is a prefix to any other code
(all symbols are at the leaf nodes)

--> great for decoder, unambiguous; unique Decipherability?

If prior statistics are available and accurate, then Huffman
coding is very good.

* Number of bits (per symbol) needed for Huffman Coding is:
’ 87/39=2.23

* Number of bits (per symbol)needed for Shannon-Fano
* Codingis:

- 89/39=2.28



Codage a longueur statique (RLC)

RLC (Run-Length Coding)

* Laforme la plus simple de compression de

donnees
Principe:

* Slun ensemble de symboles tend a former un
groupe, coder un symbole ainsi que la longueur
du groupe, au lieu de coder chaque symbole.

Exemple: Une image a deux niveaux de gris, peut-
étre codee par RLC.

RLC a deux dimensions est souvent utilise pour
coder une image a 2 niveaux de gris.
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10 10 10 10 10 12 12 12
o 0 0 101010 0 O
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>3 5 44 400
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8x8 gray level image

Codage a longueur statique (RLC)

First row 10,8
Second row 10,5123

Third row 105,123
Fourth row :0,3,10.3,0,2
Fifth row :9,3,0.5

Sixth row 53,1029 2101

Seventh row :5,3.4.3,02
Eighth row 0,8

Horlzontal RLC



Definitions

* Alphabet: is a collection of symbols.

* Letters (symbols): is an element of an alphabet.

* Coding: the assignment of binary sequences to
elements of an alphabet.

* Code: A set of binary sequences.

* Codewords: Individual members of the set of binary
sequences.



Examples of Binary Codes

* English alphabets:
* 26 uppercase and 26 lowercase letters and
punctuation
marks.
ASCII code for the letter "a” is 1000011

ASCIl code for the letter "A” is 1000001
* ASCIl code for the letter “,” is oo11010
* Note:
* All the letters (symbols) in this case use the same
number of bits (7). These are called fixed length codes.
* The average number of bits per symbol (letter) is
called the rate of the code.




Code Rate

* Average length of the code is important in
compression.

* Suppose our source alphabet consists of four letters
a1, a2, a3, and a4 with probabilities

P(a1) = 0.5 P(a2) = 0.25, and P(a3) = P(a4) = 0.125.

* The average length of the code is given by

A
[ = Z P(a )n(a,)
i=1

* n(ai) is the number of bits in the codeword for letter
al



Uniquely Decodable Codes

Letters | Probabilitity | Code 1 Code 2 Code 3 Code 4
A 0.5 0 0 0 0

2 0.25 0 1 10 01

a3 0.125 1 00 110 011
A4 0.125 10 11 111 0111
Average Length 1.125 |1.25 1.75 1.875

Code 1: not unique a1 and a2 have the same codeword
Code 2: not uniquely decodable: 100 could mean a2a3 or
a2ai1al

Codes 3 and 4: uniquely decodable: What are the rules?
Code 3 is called instantaneous code since the decoder
knows the codeword the moment a code is complete.



How do we know a uniquely decodable
code?

Consider two codewords: 011 and 011101
 Prefix: 011
 Dangling suffix: 101

Algorithm:
1. Construct a list of all the codewords.
2. Examine all pairs of codewords to see if any codeword is a
prefix of another one. If there exists such a pair, add the
dangling suffix to the list unless there is one already.
3. Continue this procedure using the larger list until:
= 1. Either a dangling suffix is a codeword -> not uniquely
decodable.
= 2. There are no more unique dangling suffixes -> uniquely
decodable.



Examples of Unique Decodability

* Consider {0,01,11}
* Dangling suffix is 1 from o and o1
* New list: {0,01,11,1}
* Dangling suffix is 1 (from o and o1, and also 1 and
11), and is already included in previous iteration.
* Since the dangling suffix is not a codeword, {o,01,
11} is uniquely decodable.




Examples of Unique Decodability

* Consider §0,01,10}
* Dangling suffix is 1 from o and o1
* New list: {0,01,10,1}
* The new dangling suffix is o (from 10 and 1).
* Since the dangling suffix o is a codeword, {o0,01, 10}
is not uniquely decodable.



Prefix Codes

* Prefix codes: A code in which no codeword is a prefix

to another codeword.
* A prefix code can be defined by a binary tree

* Example:

input output
0 1 a 00
tree C b 01 code
a b C 1




Decoding a Prefix Codeword

repeat
0 1 start at root of tree
repeat
0 : c If read bit = 1 then go right
\\b else go left
a until node is a leaf
report leaf
until end of the code

11000111100
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How good is the code?

* Suppose g, b, and c occur with probabilities
1/8, 1/4, and 5/8, respectively.

0 1

C
0.4 58
a b
178 1/4

bit rate = (1/8)2 + (1/4)2 + (5/8)1 = 11/8 = 1.375 bps
Entropy = 1.3 bps
Standard code = 2 bps

(bps = bits per symbol)



