
Lossy Compression

Département Informatique Année Universitaire 2022-2023

Chapitre 4

Plan

• Image Compression: Key Ingredients

• JPEG: Joint Photographic Experts Group

2

• Image Compression: Key Ingredients

1

• JPEG: Joint Photographic Experts Group

1

IIInnntttrrroooddduuuccctttiiiooonnn
• JPEG : Joint Photographic Experts Group

– Original name
• The committee of the International Organization for

St d di ti (ISO)Standardization (ISO)

– The first international static image compression
standard Published in 1992：ISO 10918-1standard Published in 1992：ISO 10918-1

• Because of its pleasing properties, JPEG
gained great success only several years aftergained great success only several years after
published

Al t 80 t f i b– Almost 80 percents of images on web are
compressed by the JPEG standards

4Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

IIInnntttrrroooddduuuccctttiiiooonnn
• JPEG is a lossy image compression method. It employs a

t f di th d i th DCT (Di t C itransform coding method using the DCT (Discrete Cosine
Transform).

• An image is a function of i and j (or conventionally x and y)
in the spatial domain The 2D DCT is used as one step inin the spatial domain. The 2D DCT is used as one step in
JPEG in order to yield a frequency response which is a
function F(u, v) in the spatial frequency domain, indexed (,) p q y ,
by two integers u and v.

5Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

Observations for JPEG Image CompressionObservations for JPEG Image Compressionggg ppp

• The effectiveness of the DCT transform coding method inThe effectiveness of the DCT transform coding method in
JPEG relies on 3 major observations:

Observation 1: Useful image contents change relatively slowly
th i i it i l f i t it l tacross the image, i.e., it is unusual for intensity values to vary

widely several times in a small area, for example, within an
8×8 i bl k8×8 image block.

• much of the information in an image is repeated, hence “spatial
redundancy”.

6Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

Observations for JPEG Image CompressionObservations for JPEG Image Compressionggg ppp

Observation 2: Psychophysical experiments suggest that humans are
much less likely to notice the loss of very high spatial frequency
components than the loss of lower frequency components.

• the spatial redundancy can be reduced by largely reducing the
high spatial frequency contents.high spatial frequency contents.

Observation 3: Visual acuity (accuracy in distinguishing closely spacedObservation 3: Visual acuity (accuracy in distinguishing closely spaced
lines) is much greater for gray (“black and white”) than for color.

• chroma subsampling (4:2:0) is used in JPEG.

7Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

1.1 Main Steps in JPEG Image Compression1.1 Main Steps in JPEG Image Compression

（1）T f RGB t YIQ YUV d b l l

ppp ggg ppp

（1）Transform RGB to YIQ or YUV and subsample color

（2）Perform DCT on image blocks（2）Perform DCT on image blocks
（3）Apply Quantization

（4）Zigzag Ordering
（5）DPCM on DC coefficients（5）DPCM on DC coefficients
（6）RLE on AC coefficients

（7）Perform entropy coding

8Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

1.1 Main Steps in JPEG Image Compression1.1 Main Steps in JPEG Image Compressionppp ggg ppp

Bl k di f JPEG d

9Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

Block diagram for JPEG encoder

1.1 Main steps: DCT1.1 Main steps: DCTppp

DCT (Discrete Cosine Transformation)

Each image is divided into 8 × 8 blocks. The 2D DCT is applied
to each block image f(i j) with output being the DCT coefficientsto each block image f(i, j), with output being the DCT coefficients
F(u, v) for each block.

10Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

1.1 Main steps: DCT1.1 Main steps: DCTppp
• Why the block size is 8×8?

– Compromise between accuracy and computation

• Removing blocking artifacts is an important concern of
researcher

• Using blocks, however, has the effect of isolating each
bl k f it i hb i t t Thi i h JPEGblock from its neighboring context. This is why JPEG
images look choppy (“blocky”) when a high compression
ratio is specified by the userratio is specified by the user.

11Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

2-D Transform Example
� The following example will demonstrate the idea behind a 2-

D transform by using our own cooked up transform: The
transform computes a running cumulative sum.

1

1-D
Row-
wise

1-D
Column-
wise

8x8

8x8

8x8

1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1

64 56 48 40 32 24 16 8
56
48
40
32
24
16
8

49
42
35
28
21
14
7

42
36
30
24
18
12
6

35
30
25
20
15
10
5

28
24
20
16
12
8
4

21
18
15
12
9
6
3

14
12
10
8
6
4
2

7
6
5
4
3
2
1

� =
= 8

nmy (n)f)(F ωωMy Transform:

j)f(i,

v)(u,myF

Note that this is only a hypothetical
transform. Do not confuse this with DCT

Quantization
� Why? -- To reduce number of bits per sample

F�(u,v) = round(F(u,v)/q(u,v))
� Example: 101101 = 45 (6 bits).

Truncate to 4 bits: 1011 = 11. (Compare 11 x 4 =44 against 45)
Truncate to 3 bits: 101 = 5. (Compare 8 x 5 =40 against 45)
Note, that the more bits we truncate the more precision we lose

� Quantization error is the main source of the Lossy
Compression.

� Uniform Quantization:
� q(u,v) is a constant.

� Non-uniform Quantization -- Quantization Tables
� Eye is most sensitive to low frequencies (upper left corner in

frequency matrix), less sensitive to high frequencies (lower right
corner)

� Custom quantization tables can be put in image/scan header.
� JPEG Standard defines two default quantization tables, one

each for luminance and chrominance.

Zig-Zag Scan
� Why? -- to group low frequency coefficients in top of vector

and high frequency coefficients at the bottom
� Maps 8 x 8 matrix to a 1 x 64 vector

8x8

. . .

1x64

1.1 Main steps: Quantization1.1 Main steps: Quantizationppp QQQ

(9 1)
(,)ˆ (,) ()

F u vF u v round Q u v

 (9.1)

• F(u, v) represents a DCT coefficient, Q(u, v) is a “quantization matrix”
entry and represents the quantized DCT coefficients which

(,)Q u v

ˆ ()F u ventry, and represents the quantized DCT coefficients which
JPEG will use in the succeeding entropy coding.

The quantization step is the main source for loss in JPEG

(,)F u v

– The quantization step is the main source for loss in JPEG
compression.

– The entries of Q(u, v) tend to have larger values towards the
l i h Thi i i d l h hi hlower right corner. This aims to introduce more loss at the higher
spatial frequencies — a practice supported by Observations 1
and 2.

– Table 9.1 and 9.2 show the default Q(u, v) values obtained from
psychophysical studies with the goal of maximizing the
compression ratio while minimizing perceptual losses in JPEG
images

12Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

images.

1.1 Main steps: Quantization1.1 Main steps: Quantizationppp QQQ
Table 9.1 The Luminance Quantization Table

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 7718 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

Table 9.2 The Chrominance Quantization Table
17 18 24 47 99 99 99 9917 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

13Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

99 99 99 99 99 99 99 99

1.1 Main steps: Quantization1.1 Main steps: Quantizationppp QQQ

An 8 × 8 block from the Y image of ‘Lena’

200 202 189 188 189 175 175 175
200 203 198 188 189 182 178 175
203 200 200 195 200 187 185 175

515 65 ‐12 4 1 2 ‐8 5
‐16 3 2 0 0 ‐11 ‐2 3
12 6 11 1 3 0 1 2203 200 200 195 200 187 185 175

200 200 200 200 197 187 187 187
200 205 200 200 195 188 187 175
200 200 200 200 200 190 187 175

‐12 6 11 ‐1 3 0 1 ‐2
‐8 3 ‐4 2 ‐2 ‐3 ‐5 ‐2
0 ‐2 7 ‐5 4 0 ‐1 ‐4
0 3 1 0 4 1 1 0200 200 200 200 200 190 187 175

205 200 199 200 191 187 187 175
210 200 200 200 188 185 187 186

f(i j)

0 ‐3 ‐1 0 4 1 ‐1 0
3 ‐2 ‐3 3 3 ‐1 ‐1 3
‐2 5 ‐2 4 ‐2 2 ‐3 0

F(u v)

14Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

Fig. 9.2: JPEG compression for a smooth image block.
f(i, j) F(u, v)

1.1 Main steps: Quantization1.1 Main steps: Quantizationppp QQQ

15Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

Fig. 9.2 (cont’d): JPEG compression for a smooth image block.

1.1 Main steps: Quantization1.1 Main steps: Quantizationppp QQQ

Another 8 × 8 block from the Y image of ‘Lena’
80 40 89 73 44 32 53 370 70 100 70 87 87 150 187

85 100 96 79 87 154 87 113
100 85 116 79 70 87 86 196

‐80 ‐40 89 ‐73 44 32 53 ‐3
‐135 ‐59 ‐26 6 14 ‐3 ‐13 ‐28
47 ‐76 66 ‐3 ‐108 ‐78 33 59
2 10 18 0 33 11 21 1136 69 87 200 79 71 117 96

161 70 87 200 103 71 96 113
161 123 147 133 113 113 85 161

‐2 10 ‐18 0 33 11 ‐21 1
‐1 ‐9 ‐22 8 32 65 ‐36 ‐1
5 ‐20 28 ‐46 3 24 ‐30 24
6 20 37 28 12 35 33 17146 147 175 100 103 103 163 187

156 146 189 70 113 161 163 197
f(i, j)

6 ‐20 37 ‐28 12 ‐35 33 17
‐5 ‐23 33 ‐30 17 ‐5 ‐4 20

F(u, v)

16Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

Fig. 9.2: JPEG compression for a smooth image block.

1.1 Main steps: Quantization1.1 Main steps: Quantizationppp QQQ

17Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

Fig. 9.3 (cont’d): JPEG compression for a textured image block.

1.1 Main steps: Zigzag Scan1.1 Main steps: Zigzag Scanppp ggg ggg
• Turns the 8×8 matrix into a 64 vector

– Lower frequency components are at the front part
of the vector

– The higher frequency component at the rear part

19Fundamentals of Multimedia —— Image Compression Standards (2011 Spring)

2-D Transform Example
� The following example will demonstrate the idea behind a 2-

D transform by using our own cooked up transform: The
transform computes a running cumulative sum.

1

1-D
Row-
wise

1-D
Column-
wise

8x8

8x8

8x8

1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

1
1
1
1

8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1
8 7 6 5 4 3 2 1

64 56 48 40 32 24 16 8
56
48
40
32
24
16
8

49
42
35
28
21
14
7

42
36
30
24
18
12
6

35
30
25
20
15
10
5

28
24
20
16
12
8
4

21
18
15
12
9
6
3

14
12
10
8
6
4
2

7
6
5
4
3
2
1

� =
= 8

nmy (n)f)(F ωωMy Transform:

j)f(i,

v)(u,myF

Note that this is only a hypothetical
transform. Do not confuse this with DCT

Quantization
� Why? -- To reduce number of bits per sample

F�(u,v) = round(F(u,v)/q(u,v))
� Example: 101101 = 45 (6 bits).

Truncate to 4 bits: 1011 = 11. (Compare 11 x 4 =44 against 45)
Truncate to 3 bits: 101 = 5. (Compare 8 x 5 =40 against 45)
Note, that the more bits we truncate the more precision we lose

� Quantization error is the main source of the Lossy
Compression.

� Uniform Quantization:
� q(u,v) is a constant.

� Non-uniform Quantization -- Quantization Tables
� Eye is most sensitive to low frequencies (upper left corner in

frequency matrix), less sensitive to high frequencies (lower right
corner)

� Custom quantization tables can be put in image/scan header.
� JPEG Standard defines two default quantization tables, one

each for luminance and chrominance.

Zig-Zag Scan
� Why? -- to group low frequency coefficients in top of vector

and high frequency coefficients at the bottom
� Maps 8 x 8 matrix to a 1 x 64 vector

8x8

. . .

1x64

DPCM on DC Components
� The DC component value in each 8x8 block is large and varies

across blocks, but is often close to that in the previous block.
� Differential Pulse Code Modulation (DPCM): Encode the

difference between the current and previous 8x8 block.
Remember, smaller number -> fewer bits

45

54

48

32

45

9

-6

12

36 4

.

.

.

.

.

.

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

RLE on AC Components
� The 1x64 vectors have a lot of zeros in them, more so towards

the end of the vector.
� Higher up entries in the vector capture higher frequency (DCT)

components which tend to be capture less of the content.
� Could have been as a result of using a quantization table

� Encode a series of 0s as a (skip,value) pair, where skip is the
number of zeros and value is the next non-zero component.
� Send (0,0) as end-of-block sentinel value.

. . .

1x64

0 0 0 0 0 1 1 0 0 0 0 0

5,1

0 0

7,2

0 . . .2

Entropy Coding: DC Components

---00

�-2047,�, -1024, 1024,� 204711
..
..

0000,�, 0111, 1000,�, 1111-15,�, -8, 8,�, 154
000,�, 011, 100,�111-7,�, -4, 4,�, 73

00,01,10,11-3, -2, 2,32
0,1-1,11

CodeValueSIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a Value is derived from the following table

Size_and_Value Table

DPCM on DC Components
� The DC component value in each 8x8 block is large and varies

across blocks, but is often close to that in the previous block.
� Differential Pulse Code Modulation (DPCM): Encode the

difference between the current and previous 8x8 block.
Remember, smaller number -> fewer bits

45

54

48

32

45

9

-6

12

36 4

.

.

.

.

.

.

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

RLE on AC Components
� The 1x64 vectors have a lot of zeros in them, more so towards

the end of the vector.
� Higher up entries in the vector capture higher frequency (DCT)

components which tend to be capture less of the content.
� Could have been as a result of using a quantization table

� Encode a series of 0s as a (skip,value) pair, where skip is the
number of zeros and value is the next non-zero component.
� Send (0,0) as end-of-block sentinel value.

. . .

1x64

0 0 0 0 0 1 1 0 0 0 0 0

5,1

0 0

7,2

0 . . .2

Entropy Coding: DC Components

---00

�-2047,�, -1024, 1024,� 204711
..
..

0000,�, 0111, 1000,�, 1111-15,�, -8, 8,�, 154
000,�, 011, 100,�111-7,�, -4, 4,�, 73

00,01,10,11-3, -2, 2,32
0,1-1,11

CodeValueSIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a Value is derived from the following table

Size_and_Value Table

Entropy Coding: DC Components (Contd..)

11111110810

1111057
11111068

111046

0020

111111110911

111111079

11035
10134
10033
01132
01031

CodeCode
Length

SIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a SIZE is derived from the following table

Example: If a DC component is 40
and the previous DC
component is 48. The
difference is -8. Therefore it
is coded as:
1010111

0111: The value for representing �8
(see size and value table in

previous slide)
101: The size from the same table

reads 4. The corresponding
code from the table at left is
101.

Huffman Table for DC component SIZE field

Entropy Coding: AC Components
� AC components (range �1023..1023) are coded as (S1,S2 pairs):

� S1: (RunLength/SIZE)
� RunLength: The length of the consecutive zero values [0..15]
� SIZE: The number of bits needed to code the next nonzero AC component�s

value. [0-A]
� (0,0) is the End_Of_Block for the 8x8 block.
� S1 is Huffman coded (see AC code table below)

� S2: (Value)
� Value: Is the value of the AC component.(refer to size_and_value table)

1111111110000011160/A

1111100080/7

1111110110100/8

111100070/6

101040/0

1111111110000010160/9

1101050/5

101140/4

10030/3

0120/2

0020/1

CodeCode
Length

Run/
SIZE

1111111110001000161/A

Such rowsMore� 15/A

1111111110000110161/8

1111111110000111161/9

1111111110000101161/7

110041/1

1111111110000100161/6

11111110110111/5

11111011091/4

111100171/3

1101151/2

CodeCode
Length

Run/
SIZE

Partial Huffman Table for AC Run/Size Pairs

Entropy Coding: Example
Example: Consider encoding the AC components by

arranging them in a zig-zag order -> 12,10, 1, -7
2 0s, -4, 56 zeros

12: read as zero 0s,12: (0/4)12 � 10111100
1011: The code for (0/4 from AC code table)
1100: The code for 12 from the

size_and_Value table.
10: (0/4)10 � 10111010
1: (0/1)1 � 001
-7: (0/3)-7 � 100000
2 0s, -4: (2/3)-4 � 1111110111011

1111110111: The 10-bit code for 2/3
011: representation of �4 from size_and_Value

table.
56 0s: (0,0) � 1010 (Rest of the components are

zeros therefore we simply put the EOB to
signify this fact)

Note: For DC component see slide 13

40 12 0 0 0 0 0 0
10 -7 -4 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

DPCM on DC Components
� The DC component value in each 8x8 block is large and varies

across blocks, but is often close to that in the previous block.
� Differential Pulse Code Modulation (DPCM): Encode the

difference between the current and previous 8x8 block.
Remember, smaller number -> fewer bits

45

54

48

32

45

9

-6

12

36 4

.

.

.

.

.

.

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

1x64

RLE on AC Components
� The 1x64 vectors have a lot of zeros in them, more so towards

the end of the vector.
� Higher up entries in the vector capture higher frequency (DCT)

components which tend to be capture less of the content.
� Could have been as a result of using a quantization table

� Encode a series of 0s as a (skip,value) pair, where skip is the
number of zeros and value is the next non-zero component.
� Send (0,0) as end-of-block sentinel value.

. . .

1x64

0 0 0 0 0 1 1 0 0 0 0 0

5,1

0 0

7,2

0 . . .2

Entropy Coding: DC Components

---00

�-2047,�, -1024, 1024,� 204711
..
..

0000,�, 0111, 1000,�, 1111-15,�, -8, 8,�, 154
000,�, 011, 100,�111-7,�, -4, 4,�, 73

00,01,10,11-3, -2, 2,32
0,1-1,11

CodeValueSIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a Value is derived from the following table

Size_and_Value Table

Entropy Coding: DC Components (Contd..)

11111110810

1111057
11111068

111046

0020

111111110911

111111079

11035
10134
10033
01132
01031

CodeCode
Length

SIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a SIZE is derived from the following table

Example: If a DC component is 40
and the previous DC
component is 48. The
difference is -8. Therefore it
is coded as:
1010111

0111: The value for representing �8
(see size and value table in

previous slide)
101: The size from the same table

reads 4. The corresponding
code from the table at left is
101.

Huffman Table for DC component SIZE field

Entropy Coding: AC Components
� AC components (range �1023..1023) are coded as (S1,S2 pairs):

� S1: (RunLength/SIZE)
� RunLength: The length of the consecutive zero values [0..15]
� SIZE: The number of bits needed to code the next nonzero AC component�s

value. [0-A]
� (0,0) is the End_Of_Block for the 8x8 block.
� S1 is Huffman coded (see AC code table below)

� S2: (Value)
� Value: Is the value of the AC component.(refer to size_and_value table)

1111111110000011160/A

1111100080/7

1111110110100/8

111100070/6

101040/0

1111111110000010160/9

1101050/5

101140/4

10030/3

0120/2

0020/1

CodeCode
Length

Run/
SIZE

1111111110001000161/A

Such rowsMore� 15/A

1111111110000110161/8

1111111110000111161/9

1111111110000101161/7

110041/1

1111111110000100161/6

11111110110111/5

11111011091/4

111100171/3

1101151/2

CodeCode
Length

Run/
SIZE

Partial Huffman Table for AC Run/Size Pairs

Entropy Coding: Example
Example: Consider encoding the AC components by

arranging them in a zig-zag order -> 12,10, 1, -7
2 0s, -4, 56 zeros

12: read as zero 0s,12: (0/4)12 � 10111100
1011: The code for (0/4 from AC code table)
1100: The code for 12 from the

size_and_Value table.
10: (0/4)10 � 10111010
1: (0/1)1 � 001
-7: (0/3)-7 � 100000
2 0s, -4: (2/3)-4 � 1111110111011

1111110111: The 10-bit code for 2/3
011: representation of �4 from size_and_Value

table.
56 0s: (0,0) � 1010 (Rest of the components are

zeros therefore we simply put the EOB to
signify this fact)

Note: For DC component see slide 13

40 12 0 0 0 0 0 0
10 -7 -4 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Entropy Coding: DC Components (Contd..)

11111110810

1111057
11111068

111046

0020

111111110911

111111079

11035
10134
10033
01132
01031

CodeCode
Length

SIZE

� DC components are differentially coded as (SIZE,Value)
� The code for a SIZE is derived from the following table

Example: If a DC component is 40
and the previous DC
component is 48. The
difference is -8. Therefore it
is coded as:
1010111

0111: The value for representing �8
(see size and value table in

previous slide)
101: The size from the same table

reads 4. The corresponding
code from the table at left is
101.

Huffman Table for DC component SIZE field

Entropy Coding: AC Components
� AC components (range �1023..1023) are coded as (S1,S2 pairs):

� S1: (RunLength/SIZE)
� RunLength: The length of the consecutive zero values [0..15]
� SIZE: The number of bits needed to code the next nonzero AC component�s

value. [0-A]
� (0,0) is the End_Of_Block for the 8x8 block.
� S1 is Huffman coded (see AC code table below)

� S2: (Value)
� Value: Is the value of the AC component.(refer to size_and_value table)

1111111110000011160/A

1111100080/7

1111110110100/8

111100070/6

101040/0

1111111110000010160/9

1101050/5

101140/4

10030/3

0120/2

0020/1

CodeCode
Length

Run/
SIZE

1111111110001000161/A

Such rowsMore� 15/A

1111111110000110161/8

1111111110000111161/9

1111111110000101161/7

110041/1

1111111110000100161/6

11111110110111/5

11111011091/4

111100171/3

1101151/2

CodeCode
Length

Run/
SIZE

Partial Huffman Table for AC Run/Size Pairs

Entropy Coding: Example
Example: Consider encoding the AC components by

arranging them in a zig-zag order -> 12,10, 1, -7
2 0s, -4, 56 zeros

12: read as zero 0s,12: (0/4)12 � 10111100
1011: The code for (0/4 from AC code table)
1100: The code for 12 from the

size_and_Value table.
10: (0/4)10 � 10111010
1: (0/1)1 � 001
-7: (0/3)-7 � 100000
2 0s, -4: (2/3)-4 � 1111110111011

1111110111: The 10-bit code for 2/3
011: representation of �4 from size_and_Value

table.
56 0s: (0,0) � 1010 (Rest of the components are

zeros therefore we simply put the EOB to
signify this fact)

Note: For DC component see slide 13

40 12 0 0 0 0 0 0
10 -7 -4 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

	Intro
	Part 1
	intro
	Binder1
	p2
	03
	04
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	Part 2
	intro
	Binder1
	DSP-54
	06
	15
	16
	17
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

	Intro
	Intro
	Intro
	Intro
	Intro
	Intro
	Intro

