
Pointers
2022/2023

Hemza.loucif@univ-msila,dz

Part 01

Pointers

• A pointer is a variable that stores the
memory address of an object (another
variables).

Address in C++

• If we have a variable var in our program,
&var will give us its address in the
memory. For example,

2

Example 1: Printing Variable Addresses in C++

Output

Pointers

C++ Pointers

• As mentioned above, pointers are used to store addresses rather than values.

• Here is how we can declare pointers:

• Here, we have declared a pointer pointVar of the int type.

• We can also declare pointers in the following way.

3

Pointers
Assigning Addresses to Pointers

• Here is how we can assign addresses to pointers:

Get the Value from the Address Using Pointers

• To get the value pointed by a pointer, we use the ∗ operator. For example:

4

Pointers
• Example 2: Working

of C++ Pointers

5

Pointers
Changing Value Pointed by Pointers

• If pointVar points to the address of var, we can change the value of var by
using ∗pointVar.

• Here, pointVar and &var have the same address, the value of var will also be
changed when *pointVar is changed.

6

Pointers
• Example 3: Changing

Value Pointed by
Pointers

7

Pointers
Common mistakes when working with pointers

Suppose, we want a pointer varPoint to point to the address of var. Then,

8

C++ Pointers and Arrays
• In C++, Pointers are variables that hold addresses of other variables. Not

only can a pointer store the address of a single variable, it can also store the
address of cells of an array.

• Here, ptr is a pointer variable while arr is an int array. The code ptr = arr;
stores the address of the first element of the array in variable ptr.

• Notice that we have used arr instead of &arr[0]. This is because both are the
same. So, the code below is the same as the code above.

9

C++ Pointers and Arrays

Point to Every Array Elements

• Suppose we need to point to the fourth element of the array using the same
pointer ptr.

• Here, if ptr points to the first element in the above example then ptr + 3 will
point to the fourth element. For example,

10

C++ Pointers and Arrays

Point to Every Array Elements

• Similarly, we can access the elements using the single pointer. For example,

• Suppose if we have initialized ptr = &arr[2]; then

11

C++ Pointers and Arrays

Point to Every Array Elements

12

C++ Pointers and Arrays

Point to Every Array Elements

13

Note: The address between ptr and ptr + 1 differs by 4 bytes. It

is because ptr is a pointer to an int data. And, the size of int is 4

bytes in a 64-bit operating system.

Similarly, if pointer ptr is pointing to char type data, then the

address between ptr and ptr + 1 is 1 byte. It is because the size of

a character is 1 byte.

Pointers
• Example 1: C++

Pointers and Arrays

14

C++ Pointers and Arrays

Point to Every Array Elements

• In most contexts, array names are converted to pointers.

• That's the reason why we can use pointers to access elements of arrays.

15

Pointers
• Example 2: Array

name used as pointe

16

C++ Pointers and Arrays

C++ Memory Management: new and delete

• C++ allows us to allocate the memory of a variable or an array in run time.
This is known as dynamic memory allocation.

• In C++, we need to deallocate the dynamically allocated memory manually
after we have no use for the variable.

• We can allocate and then deallocate memory dynamically using the new and
delete operators respectively.

17

C++ Pointers and Arrays

C++ new Operator

• The new operator allocates memory to a variable. For example,

• Here, we have dynamically allocated memory for an int variable using the new
operator.

• Notice that we have used the pointer pointVar to allocate the memory
dynamically. This is because the new operator returns the address of the
memory location.

18

C++ Pointers and Arrays

C++ new Operator

• The new operator allocates memory to a variable. For example,

• Here, we have dynamically allocated memory for an int variable using the new
operator.

• Notice that we have used the pointer pointVar to allocate the memory
dynamically. This is because the new operator returns the address of the
memory location.

19

C++ Pointers and Arrays

C++ new Operator

• In the case of an array, the new operator returns the address of the first
element of the array.

• From the example above, we can see that the syntax for using the new operator
is

20

C++ Pointers and Arrays

delete Operator

• Once we no longer need to use a variable that we have declared dynamically,
we can deallocate the memory occupied by the variable.

• For this, the delete operator is used.

• It returns the memory to the operating system. This is known as memory
deallocation.

• The syntax for this operator is

21

C++ Pointers and Arrays
C++ Memory Management: new and delete

• Here, we have dynamically allocated memory for an int variable using the
pointer pointVar.

• After printing the contents of pointVar, we deallocated the memory using
delete.

22

Pointers
• Example 1: C++ Dynamic

Memory Allocation

23

Pointers
• Example 2: C++ new and

delete Operator for Arrays

24

Linked list Data Structure

• A linked list is a linear data structure that includes a series of connected
nodes. Here, each node stores the data and the address of the next node. For
example,

• You have to start somewhere, so we give the address of the first node a special
name called HEAD. Also, the last node in the linked list can be identified
because its next portion points to NULL.

25

Linked list Data Structure

Representation of Linked List

Let's see how each node of the linked list is represented. Each node consists:

• A data item

• An address of another node

• We wrap both the data item and the next node reference in a struct as:

• Each struct node has a data item and a pointer to another struct node.

26

Linked list Data Structure

Representation of Linked List

Let us create a simple Linked List
with three items to understand how
this works.

27

Linked list Data Structure

• The power of a linked list comes from the ability to break the chain and
rejoin it.

• E.g. if you wanted to put an element 4 between 1 and 2, the steps would be:

• Create a new struct node and allocate memory to it.

• Add its data value as 4

• Point its next pointer to the struct node containing 2 as the data value

• Change the next pointer of "1" to the node we just created.

28

Linked list Data Structure

Linked List Utility

• Lists are one of the most popular and efficient data structures, with
implementation in every programming language like C, C++, Python, Java,
and C#.

• Apart from that, linked lists are a great way to learn how pointers work. By
practicing how to manipulate linked lists, you can prepare yourself to learn
more advanced data structures like graphs and trees.

29

Linked list Data Structure

Linked List Complexity

Time Complexity

30

Linked list Data Structure

Linked List Applications

• Dynamic memory allocation

• Implemented in stack and queue

• Hash tables, Graphs

• ,,,,

31

Linked list Data Structure

Linked List Operations: Traverse, Insert and Delete

There are various linked list operations that allow us to perform different
actions on linked lists. For example, the insertion operation adds a new element
to the linked list.

Here's a list of basic linked list operations that we will cover in this article.

• Traversal - access each element of the linked list

• Insertion - adds a new element to the linked list

• Deletion - removes the existing elements

• Search - find a node in the linked list

• Sort - sort the nodes of the linked list

32

Linked list Data Structure

Linked List Operations: Traverse, Insert and Delete

Things to Remember about Linked List

• head points to the first node of the linked list

• next pointer of the last node is NULL, so if the next current node is
NULL, we have reached the end of the linked list.

33

Linked list Data Structure

In all of the examples, we will assume that the linked list has three nodes 1 ---
>2 --->3 with node structure as below:

34

Linked list Data Structure

Traverse a Linked List

• Displaying the contents of a linked list is very simple. We keep moving the
temp node to the next one and display its contents.

• When temp is NULL, we know that we have reached the end of the linked
list so we get out of the while loop.

35

Things to Remember about Linked List

• head points to the first node of the linked list

• next pointer of the last node is NULL, so if the next current node is NULL,
we have reached the end of the linked list.

Linked list Data Structure

Insert Elements to a Linked List

You can add elements to either the beginning, middle or end of the linked list.

1. Insert at the beginning

• Allocate memory for new node

• Store data

• Change next of new node to point to head

• Change head to point to recently created node

36

Linked list Data Structure

Insert Elements to a Linked List

You can add elements to either the beginning, middle or end of the linked list.

2. Insert at the End

• Allocate memory for new node

• Store data

• Traverse to last node

• Change next of last node to recently created node

37

Linked list Data Structure

Insert Elements to a Linked List

You can add elements to either the beginning, middle or end of the linked list.

3. Insert at the Middle

• Allocate memory and store data for new node

• Traverse to node just before the required position of new node

• Change next pointers to include new node in between

38

Linked list Data Structure

Delete from a Linked List

You can delete either from the beginning, end or from a particular position.

1. Delete from beginning

• Point head to the second node

2. Delete from end

• Traverse to second last element

• Change its next pointer to null

3. Delete from middle

• Traverse to element before the element to be deleted

• Change next pointers to exclude the node from the chain
39

Linked list Data Structure

Search an Element on a Linked List

You can search an element on a linked list using a loop using the following
steps. We are finding item on a linked list.

• Make head as the current node.

• Run a loop until the current node is NULL because the last element
points to NULL.

• In each iteration, check if the key of the node is equal to item. If it the
key matches the item, return true otherwise return false.

40

Linked list Data Structure

Sort Elements of a Linked List

We will use a simple sorting algorithm, Bubble Sort, to sort the elements of a
linked list in ascending order below.

1. Make the head as the current node and create another node index for
later use.

2. If head is null, return.

3. Else, run a loop till the last node (i.e. NULL).

4. In each iteration, follow the following step 5-6.

5. Store the next node of current in index.

6. Check if the data of the current node is greater than the next node. If it
is greater, swap current and index.

41

Linked list Data Structure

42

Linked list Implementations in C++

Stack Data Structure

A stack is a linear data structure that follows the principle of Last In First Out
(LIFO).

This means the last element inserted inside the stack is removed first.

You can think of the stack data structure as the pile of plates on top of
another.

43

Stack Data Structure

LIFO Principle of Stack

In programming terms, putting an item on top of the stack is called push and
removing an item is called pop.

44

Stack Data Structure

Basic Operations of Stack

There are some basic operations that allow us to perform different actions on a
stack.

• Push: Add an element to the top of a stack

• Pop: Remove an element from the top of a stack

• IsEmpty: Check if the stack is empty

• IsFull: Check if the stack is full

• Peek: Get the value of the top element without removing it

45

Stack Data Structure

Working of Stack Data Structure

The operations work as follows:

1. A pointer called TOP is used to keep track of the top element in the
stack.

2. When initializing the stack, we set its value to -1 so that we can check
if the stack is empty by comparing TOP == -1.

3. On pushing an element, we increase the value of TOP and place the
new element in the position pointed to by TOP.

4. On popping an element, we return the element pointed to by TOP and
reduce its value.

5. Before pushing, we check if the stack is already full

6. Before popping, we check if the stack is already empty

46

Stack Data Structure

Working of Stack Data Structure

The operations work as follows:

47

Stack Data Structure

Stack Implementations in C++

The most common stack implementation is using arrays, but it can also be
implemented using lists.

A pointer called TOP is used to keep track of the top element in the stack.

1. When initializing the stack, we set its value to -1 so that we can check
if the stack is empty by comparing TOP == -1.

2. On pushing an element, we increase the value of TOP and place the
new element in the position pointed to by TOP.

3. On popping an element, we return the element pointed to by TOP and
reduce its value.

4. Before pushing, we check if the stack is already full

5. Before popping, we check if the stack is already empty

48

Stack Data Structure

Stack Implementations in C++

49

Stack Data Structure

Stack Time Complexity

For the array-based implementation of a stack, the push and pop operations
take constant time, i.e. O(1).

Applications of Stack Data Structure

Although stack is a simple data structure to implement, it is very powerful. The
most common uses of a stack are:

• To reverse a word

• In compilers

• In browsers

50

Queue Data Structure

A queue is a useful data structure in programming. It is similar to the ticket
queue outside a post office hall, where the first person entering the queue is the
first person who gets the ticket.

Queue follows the First In First Out (FIFO) rule - the item that goes in first is
the item that comes out first.

In programming terms, putting items in the queue is called enqueue, and
removing items from the queue is called dequeue.

51

Queue Data Structure

Basic Operations of Queue

A queue is an object (an abstract data structure - ADT) that allows the
following operations:

• Enqueue: Add an element to the end of the queue

• Dequeue: Remove an element from the front of the queue

• IsEmpty: Check if the queue is empty

• IsFull: Check if the queue is full

• Peek: Get the value of the front of the queue without removing it

52

Queue Data Structure

Working of Queue

Queue operations work as follows:

• two pointers FRONT and REAR

• FRONT track the first element of the queue

• REAR track the last element of the queue

• initially, set value of FRONT and REAR to -1

53

Queue Data Structure

Dequeue Operation

• check if the queue is empty

• return the value pointed by FRONT

• increase the FRONT index by 1

• for the last element, reset the values of FRONT and REAR to -1

54

Queue Data Structure

55

Queue Data Structure

Complexity Analysis

The complexity of enqueue and dequeue operations in a queue using an array is
O(1). If you use pop(N) in python code, then the complexity might be O(n)
depending on the position of the item to be popped.

Applications of Queue

• CPU scheduling, Disk Scheduling

• When data is transferred asynchronously between two processes.The queue
is used for synchronization. For example: IO Buffers, pipes, file IO, etc

• Handling of interrupts in real-time systems.

56

References:

• https://www.programiz.com/cpp-programming/pointers

• https://www.programiz.com/dsa/linked-list

• https://www.onlinegdb.com/online_c++_compiler

57

