Sorting Algorithms

Part O1
2022/2023

Hemza loucif(@univ-msila,dz

Sorting Algorithm

Unsorted Array
* A sorting algorithm is used to arrange

9 1 3 2 7

elements of an array/list in a specific
order. For example,

' ' ‘ ting algorith
* There are various sorting algorithms sorting algorithm

that can be used to complete this
: Sorted Array
operation. And, we can use any

algorithm based on the requirement. 1 2 3 4 7

Sorting Algorithm

* Ditferent Sorting Algorithms.

Bubble Sort

Selection Sort
Insertion Sort
Merge Sort
Quicksort
Counting Sort
Radix Sort
Bucket Sort
Heap Sort
Shell Sort

Unsorted Array

9

1

Sorted Array

1

2

A

sorting algorithm

Bubble Sort

* Bubble sort is a sorting algorithm that
compares two adjacent elements and swaps
them until they are in the intended order.

* Just like the movement of air bubbles in the
water that rise up to the surface, each element
of the array move to the end in each iteration.

Therefore, it 1s called a bubble sort.

Working of Bubble Sort

* Suppose we are trying to sort the elements
in ascending order.

* I. First Iteration (Compare and Swap) 0 -E--

[. Starting from the first index, compare
the first and the second elements.

step=0

2. If the first element is greater than the

second element, they are swapped. --=--
i=2 11
1

3. Now, compare the second and the
third elements. Swap them if they are
not in order.

4'. The above PI’OC€SS goes on until the

ot clement EEREIERE)
5

Working of Bubble Sort

. step=1
* Suppose we are trying to sort the

elements 1n ascending order.
t 1

* 2. Remaining Iteration

* The same process goes on for the ----H
.. . . i=1 11
remaining iterations.
* After each iteration, the largest

element among the unsorted elements =2 ---
t 1

is placed at the end.

Working of Bubble Sort

step = 2
* In each iteration, the comparison takes

place up to the last unsorted element. - ---
1
- EIEEEIEIES
1
EEIREIE)
-

Working of Bubble Sort

e The array 1s sorted when all the
unsorted elements are placed at their
correct positions.

step=3

Working of Bubble Sort

// Bubble sort in C++

tinclude <iostream=

/{ perform bubble sort
void bubbleSort(int array[], int size) {

// loop to access each array element
for (int step = 0; step < size; ++step) {

// loop to compare array elements
for (int 1 = 0; 1 < size - step; ++i) {

// compare two adjacent elements
// change > to < to sort in descending order

if (array[i] > array[i + 1]) {

// swapping elements if elements
// are not in the intended order
int temp = array[i];

array[i] = array[i + 1];

array[i + 1] = temp;

// print array

void printArray(int array[], int size) {

for (int 1 = 0; 1 < size; ++1) {
cout << " " << array[1i];

¥

cout << "\n";
int main() {
int data[] = {-2, 45, 0, 11, -9};

// find array's length

int size = sizeof(data) / sizeof(data[0]);
bubbleSort(data, size);

cout << "Sorted Array in Ascending Order:\n";
printArray(data, size);

Sorted Array in Ascending Order:
-5 -2 0 11 45

. .Program finished with exit code 0
Press ENTER to exit conscle.D

Optimized Bubble Sort

// Optimized bubble sort in C++

// perform bubble sort
bubbleSort array[], size) {

// loop to access each array element
(step = 0; step < (size-1); ++step) {

/f check if swapping occurs
swapped = 0;

// loop to compare two elements
(i =0; 1< (size-step-1); ++i) {

// compare two array elements
// change > to < to sort in descending order
(array[i] > array[i + 1]) {

// swapping occurs if elements

// are not in intended order
temp = array[i];

array[i] = array[i + 1];

array[1 + 1] = temp;

swapped = 1;

// no swapping means the array is already sorted
// so no need of further comparison
(swapped == 0)

r

// print an array
printArray(arrayl[], size) {
(1 =0; 1< size; ++1i) {
cout << " " << array[i];

}

cout =< N

// find the array's length

size = (data) / (data[0]);

bubbleSort(data, size);

cout << "Sorted Array in Ascending Order:\n";

printArray(data, size);

Bubble Sort Complexity

[] nearly equals tO nz Cycle ~ Numberof Compar isons

* Hence, Complexity: Q(TL2>

Selection Sort Algorithm

e Selection sort is a sorting algorithm that selects the smallest element
from an unsorted list in each iteration and places that element at the
beginning of the unsorted list.

. Working of Selection Sort
I. Set the first element as mintmum. n

2. Compare minimum with the second
element. If the second element 1s smaller
than minimum, assign the second
element as mintmum.

12

Selection Sort Algorithm

e Selection sort is a sorting algorithm that selects the smallest element
from an unsorted list in each iteration and places that element at the
beginning of the unsorted list.

. Working of Selection Sort
I. Set the first element as mintmum. n

2. Compare minimum with the second
element. If the second element 1s smaller

than minimum, assign the second -
. . 10

element as minimum.

Compare minimum with the third element.
Again if the third element 1s smaller, then
assign minimum to the third element

otherwise do nothing The process goes on -

until the last element.

13

Selection Sort Algorithm

e Selection sort is a sorting algorithm that selects the smallest element
from an unsorted list in each iteration and places that element at the
beginning of the unsorted list.

* Working of Selection Sort

3. After each iteration, minimum is placed
in the front of the unsorted list.

4. For each iteration, indexing starts from
the first unsorted element. Step I to 3
are repeated until all the elements are
placed at their correct positions.

Selection Sort Algorithm

* Working of Selection Sort

4. For each iteration, indexing starts from
the first unsorted element. Step I to 3
are repeated until all the elements are
placed at their correct positions.

step=0

oo

EIEEIEIE
t ¢
EIEIEIEIE
t 1
EIEIEIEIE
t ¢
EIEIEIEE

swapping

T

min value
atindex 1

min value
at index 2

min value
at index 2

min value
at index 4

15

Selection Sort Algorithm

* Working of Selection Sort

4. Tor each iteration, indexing starts from
the first unsorted element. Step I to 3
are repeated until all the elements are
placed at their correct positions.

step=1

- ENEIEIEIES
t 1
- NI
t 1
- ENEIEIEED
DD

t

swapping

f

min value
at index 2

min value
atindex 2

min value
atindex 2

16

Selection Sort Algorithm

* Working of Selection Sort

4. Tor each iteration, indexing starts from
the first unsorted element. Step I to 3
are repeated until all the elements are
placed at their correct positions.

step=2

- NI
t 1

- RS

B

already in place

min value
at index 2

min value
at index 2

17

Selection Sort Algorithm

* Working of Selection Sort step = 3

4. Tor each iteration, indexing starts from
the first unsorted element. Step I to 3
are repeated until all the elements are
placed at their correct positions.

i=0

Cycle
Ist
2nd

Complexity = O(n?)

3rd

last

Number of Comparison

(n-1)

(n-2)

(n-3)

min value
atindex 3

18

Insertion Sort Algorithm

* Insertion sort is a sorting algorithm that places an unsorted element at
its suitable place in each iteration.

* Working of Insertion Sort ----

* Suppose we need to sort the following array.

step=1

I. The first element in the array is assumed —
to be sorted. Take the second element and
store it separately in key.

2. Compare key with the first element. If the
first element is greater than key, then key
is placed in front of the first element.

Insertion Sort Algorithm

* Working of Insertion Sort

2. Now, the first two elements are sorted.

Insertion Sort Algorithm

* Working of Insertion Sort

2. Similarly, place every unsorted element at
1ts correct position.

21

Merge Sort Algorithm

* Merge Sort is one of the most popular
sorting algorithms that is based on the
principle of Divide and Conquer Algorithm.

* Here, a problem is divided into multiple sub-
problems. Each sub-problem is solved
individually. Finally, sub-problems are

combined to form the final solution.

References:

* https://www.programiz.com/dsa/bubble-sort
* https://www.programiz.com/dsa/selection-sort

* hteps: // WWW.programiz.com/ dsa/insertion-sort

