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Algorithm

• In mathematics and computer science, an algorithm is a 
finite sequence of  rigorous instructions, typically used to 
solve a class of  specific problems or to perform a 
computation.

• Algorithms can be expressed in many kinds of  notation, 
including natural languages, pseudocode, flowcharts, or 
programming languages.

• Programming languages are primarily intended for 
expressing algorithms in a form that can be executed by a 
computer, but are also often used as a way to define or 
document algorithms. 
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Algorithm
Important Points about Algorithms

• The range of  inputs for which an algorithm works has to be specified carefully.

• The same algorithm can be represented in several different ways,

• There may exist several algorithms for solving the same problem.

✓ Can be based on very different ideas and can solve the problem with dramatically 
different speeds
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Algorithm
Measures of  resource usage

• The two most common measures are: 

• Time: how long does the algorithm take to complete?

• Space: how much working memory (typically RAM) 
is needed by the algorithm?
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Algorithmic analysis

• It is frequently important to know how much of  a 
particular resource (such as time or storage) is 
theoretically required for a given algorithm.

• Methods have been developed for the analysis of  
algorithms to obtain such quantitative answers 
(estimates)
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Algorithmic analysis

• Different algorithms may complete the same task with a 
different set of  instructions in less or more time, space, or 
'effort' than others. 

• For example, a binary search algorithm (with cost O(log 
n)) outperforms a sequential search (cost O(n) ) when used 
for table lookups on sorted lists or arrays. 
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Algorithmic analysis

• In computer science, the analysis of  algorithms is 
the process of  finding the computational complexity 
of  algorithms—the amount of  time, storage, or 
other resources needed to execute them without the 
use of  a specific programming language or 
implementation.
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Run-time analysis

• Run-time analysis is a theoretical classification that 
estimates and anticipates the increase in running time 
(or run-time or execution time) of  an algorithm as its 
input size (usually denoted as n) increases.

• Run-time efficiency is a topic of  great interest in 
computer science: A program can take seconds, hours, 
or even years to finish executing, depending on which 
algorithm it implements.
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Run-time analysis

• Since algorithms are platform-independent (i.e. a given algorithm can 
be implemented in an arbitrary programming language on an arbitrary 
computer running an arbitrary operating system), there are additional 
significant drawbacks to using an empirical approach to gauge the 
comparative performance of  a given set of  algorithms. 
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Run-time analysis

• Take as an example a program that looks up a specific entry in a sorted list of  
size n. Suppose this program were implemented on Computer A, a state-of-
the-art machine, using a linear search algorithm, and on Computer B, a much 
slower machine, using a binary search algorithm. Benchmark testing on the 
two computers running their respective programs might look something like 
the following:

10



Run-time analysis

• Based on these metrics, it would be 
easy to jump to the conclusion that 
Computer A is running an algorithm 
that is far superior in efficiency to 
that of  Computer B. However, if  the 
size of  the input-list is increased to a 
sufficient number, that conclusion is 
dramatically demonstrated to be in 
error: 
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Run-time analysis

• Computer A, running the linear 
search program, exhibits a linear 
growth rate. The program's run-time 
is directly proportional to its input 
size.

• Doubling the input size doubles the 
run-time, quadrupling the input size 
quadruples the run-time, and so forth.
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Run-time analysis

• On the other hand, Computer B, running 
the binary search program, exhibits a 
logarithmic growth rate. Quadrupling the 
input size only increases the run-time by 
a constant amount (in this example, 
50,000 ns). Even though Computer A is 
ostensibly a faster machine, Computer B 
will inevitably surpass Computer A in 
run-time because it's running an 
algorithm with a much slower growth 
rate. 
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Time complexity

• In computer science, the time complexity is the computational complexity 
that describes the amount of  computer time it takes to run an algorithm.

• Time complexity is commonly estimated by counting the number of  
elementary operations performed by the algorithm, supposing that each 
elementary operation takes a fixed amount of  time to perform.

• Thus, the amount of  time taken and the number of  elementary operations 
performed by the algorithm are taken to be related by a constant factor. 
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Time complexity

• Time complexity is generally expressed as a function of  the size of  the input.

• Since this function is generally difficult to compute exactly, and the running 
time for small inputs is usually not consequential, one commonly focuses on 
the behavior of  the complexity when the input size increases—that is, the 
asymptotic behavior of  the complexity.

• The most commonly used notation to describe resource consumption or 
"complexity" is Donald Knuth's Big O notation, representing the complexity 
of  an algorithm as a function of  the size of  the input n.
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Best, Worst and Average Case

• Complexity of  algorithms is usually evaluated in the worst case (most 
unfavorable scenario). This means in the average case they can work 
faster, but in the worst case they work with the evaluated complexity 
and not slower.

• Let’s take an example: searching in array. To find the searched key in the 
worst case, we have to check all the elements in the array. In the best 
case we will have luck and we will find the element at first position. In 
the average case we can expect to check half  the elements in the array 
until we find the one we are looking for.
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Orders of  growth/Big O notation

• Big-O, also known as Landau’s symbol, is a 
“symbolism used in complexity theory, computer 
science, and mathematics to describe the asymptotic 
behavior of  functions. Basically, it tells you how fast a 
function grows or declines”, according to MIT. “The 
letter O is used because the rate of  growth of  a 
function is also called its order.”
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Orders of  growth/Big O notation

• Big O notation is one of  the most fundamental tools 
for computer scientists to analyze the time and space 
complexity of  an algorithm.

• With Big O Notation, you express the runtime in 
terms of  how quickly it grows relative to the input, as 
the input gets arbitrarily large. Essentially, it’s a way to 
draw insights into how scalable an algorithm is.
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Orders of  growth/Big O notation

• Note that the big-O expressions do not have 
constants or low-order terms. This is because, when 
N gets large enough, constants and low-order terms 
don't matter (a constant-time method will be faster 
than a linear-time method, which will be faster than 
a quadratic-time method). 
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Orders of  growth/Big O notation

• Formal definition:

• A function T(N) is O(F(N)) if  for some constant c and for all values of  N 
greater than some value 𝑛0:

T(N) ≤ c ∗ F(N)

• The idea is that T(N) is the exact complexity of  a method or algorithm as a 
function of  the problem size N, and that F(N) is an upper-bound on that 
complexity (i.e., the actual time for a problem of  size N will be no worse than 
F(N)).

In practice, we want the smallest F(N) -- the least upper bound on the actual 

complexity. 
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Orders of  growth/Big O notation

• For example, consider 𝑇(𝑁) = 3 ∗ 𝑁2 + 5.

• We can show that T(N) is O(𝑁2) by choosing 𝑐 = 4 and 𝑛0 = 2.
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Orders of  growth/Big O notation

• For example, consider 𝑇(𝑁) = 3 ∗ 𝑁2 + 5.

• We can show that T(N) is O(𝑁2) by choosing 𝑐 = 4 and 𝑛0 = 2.

This is because for all values of  N greater than 2

Let’s try with N =3:

3 ∗ 92 + 5 ≤ 4 ∗ 92
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Orders of  growth/Big O notation

• For example, consider 𝑇(𝑁) = 3 ∗ 𝑁2 + 5.

• We can show that T(N) is O(𝑁2) by choosing 𝑐 = 4 and 𝑛0 = 2.

because whatever constant c and value 

𝑛0 you choose, we can always find a 

value of  N greater than 𝑛0 so that 3 ∗
𝑁2 + 5 is greater than c ∗ N. 

T(N) is not O(N), Why?
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Orders of  growth/Big O notation

Exemples :

𝑇1(n)=7=O(1)

𝑇2(n)=12n+5=O(n)

𝑇3(n)=4 𝑛2 +2n+6=O(𝑛2)

𝑇4(n)=2+(n−1)×5=O(n)

24



Units for Measuring Running Time

• The running time of  an algorithm is to be measured with a unit that is 
independent of  the extraneous factors like the processor speed, quality of  
implementation, compiler and etc.

• Basic Operation: The operation contributing the most to the total running 
time of  an algorithm.

❖ Examples: Key comparison operation; arithmetic/logic operation 
(division being the most time-consuming, followed by multiplication), 
affectation, verification, input/output operations,

• We will count the number of  times the algorithm’s basic operation is executed 
on inputs of  size n.
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Measuring Running Time

1. Sequence of  statements

• The total time is found by adding the times for all statements:

total time = time(statement 1) + time(statement 2) + ... + time(statement k)

If  each statement is "simple" (only involves basic operations) then the time for each 

statement is constant and the total time is also constant: O(1).
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Measuring Running Time

2. if-then-else statements 

• Here, either sequence 1 will execute, or sequence 2 will execute. Therefore, the 
worst-case time is the slowest of  the two possibilities:

max(time(sequence 1), time(sequence 2)).

For example, if  sequence 1 is O(N) and sequence 2 is O(1) the worst-case time for 

the whole if-then-else statement would be O(N). 27



Measuring Running Time

3. for loops 

• The loop executes N times, so the sequence of  statements also executes N 
times.

• Since we assume the statements are O(1), the total time for the for loop is N * 
O(1), which is O(N) overall. 
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Measuring Running Time

4. Nested loops

First we'll consider loops where the number of  iterations of  the inner loop 
is independent of  the value of  the outer loop's index. For example:

• The outer loop executes N times. Every time the outer loop executes, the 
inner loop executes M times.

• As a result, the statements in the inner loop execute a total of  N ∗ M times.

• Thus, the complexity is O(N ∗ M).

29



Measuring Running Time

5. Nested loops

• In a common special case where the stopping condition of  the inner loop is j 
< N instead of  j < M (i.e., the inner loop also executes N times), the total 
complexity for the two loops is O(𝑁2).

30



Time complexity Notations

• These following varieties of  Big-O Notation aren’t the only ones, but they’re 
the ones you’re most likely to encounter.
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Constant time – O (1)

• This translates to a constant runtime, meaning, regardless of  the size of  the 
input, the algorithm will have the same runtime.
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Constant time – O (1)

• An algorithm is said to have constant time with order O (1) when it is not 
dependent on the input size n.

• Irrespective of  the input size n, the runtime will always be the same.

• Constant time algorithms will always take same amount of  time to be 
executed. The execution time of  these algorithm is independent of  the size of  
the input. A good example of  O(1) time is accessing a value with an array 
index.

• Other examples include: push() and pop() operations on an array.
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Constant time – O (1)

• Examples of  constant algorithms:

• Check if  a number is even or odd

• Print the first element from list

• Remove an item from an object

• Other examples include: push() and pop() operations on an array.
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Logarithmic time – O (log n)

• An algorithm is said to have a logarithmic time 
complexity when it reduces the size of  the 
input data in each step. 

• This indicates that the number of  operations 
is not the same as the input size. 

• The number of  operations gets reduced as the 
input size increases. 

35



Logarithmic time – O (log n)

• O(log n) means that time goes up linearly, while the 
n goes up exponentially. So if  it takes 1 second to 
compute 10 elements, it will take 2 seconds to 
compute 100 elements and so on.

• Algorithms are found in binary trees or binary search 
functions.

• This involves the search of  a given value in an array 
by splitting the array into two and starting searching 
in one split.

• This ensures the operation is not done on every 
element of  the data.
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Logarithmic time – O (log n)
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Linear time complexity– O(n)

• An algorithm is said to have a linear time 
complexity when the running time increases 
linearly with the length of  the input. 

• An algorithm has a linear time complexity if  the 
time to execute the algorithm is directly 
proportional to the input size n. Therefore the 
time it will take to run the algorithm will 
increase proportionately as the size of  input n 
increases.

• As the number of  inputs/data increases, the 
number of  operations increases linearly.
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Linear time complexity– O(n)

• Examples of  linear algorithms:

• Find a given element in a collection

• Get the max/min value

• Return all the values in a list

• Sum up to the number given
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Quadratic time – O(n²) 

• An algorithm is said to have a non-linear time complexity where the running 
time increases non-linearly (n²) with the length of  the input. 

• This means that the number of  operations it performs scales in proportion to 
the square of  the input. 
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Quadratic time – O(n²) 

• Generally, nested loops come under this order where one loop takes O(n) and 
if  the function involves a loop within a loop, then it goes for O(n)×O(n) = 
O(n²) order.

• Similarly, if  there are ‘m’ loops defined in the function, then the order is given 
by O (𝑛𝑚), which are called polynomial time complexity functions.
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Quadratic time – O(n²) 

• An excellent example of  this is checking to see 
whether there are any duplicates in a list of  items. 

• This is common with algorithms that involve nested 
loops or iterations.

• Examples of  quadratic algorithms:

• Sorting algorithms (Bubble, Selection, Insertion)

• Check for duplicated values

• Print all ordered pairs in an array
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How to calculate time complexity?

• 1. Break the code down to different parts 

• Group A:

• Assignments, statements, accessing a certain element in an array, a 
comparison

• Examples
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How to calculate time complexity?

• 1. Break the code down to different parts 

• Group B:

• Loop or recursion that runs n number of  times

• Examples
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How to calculate time complexity?

• 1. Break the code down to different parts 

• Group C:

• Combining loops that run n times

• Examples
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How to calculate time complexity?

• 1. Break the code down to different parts 

• Group D:

• Other logic that dictates how many times we iterate over elements

• Examples
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How to calculate time complexity?

• 2. Decide how 'long' it will take to execute each piece 

• In Group A are the most discrete pieces of  code. The amount of  these 
specific actions are what we are counting. Each comparison, assignment, or 
array at index access takes about the same amount of  time which we 
consider 1 unit of  time. 

• Group B is a simple if  statement. If  statements will iterate over the whole 
array or list of  length n. For each element we do whatever the actions are 
inside the loop.
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How to calculate time complexity?

• 2. Decide how 'long' it will take to execute each piece 

• Group C is combining loops or recursions. Because the loops are nested, 
we do n actions for the outside loop and for every time it runs we do n 
actions in the inside loop. 𝑛 ∗ 𝑛, or 𝑛2.

• Group D is logic that will affect the time in relation to the logarithm of  
the input size. In this example we have a while loop that cuts the input 
size in half  each time it runs. 
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How to calculate time complexity?

• 3. Add them all up 

• After you've figured out the time for each element we simply need to add 
them all up and attribute an O() to them!

• Group A are all worth 1 unit of  time, so we just use O(1).

• Group B take n units of  times, so, you guessed it, they are O(n).

• Group C take n times the amount of  time as Group B, which can be 
expressed as O(𝑛2). The more iterations you add, the larger the exponent.

• Finally, Group D. In our example we see that the while loop actually halves 
the size of  the list we're iterating over each time it runs. This run time will 
be much less than running over the whole list. Dividing the potential time is 
expressed with O(𝑙𝑜𝑔𝑛).
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How to calculate time complexity?

• 4. Don't sweat the small stuff  

• One of  the nice things about Big O is that it isn't concerned with the 
details.

• Big O is a comparison of  time as n moves towards infinity, where certain 
elements become trivial. 

• Don't worry about O(1) parts, and don't worry about constants.

• If  there are higher order n values then you can get rid of  the lesser n's as 
well. 5 𝑛2 + 𝑛 + 10 becomes O(𝑛2). 

• As n gets larger, the exponential part has the greatest impact on the order 
of magnitude of  the whole expression.
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How to calculate time complexity?
• Hence, to determine the complexity of  an algorithm, we need to count the number of  its 

basic operations, 

• The complexity of  each basic operation is constant or O(1),

Algorithme 01

Variables

n, x : Entier

Lire (n)

Début

Pour i←1 à n pas 1 Faire

Ecrire (" Please enter a umber x")

Lire (x)

Ecrire (x∗10 "  Thanks to you")

Fin Pour

Fin

Affectation: O(1)

Output: O(1)

Input: O(1)

Output: O(1)

Arithmetic operation: O(1)

∗ 𝑛

Input: O(1)

Comparison: O(1) ∗ 𝑛+1
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How to calculate time complexity?

∗ 𝑛+1Algorithme Thanks

Variables

n, x : Entier

Lire (n)

Début

Pour i←1 à n pas 1 Faire

Ecrire (" Please enter a umber x")

Lire (x)

Ecrire (x∗10 "  Thanks to you")

Fin Pour

Fin

Affectation: O(1)

Output: O(1)

Input: O(1)

Output: O(1)

Arithmetic operation: O(1)

∗ 𝑛

Input: O(1)

Comparison: O(1)

• T(n) = O(1)+ O(1)∗(n+1)+ (O(1)+ O(1) +O(1) + O(1)+O(1)) ∗n

= 2 O(1) + n O(1) + 5n O(1)

= (6n +2) O(1)

= (6n +2) O(1)

= 6n O(1)

= O(6n)

= O(n)
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Test yourself

• Determine the complexity in the following codes:
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