Université de M.Boudiaf M'sila Faculté des Mathématiques et d'Informatique Département de Mathématiques

2020/2021

 $1^{\acute{e}me}$ AMD

Corrigé type d'examen de Module Semigroupes et Automates Finis

Exercice 1 (10 pts):

- 1. Soient S et T deux de E saturées modulo R, i.e, $\overline{x} \subseteq S$ pour tout $x \in S$ et $\overline{x} \subseteq T$ pour tout $x \in T$. Il est claire que $S \cap T$ et $S \cup T$ sont des parties saturées modulo R.
 - 2. Pour montrer que $Sat\left(A\right)=\bigcup_{x\in A}\overline{x},$ il suffit de vérifier que:
 - $A \subseteq \bigcup_{x \in A} \overline{x}$;
 - $\bigcup_{x \in A} \overline{x}$ est une partie de E saturée modulo R;
 - $\bigcup_{x \in A} \overline{x}$ est minimale au sens de l'inclusion.
- 3. Considérons le morphisme de monoïdes $\psi:\{a,b\}^* \longrightarrow (\mathbb{Z},+)$ defini par:

$$\psi(a) = 1, \psi(b) = -1, \psi(\epsilon) = 0.$$

Donc, $\forall w \in \{a, b\}^* : \psi(w) = |w|_a - |w|_b$.

4. l'application ψ est surjective car $\forall m \in \mathbb{Z}, \exists w \in \{a, b\}^*$ tel que $\psi(w) = m$.

On distingue les cas suivants :

- 1. Si m=0, alors $\psi(\epsilon)=0$.
- 2. Si m > 0, alors $\psi(a^m) = m \cdot \psi(a) = m \cdot 1 = m$.
- 3. Si m < 0, alors $\psi(b^{-m}) = -m \cdot \psi(b) = -m \cdot (-1) = m$.
- ψ n'est pas injectif car $ab \neq ba$ et $\psi(ab) = \psi(ba) = 0$.
- 5. $\psi^{-1}(\{0\}) = \{w \in \{a,b\}^* : \psi(w) = |w|_a |w|_b = 0\}$

Exercice 2 (10 pts):

Soit Σ un alphabet. On considère l'application $f:\Sigma^*\longrightarrow \Sigma^*$ avec les conditions suivantes :

- $f(\epsilon) = \epsilon$ (ϵ est le mot vide).
- $\forall \sigma \in \Sigma, \forall x \in \Sigma^* : f(\sigma x) = f(x) \sigma.$
- 1. On $\forall \sigma_1, \in \Sigma : f(\sigma_1 \epsilon) = f(\epsilon) \sigma_1 = \epsilon \sigma_1 = \sigma_1$.

On montre par récurrence sur n que $f(\sigma_1...\sigma_n) = \sigma_n...\sigma_1$.

2. Soient
$$x, y \in \Sigma^*$$
, i.e, $x = \sigma_1...\sigma_n$ et $y = \beta_1...\beta_m$, on a $f(xy) = f(\sigma_1...\sigma_n\beta_1...\beta_m) = \beta_m...\beta_1\sigma_n...\sigma_1 = f(y) f(x)$.

3. Soit
$$x \in \Sigma^+$$
, i.e, $x = \sigma_1...\sigma_n$, $(f \circ f)(x) = x$.

4.
$$\forall x, y, z \in \Sigma^*, (x \otimes y) \otimes z = x \otimes (y \otimes z)$$

De plus $\forall x \in \Sigma^*, x \otimes \epsilon = \epsilon \otimes x = x$.

5. On vérifie que $\forall x, y \in \Sigma^*, f(x \otimes y) = f(x) f(y)$ et $f(\epsilon) = \epsilon$.

Soit
$$L = \{x \in \Sigma^* : f(x) = x\}.$$

6. On a
$$f(xf(x)) = xf(x)$$
 et $f(x\sigma f(x)) = x\sigma f(x)$.