Chapitre 2

Formulation variationnelle de problèmes aux limites elliptiques

2.1 Problème variationnel abstrait

Soit V un espace de Hilbert, réel, muni de produit scalaire $(.,.)_V$, et de la norme associée $\|.\|_V$. Soit a une forme bilinéaire sur $V \times V$, et soit F une forme linéaire sur V.

Définition 2.1. : On dit que la forme bilinéaire a est continue si et seulement si :

$$\exists M > 0, \forall u, v \in V : |a(u, v)| \le M \|u\|_{V} \|v\|_{V}$$

Définition 2.2. : On dit que la forme bilinéaire a est sérrytrie si et seulement si :

$$\forall u, v \in V : a(v, u) = a(u, v)$$

Définition 2.3. : On dit que la forme bilinéaire a est V-elliptique (où coercive) sur V si et seulement si:

$$\exists \lambda > 0, \forall v \in V : |a(v,v)| \geq \alpha ||v||_V^2$$

Théorème 2.1. (Stapacchia): Soit $\phi \neq K \subset V$ un convexe fermé, et soit $f \in V'$ Considérons le problème suivant : Trouver $u \in K$, solution de

$$a(u, v - u) > \langle f, v - u \rangle \quad \forall v \in K$$
 (2.1)

Si la forme bilinéaire a est continue, coercive sur V. Alors, le problème (2.1) admet une solution unique u. De plus, l'opérateur $f \to u$ est lipschitzien, ie. si u_1, u_2 sont deux solutions assocuées à f_1, f_2 alors;

$$||u_1 - u_2||_V \le \frac{1}{\lambda} ||f_1 - f_2||_{V'}$$

Théorème 2.2. (Lax-Milgram): Considérons le problème suivant : Trouver $u \in V$, solution de

$$a(u,v) = \langle f, v \rangle \quad \forall v \in V \tag{2.2}$$

Si la forme bilinéaire a est continue, coercive sur V. Alors, le problème (2.2) admet une solution unique u. De plus, si u_1, u_2 sont deux solutions assocuées à f_1, f_2 alors on a:

$$||u_1 - u_2||_V \le \frac{1}{\lambda} ||f_1 - f_2||_{V'}$$

Remarque 2.1. : Si a est symétrique, alors u vérifie la propriété suivante :

$$\frac{1}{2}a(u,u) - \langle F, u \rangle = \min_{v \in V} \left\{ \frac{1}{2}a(v,v) - \langle F, v \rangle \right\}$$

Remarque 2.2. : Les problèmes (2.1), (2.2) sont des problèmes variationnels abstraits.

2.2 Problèmes aux limites elliptiques linéaires

Soit Ω un ouvert borné de \mathbb{R}^n , telle que $\Gamma = \partial \Omega$ est de classe C^1 par morceaux.

Définition 2.4. : Un problèmes aux limites d'ordre 2, elliptiques linéaires est un problème de la forme suivante :

$$\begin{cases} Lu = f & dans & \Omega \\ G(u, D^{\alpha}u) = 0 & sur & \partial\Omega \end{cases}$$
 (2.3)

où α est un multi-indice, vérifie $\|\alpha\| \leq 2$, L est l'opérateur suivant :

$$-div(a(x)\nabla u) + b(x).\nabla u + c(x)u$$

a(x) est une matrice $n \times n, b(x)$ est une fonction vectorielle, c(x) est une fonction scalaire.

Exemple 2.1.:

- 1. Si $a = I_n, b = 0, c = 0$ on trouve : $Lu = -\Delta u$, opérateur de Laplace.
- 2. Si $a = \alpha I_n$, $c = \beta$ on trouve : $Lu = -\alpha \Delta u + \beta u$.

Remarque 2.3.:

- 1. Si $G(u, D^{\alpha}u) = u g(x)$, on dit que le problème (2.3) est un problème de Dirichlet.
- 2. Si $G(u, D^{\alpha}u) = \frac{\partial u}{\partial \nu} g(x)$, on dit que le problème (2.3) est un problème de Neuman.
- 3. Si $G(u, D^{\alpha}u) = \frac{\partial u}{\partial v} + u$, on dit que le problème (2.3) est un problème de Robin.

Dorénavant, on suppose que $a = I_n, b(x) = 0, c(x) = \alpha > 0$ (constant), $G(u, D\alpha^u) = \frac{\partial u}{\partial \nu} + \beta u - g(x)$.

Le problème (2.3) devient comme suivant :

$$\begin{cases}
-\Delta u + \alpha u = f & \text{dans } \Omega \\
\frac{\partial u}{\partial \nu} + \beta u = g(x) & \text{sur } \Gamma
\end{cases}$$
(2.4)

Définition 2.5. : Une solution classique du problème (2.4) est une fonction u de classe C^2 sur Ω , satisfait (2.4).

Nous donnons maintenant, une formulation variationnelle formel du problème (2.4) (d'aprés la formule de Green):

$$\int_{\Omega} (\nabla u \cdot \nabla v + \alpha u \cdot v) dx - \int_{\Gamma} \frac{\partial u}{\partial \nu} v d\sigma(x) = \int_{\Omega} f \cdot v dx \quad \forall v \in V.$$
 (2.5)

où v est une fonction que l'on choisie selon la régularité de f, et les conditions aux limites.

La fonction v est dite une fonction test.

2.3 Problème de Dirichlet

Définition 2.6. : On appelle problème de Dirichlet homogène le problème suivant : Trouver une fonction u, définie sur $\overline{\Omega}$ telle que :

$$\begin{cases}
-\Delta u + \alpha u = f & dans & \Omega \\
u = 0 & sur & \Gamma
\end{cases}$$
(2.6)

Définition 2.7.: Une solution faible du problème (2.6) est une fonction $u \in H_0^1(\Omega)$, satisfait :

$$\int_{\Omega} (\nabla u \cdot \nabla v + \alpha u \cdot v) dx = \int_{\Omega} f \cdot v dx \quad \forall v \in H_0^1(\Omega)$$
 (2.7)

Théorème 2.3. (*Existence et unicité*) : Pour toute $f \in L^2(\Omega)$, il existe une solution unique $u \in H_0^1(\Omega)$ du problème (2.7). De plus, u s'obtient par :

$$\min_{v \in H_0^1(\Omega)} \left\{ \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + \alpha v^2) dx - \int_{\Omega} f.v dx \right\}$$

Définition 2.8. : Soit $g \in C(\Gamma)$. On appelle problème de Dirichlet non homogène le problème suivant : Trouver une fonction u, définie sur $\overline{\Omega}$ telle que :

$$\begin{cases}
-\Delta u + \alpha u = f & dans & \Omega \\
u = g & sur & \Gamma
\end{cases}$$
(2.8)

Proposition 2.1. : Il existe $\widetilde{g} \in H^1(\Omega) \cap C(\overline{\Omega})$, telle que : $\widetilde{g} = g$ sur Γ .

Soit maintenant, l'espace $K = \{v \in H^1(\Omega) : v - \widetilde{g} \in H^1_0(\Omega)\}.$

Théorème 2.4. (*Existence et unicité*) : Pour toute $f \in L^2(\Omega)$, il existe une solution unique $u \in K$ du problème (2.7). De plus, u s'obtient par :

$$\min_{v \in K} \left\{ \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + \alpha v^2) dx - \int_{\Omega} f \cdot v dx \right\}$$

Théorème 2.5. (Régularité): Soit u une solution fable des problèmes (2.6), (2.8). Alors;

- 1. Si Ω est de classe C^2 , $f \in L^2(\Omega)$; alors, $u \in H^2(\Omega)$, et on $a : ||u||_{H^2(\Omega)} \le c||f||_{L^2(\Omega)}$.
- 2. Si Ω est de classe C^{m+2} , $f \in H^m(\Omega)$; alors, $u \in H^{n_r+2}(\Omega)$, et on $a : ||u||_{H^{m+2}(\Omega)} \le c||f||_{H^m(\Omega)}$. En particulier, si $m > \frac{n}{2}$; alors, $u \in C^2(\overline{\Omega})$.
- 3. Si Ω est de classe C^{∞} , $f \in C^{\infty}(\Omega)$; alors, $u \in C^{\infty}(\overline{\Omega})$.

2.4 Problème de Neumanu

Définition 2.9. : On appelle problème de Neumann homogène le problème suivant : Trouver une fonction u, définie sur $\overline{\Omega}$ telle que :

$$\begin{cases}
-\Delta u + \alpha u = f & dans & \Omega \\
\frac{\partial u}{\partial \nu} = 0 & sur & \Gamma
\end{cases}$$
(2.9)

Définition 2.10. : Une solution faible du problème (2.6) est une fonction $u \in H^1(\Omega)$, satisfait :

$$\int_{\Omega} (\nabla u \cdot \nabla v + \alpha u \cdot v) dx = \int_{\Omega} f \cdot v \quad \forall v \in H^{1}(\Omega)$$
(2.10)

Théorème 2.6. (*Existence et unicité*) : Pour toute $f \in L^2(\Omega)$, il existe une solution unique $u \in H^1(\Omega)$ du problème (2.10). De plus, u s'obtient par :

$$\min_{v \in H^1(\Omega)} \left\{ \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + \alpha v^2) dx - \int_{\Omega} f.v dx \right\}$$

Théorème 2.7. (*Régularité*) : Soit u une solution faible du problème (2.10). Alors ;

- 1. Si Ω est de classe C^2 , $f \in L^2(\Omega)$; alors, $u \in H^2(\Omega)$, et on $a : ||u||_{H^2(\Omega)} \le c||f||_{L^2(\Omega)}$.
- 2. Si Ω est de classe C^{m+2} , $f \in H^m(\Omega)$; alors, $u \in H^{m+2}(\Omega)$, et on $a : ||u||_{H^{m+2}(\Omega)} \le c||f||_{H^m(\Omega)}$. En particulier, si $m > \frac{n}{2}$; alors, $u \in C^2(\overline{\Omega})$.
- 3. Si Ω est de classe C^{∞} , $f \in C^{\infty}(\Omega)$; alors, $u \in C^{\infty}(\overline{\Omega})$.

2.5 Exercices

Exercice 2.1. : Soit f une fonction continue sur [0,1], et soit le problème suivant :

$$\begin{cases} -u''(x) = f & x \in]0,1[\\ u(0) = u(1) = 0 \end{cases}$$
 (2.11)

Montrer que l'équation (2.11) admet une solution unique, donné par la formule :

$$\forall x \in [0,1]: \quad u(x) = x \int_0^1 f(t)(1-t)dt - \int_0^1 f(t)(x-t)dt$$

Exercice 2.2.: Pour $f \in L^2(]0,1[)$, on considère le problème suivant :

Trouver u solution de :

$$\begin{cases} -u'' = f & dans \]0,1[\\ u'(0) = u'(1) = 0 \end{cases}$$
 (2.12)

- 1. Montrer que si u est une solution de problème (2.12), alors : $\int_0^1 f(x)dx = 0$
- 2. Soit l'espace : $V = \{v \in H^1(]0,1[) : \int_0^1 v(x)dx = 0\}$. Montrer que V est un espace de Hilbert, pour le produit scalaire de $H^1(]0,1[)$.
- 3. Montrer que le problème (2.12) admet une solution unique dans l'espace V.
- 4. Montrer que si u est une solution du problème (2.12), alors : il existe $c \in \mathbb{R}$, et $\widetilde{u} \in V$ solution de (2.12), tels que $u = \widetilde{u} + c$

Exercice 2.3. : Soit $\Omega =]a, b[\times]c, d[\subset \mathbb{R}^2$. Consédirons le problème suivant :

Trouver u solution de:

$$\begin{cases}
-\Delta u = 1 & dans & \Omega \\
u(a, y) = 0, & \frac{\partial u}{\partial x}(b, y) = 0 & si & c < y < d \\
\frac{\partial u}{\partial y}(x, c) = 1, & \frac{\partial u}{\partial y}(x, d) = x & si & a < x < b
\end{cases}$$
(2.13)

Etudier le problème variationnel associé à ce problème.

Exercice 2.4. : Soit Ω un ouvert borné de $\mathbb{R}^n, f \in L^2(\Omega), g \in L^2(\Gamma)$. On considère le problème suivant :

 $Trouver\ u\ solution\ de:$

$$\begin{cases}
-\Delta u = f & dans & \Omega \\
\frac{\partial u}{\partial \nu} = g & sur & \partial\Omega
\end{cases}$$
(2.14)

1. Montrer que si u est une solution de problème (2.14), alors :

$$\int_{\Omega} f + \int_{\Gamma} g = 0$$

Cette condition est connue sous le nom : "condition de compatibilité".

2. Montrer que le problème (2.14) admet une solution unique sur l'espace :

$$V = \{u \in H^1(\Omega) : \int_{\Omega} u = 0\}$$

Exercice 2.5. : Pour f(x), c(x) des fonctions numriques sur l'intervalle borné (a,b). On considère le problème suivant :

 $Trouver\ u\ solution\ de:$

$$\begin{cases}
-u'' + c(x)u = f & dans \quad]a, b[\\ u'(a) + \alpha u(a) = d \\ u'(b) + \beta u(b) = f
\end{cases}$$
(2.15)

- 1. Etablir une formulation variationnelle associée au problème (2.15).
- 2. Donner les conditions pour avoir existence et unicité de la solution de cette formulation variationnelle.

Exercice 2.6. : Soit Ω un ouvert borné de \mathbb{R}^2 , $f \in L^2(\Omega)$, F une fonction vectorielle régulière de Ω vers \mathbb{R}^2 , telle que dans, F = 0 dans Ω . On considère le problème suivant :

Trouver u solution de :

$$\begin{cases} F.\nabla u - \Delta u = f & dans & \Omega \\ u = 0 & sur & \partial\Omega \end{cases}$$
 (2.16)

- 1. Etablir une formulation variationnelle associée au problème (2.15).
- 2. Etudier l'existence et unicité.