Chapter 1

Sampling and Z Transform

1. 1 Introduction

Digital signal processing by means of a computquires that the signal be converted
into a sequence of numbers. This conversion isiddaafter the execution of the following
three steps:

1. Sampling the analog signal where their values asually taken at regular
intervals of time.

2. Conditioning or quantification the sampled sigto valid values for the digital
system for example between, OV and 5V.

3. Assigning a binary code for each conditioneldeaGenerally, 8, 10 and 16 binary

bits can be used for this conversion.

Because the purpose of sampling of signals isdat tand transmit signal information, the
guestion of choosing the sampling frequency is wagortant:
- If the sampling frequency is too low, the acquasitiwill be too spaced and if the
signal has pertinent details between two captusgipas, these will be lost.
- The higher the sampling frequency, the more expens processing power,

transmission capacity and storage space.

In this Chapter, we state at first the samplingptBe which indicates the minimum
value of the sampling frequency. Then, the Z tramsfis presented as a function of discrete
signals which is defined by a series as an appratxim of de ‘Laplace’ transform. Because
the inverse Z transform can not be obtained byemiBp formula, but it is simply calculated
from specific methods. Finally, some useful Matledxdes are presented to calculate Z

transform (ZT) and inverse Z transform (I1ZT).

1. 2 Sampling theorem
Sampling involves taking the values of a given algat defined time intervals, usually

regular. It produces a series of discrete valudsccaamples. To select a sufficient sampling



frequency, sufficient sample knowledge is requitedcalculate the signal value at all
intermediate points. Mr. Claude Shannon showed llow was possible, knowing the
bandwidth of the information encoded in the sigabe transmitted. The sampling theorem
indicates that if all the frequencies of the sigawd less than half the sampling frequency, it
can be perfectly reconstructed. In general, freqesnabove half the sampling frequency
introduce a spectral overlay also called Spectrlimsiag.

In the following, we want to study the samplingamfy deterministic signal(t) with a

limited band of maximum frequendy, (seeFig. 1.1). Then, the Fourier transform (FT),

G(f) = 0 for | f| > f,, [1].
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Fig. 1. 1 Analog signal with a limited band spectrum.

Ideally, sampling is obtained by multiplying theysal g(t) by a train of pulsep(t) (seeFig.
1.2). Letgs(t) = 9(t).p(t)
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Fig. 1. 2 Sampling with a train of pulsegt)=9(t) .

As p(t) is a periodic function, it can be representedhayfollowing Fourier serigd]:

p(t)= e (1.1)

n=-o



TI2 Comt T/2 Comt
[ pye” Tot = < [artye™ Tot = <
-T/2 T- .T

-T/2

whereC, = 1
T

% is the fundamental frequency of the periodic sign, which also represents the

sampling frequency,f, =%Hz . Thegg(t) function becomes

g.(t)= fsg(t)ie"z’”s (1.2)

n=-—o0

The FT ofgs(t) is

n=-o0

G, (f)= j[ fo(t) D e ™ 1e ! dt

+o0 1t

=f > j g(t)e 12t gt (1.3)
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Fig. 1.3represents the plot of equation (1.3) fiQr> 2,
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Fig. 1. 3 Sampled signal spectrum fdr, > 2f

It is observed that the original sigrg{t) can be reconstructed by applying the low-passrfil
as shown by the dotted line. It can also be ndtatlthe sampling rate becomes at ledgt 2
Then the minimum sampling frequencyds2f,, which is called the Nyquist rate. Sampling at
a frequency below the Nyquist rate ($eg. 1.9 produces the aliasing error and the original

signal cannot be reconstructédd 2].

Fig. 1. 4 Sampled signal spectrum fdr, < 2f |



1.3TheZ transform

The Z-transform (ZT) is a mathematical tool used $gnal processing. It is the
discrete equivalent of the “Laplace transform”. Rostance, the ZT is used to design
numerical filters with infinite impulse responsdR), finite impulse response (FIR) and

automatically to model dynamic systems in a digcreannef2, 3].

1. 3. 1 Definition

We consider an analog signal definedx(¥). This function defined ol is causal if:
for anyt < 0, x,(t) = 0 (see-ig. 1. 5. By taking only the values of the imagesxddt integers
numbers, we build a numerical sequence, calledrgleal signal ok(t). This sequence(n) is
called a discrete or digital causal signal as opgde thex,(t) function which is a continuous
or analog causal signal. If we calithe period between two measurements of the sample,

can construct the discrete causal sigr@l) =x4(nT),n=0, 1, 2, ..+ 0.
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Fig. 1. 5 Discrete causal signal

Now we want to define for discrete causal signateaasformation analogous to the
Laplace transform for continuous causal signals.a_eontinuous causal signalt) and the

associated sampled discrete signal: For abyN , x(n) = x4(n). The Laplace transform of the

+00

continuous signak,(t) is: X(s) = jxa(t)e‘ﬂdt . The associated sampled discrete signal is:
0

X, (t)e™ for anyn N, x(n) €. This is to approximate the area defined by thegiratex(s)

by a series, i.e.J'xa (t)e¥dt = z x(n)e™ with T =1 (se€-ig. 1. 9.
0 0
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Fig. 1. 6 Approximated area defined by the integrak¢s)

Taking, z=e!“ =e°, the ZT,X(2) of the sequencen) is defined by the following relatioi2-4]:
X(z)=> x(n)z™" (1.4)
n=0

WhereZ is a complex variable and the functi¥(z) has a convergence domain which is usually a ring
with radiuses Rand R centered on the origin (s€&. 1. 7). That is,X(2) is defined for R<z< R.. R
and R values depend on the sequerE®.
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Fig. 1. 7 Convergence domain f(2)

If x(n) represents the sequence of samples of a sigreh &nT, n =0, 1, ..,+ o, then a discrete

Fourier transform (DFT) of this sequence is written
S(f)=> x(n)e ™ (1.5)
n=0

For z=e'?"", the Z transform ok(n) coincides with its FT. That is, we can carry thg

frequency analysis of the discrete signal by the#Asform.



1. 3. 2 Properties
In order to reduce the calculation complexity of #T, the following properties can

be used:
(i) Linearity:
Z{a,x (n) £ a,x, (M} =2,2{x,(n)} £ ,Z{x,(n)} (1.6)
(ii) Timedelay:
Z{x(n-k)} = z*Z{x(n)} (1.7)
(iii) Timeforward:
Z{x(n+k)} = z"[z{x( n) - %_l X( | )z‘j} (1.8)
(iv) Convolution:
z{x* y} = Z{x}z{y} (1.9)
where x(n) * y(n) = i x(n—=Kk)y(k)
(v) Exponential multiplication :
z{a"x(n)} = X (z/a) (1.10)
(vi) Initial value theorem :
x(0) = ZILrpw X(2) (1.11)

(vii) Final valuetheorem :

If the poles of(z—-1) X (z) are inside the unitary circle

lim x(n) = zlim<1(z_1)X(Z) 12)

n- +oo

(viii) Multiplication by an evolutional variable:

b=, 94 )_,df__d
z{n*x(n)} = Zdz{ Zdz[ 2% X(z)} (1.13)

k times

+o0

In addition with the above properties, we can ephe results of the geometric seriEz“
0

to calculate the ZT of some sequences. Hence

& 1
2z”=E,|z|<1 (1.14)

n=0



So, iz” converges if7 <1, i.e., R=0 and R=1.
n=0

Example 1. 1:
Calculate the ZT of the following sequence:
x(n) = (n+2)°

Solution :
For, y(n)= n?, we apply the multiplication by an evolutional iedle property.

z

Y(2)=-2 ((2_1)2] = Z(Z+13 , wherez{n} =
dz (z-1 (z-2

is used here (seeable. 1. )

Then, we utilize also the shift property. Hence
2-1 )

X(2) = Z{y(n+2)} = ZZ(Y(Z) - y(j)Z"j
i=0

= z{—z(ﬁlz -(0°z°+1° z‘l)J
(z-9

_Z%(z+1)
(2

_ z(4z° -3z+))
(2

1. 4InverseZ transform
In general, the inverse Z transform (IZT) X€z) is performed by one of the four
following methods:

(i) Table method:
The ZT of some functions mostly used in signal pesing are presented Table. 1. 1 The

latter can be consulted to get the correspondiggeseex(n) from usual ZT functions.

Table. 1. 1 Habitual ZT of some sequences

x(n) X(2) Conver gence domain
o(n) 1 C
1
u(n) >1
1_ 2—1 |Z|




nu(n) (1_271)2 74>1
Z 1 +7 2
nu(n) m 14>1
z'+4z%+ 7
nu(n) (1_ 2_1)4 14>1
1
() o 4>a
azt
na"u(n) m 14>a
az‘1!1+ az‘1!
n%a"u(n) (1_ az‘1)3 14>a
1-z"cos,)
cog@n)u(n) 1-2z* cos(wo)i z? 4>1
_ 1-z"sin(w,)
sin(eg,n)u(n) 1= 277 cos(a)o)o+ 2 12>1
1-az'cosw,)
a" cos(a)on)u(n) 1-2az™" COS@)O) +a2772 |Z' >a
' 1-az"sin(w,)
a"sinfaynu(n) | 7-5551 costwy) + a2z 14>a

(i) Partial-fraction expansion method:

Here,X(2) is decomposed into a sum of several simple ratimctions as follows:

X(2) = X,(2) + X,(2) + X5(2) +...
The IZT may be obtained using the transformationgable. 1. 1 Hence

x(n) = x,(n) + x,(n) + x;(n) +...

(iii) Power -series method:
X(2) is transformed into a finite seriez*(k = 1, ...,n) of power using polynomial division.
X(2) =x(0) +x(M)z " +x(2)z 2 +....+ x(k)z'*

The general termx(n tan be obtained from(0), x(1), X(2),....,x(k )



(vi) Inversion formula method (residues method):

This method is based on the calculation of thefaithg contour integral:

x(n) = %§ X(Z2)Z2"dz (1.15)

Where C is a closed contour containing all the @isngpoints or poles aX(Z). The residue

theorem is often used to determi{r) given by

xm= >  RedX(2)z"},, (1.16)

Z, =polesof 2"*X(Z)
The residue at a pole= a of orderq of the function is formulated §4]:

g-1
Res] =lim 1 d

z-a (q _1)| dzq—l [X(Z)Zn_l(z_ a)q] (117)

Example. 1. 2:

Calculate the IZT of the sequence using the pdirti@tion expansion method:

ZZ
X(2)=————
(2 62> -52+1

Solution :

We can write

z? z?

622 -5z+1 6(z-1/2)(z-1/3)

X(z):E( A, B ]
6lz-1/2 z-1/3

X(2) =

Coefficients A and B are simply given by

. z

A= lim =3
z-1272-1/3
and
B= lim —2% _=-2
z-1372-1/2
x(z):l z 1 z
22-1/2 3z-1/3

If we consultTable. 1. 1we get

x(n)=(%j u(n)—@j u(n)



1. 5 Some useful definitions

(i) Causal system:

A causal signal is defined byt) for t > 0. In other words, a signal is said to be caiighht
signal is null whert < 0. A non causal signal is not null when at lemst < O value. This
definition applies to both discrete and continusystems. The system is causal if and only if
its transfer function is clean. This means thatdb#put at a given moment is not influenced
by the future of the input. For example, the sysygm = x(n+1), wherex denotes the input
andy denotes the output, is not causal because the wélilhe output signal at the timedoes

not depend on the value of the input signal atex lEme (+1).

(i) Stability of discrete systems:

A discrete transfer function time systeéi(e) is stable if and only if its polepy, p2, ... pn, that
(Z' Z1)(2' Zz)--(z' Zm)
(z- p)(z- P,)-{z- P,)

circle. Sincez = €T, we have thereforez|| < 1 if and only if0(p) <O.

is, the roots of the denominator &f(z) = , are all located in the unit

(iii) Systemswith a minimum phase
For a discrete system, assuming that the transfestibn H(z) is rational, this system has a

minimum phase if and only if all poles and zero$i(d) are inside the unit disk (circle).

1. 6 Related Matlab codes [5]
(i) Calculation of ZT and I ZT:

The Matlab library offers the functions «ztransx asiztrans» for the calculation of ZT and

IZT. To highlight these, the following instructioase given for two examples(n) = 4—1n and

6-9z"
X(2) =
(2 1-2521+27
>>syms z n

>> ztrans(1/4”n)
ans =z/(z - 1/4)

>>syms zn

>> jztrans((6-9*z"-1)/(1-2.5*z7-1+2z"-2))
ans =2*2"n + 4*(1/2)"n

10



(ii) Calculation of power series:
The "deconv" function is used to execute the paiyiab division requested by the method
into a power series. Given the transfer functifn) by
_by+bz"+. +b 2"
a,+az'+.+a z"

H(2)

Corresponding Matlab instruction is :
>> [q,r]=deconv(b,a)

1+2z7+ 27
1-271+0.35€2

For the case oH(2) = — , the Matlab code is as follows
>>b=[121];
>> a=[14 0.356];
>>n=5
n=>5;
>> b=[b zeros(1,M)];
>> [x,r]=deconv(b,a);
>> disp(x)
1.0000 3.0000 3.6440 2.5760 1.2787

(i) Calculation of rational fractions:

The residue function is used to find the coeffitseand poles of the partial fractions of the

function X(2).
+bzt+..+b z™"
H(Z) - bO blz_l an_ - rO _ o+ rn - +k1+k22—1+m+km_n+lz—(m—n)
a,taz +..+ta,z" 1-pz 1-p,z

The Matlab instruction is :
>> [r,p,k]=residuez(b,a);

-1 -2
If H(2) = 1+_122 tz -, the Matlab code is
1-z"+0.35€z

>> [r,p,K]=residuez([1,2,1],[1,-1,0.3561])
r=

-0.9041 - 5.9928i

-0.9041 + 5.9928i
p =

0.5000 + 0.3257i

0.5000 - 0.3257i
k =

2.8082
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(iv) Calculation of the pole/zeros diagram:

The command “zplane” calculates and race theilmtaif poles and zeros in the complex

plane. The command is: >> zplane(b,a)

1+1.6187" + 272
If H(z) = = —, We can
1-151€z™ +0.87¢&z

write

>> b=[1-1.618 1];
>>a=[14.5161 0.878];
>> roots(a)
ans =
0.7581 + 0.5508i
0.7581 - 0.5508i
>> roots(b)
ans =
0.8090 + 0.5878i
0.8090 - 0.5878i
>> zplane(b,a)

(v) Frequency response calculation:

Imaginary Part

0.2

0.4}

-0.61

-0.81

0.8F

0.6

0.4

0.2

The ‘freqz’ command Matlab calculates and plots frexjuency response dfi(z). The

command is:

>> freqz(b,npt,Fs)

wherefs is the sampling frequency, npt is the number ahfgsoof the frequency between 0

and f42.

1+1.618271 + 22
1-1.51€z* +0.87€z72"
>>pb=[1-1.618 1];
>>a=[11.5161 0.878];

If H(2) =

>> freqz(b,a)

corresponding Matlab code is

Magnitude (dB)

100

50

Phase (degrees)
o

-50

-100

R el e

01 02 03 04 05 06 07
Normalized Frequency (xrtrad/sample)

T
|
|

-
|
|
|

a
|
1

02 03 04 05 06 07
Normalized Frequency (xrrrad/sample)
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Tutorial #1

Exercisel:

1- For each analog signgl(t), calculate its Z transform (ZT).

Xa(t) = u(t)

at , (1 t>0
Xa(t) = €7 u(t) Wlthu(t)—{o otherwise
Xa(t) = tu(t)

2- Now from every discrete signa&(n), determine its ZT by means of ZT properties.

x(n) = a"
x(n)=n-5
x(n) = n+1
x(n) = (n+2)?
x(n) = 2"n?
Exercise?2:

We have a discrete system with the following ddferal relationship.
y(n) =-0.9y(n-5) + x(n)
Wherex(n) is a white Gaussian with a unit power.
1- Give the Z response and plot the localization efrtholes and zeros.
2- Has this system a minimum phase and what can deabaut its stability.
3- Deduce the frequency response of the system.

4- Calculate the system spectrum (i.e., magnitudeptiade) and characterize it.

Exercise3:
1- Use the table method to calculate the sequefmdrom the following functions:

2 _
X(2) = 22(z+§) and X(2)= 2 Zz;rl
(z-2) (z-a)
2- Determine the IZT 0K(z) using the partial-fraction expansion method.
2 —
X(2) = z 22:1
(z-a)

3- Use the power-series method to compitg from X(2).

X(5 =482
(z-D(z-e™)

6-9z7"

4- Use the residues method to compute IZT of thetfanc X (z2) = R
1-25z2"+z
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