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Chapter 1 
 

Sampling and Z Transform 
 

1. 1 Introduction 

Digital signal processing by means of a computer requires that the signal be converted 

into a sequence of numbers. This conversion is obtained after the execution of the following 

three steps:  

1. Sampling the analog signal where their values are usually taken at regular       

intervals of time. 

2.  Conditioning or quantification the sampled signal to valid values for the digital 

system for example between, 0V and 5V. 

3.  Assigning a binary code for each conditioned value. Generally, 8, 10 and 16 binary 

bits can be used for this conversion. 

Because the purpose of sampling of signals is to treat and transmit signal information, the 

question of choosing the sampling frequency is very important:  

- If the sampling frequency is too low, the acquisition will be too spaced and if the 

signal has pertinent details between two capture positions, these will be lost. 

-  The higher the sampling frequency, the more expensive in processing power, 

transmission capacity and storage space. 

In this Chapter, we state at first the sampling theorem which indicates the minimum 

value of the sampling frequency. Then, the Z transform is presented as a function of discrete 

signals which is defined by a series as an approximation of de ‘Laplace’ transform. Because 

the inverse Z transform can not be obtained by a specific formula, but it is simply calculated 

from specific methods. Finally, some useful Matlab codes are presented to calculate Z 

transform (ZT) and inverse Z transform (IZT). 

 
1. 2 Sampling theorem 

Sampling involves taking the values of a given signal at defined time intervals, usually 

regular. It produces a series of discrete values called samples. To select a sufficient sampling 
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frequency, sufficient sample knowledge is required to calculate the signal value at all 

intermediate points. Mr. Claude Shannon showed how this was possible, knowing the 

bandwidth of the information encoded in the signal to be transmitted. The sampling theorem 

indicates that if all the frequencies of the signal are less than half the sampling frequency, it 

can be perfectly reconstructed. In general, frequencies above half the sampling frequency 

introduce a spectral overlay also called Spectrum aliasing. 

In the following, we want to study the sampling of any deterministic signal g(t) with a 

limited band of maximum frequency fm (see Fig. 1.1). Then, the Fourier transform (FT),    

G(f) = 0 for mff >  [1]. 

 

 

 

 

 

 

 

Fig. 1. 1 Analog signal with a limited band spectrum. 

 

Ideally, sampling is obtained by multiplying the signal g(t) by a train of pulses p(t) (see Fig. 

1.2). Let gs(t) = g(t).p(t)  

 

 

 

 

 

 

 

Fig. 1. 2 Sampling with a train of pulses p(t)= )(tδ . 

 

As p(t) is a periodic function, it can be represented by the following Fourier series [1]: 
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Fig. 1.3 represents the plot of equation (1.3) for ms ff 2>  

 

 

 

 

 

 

Fig. 1. 3 Sampled signal spectrum for ms ff 2>  

It is observed that the original signal g(t) can be reconstructed by applying the low-pass filter 

as shown by the dotted line. It can also be noted that the sampling rate becomes at least 2fm. 

Then the minimum sampling frequency is fs =2fm which is called the Nyquist rate. Sampling at 

a frequency below the Nyquist rate (see Fig. 1.4) produces the aliasing error and the original 

signal cannot be reconstructed [1, 2]. 

 

 

 

 

 

 

Fig. 1. 4 Sampled signal spectrum for ms ff 2<  
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1. 3 The Z transform 

The Z-transform (ZT) is a mathematical tool used for signal processing. It is the 

discrete equivalent of the “Laplace transform”. For instance, the ZT is used to design 

numerical filters with infinite impulse response (IIR), finite impulse response (FIR) and 

automatically to model dynamic systems in a discrete manner [2, 3]. 

 
1. 3. 1 Definition  

We consider an analog signal defined by xa(t). This function defined on ℜ  is causal if: 

for any t < 0, xa(t) = 0 (see Fig. 1. 5). By taking only the values of the images of x at integers 

numbers, we build a numerical sequence, called a sampled signal of x(t). This sequence x(n) is 

called a discrete or digital causal signal as opposed to the xa(t) function which is a continuous 

or analog causal signal. If we call T the period between two measurements of the sample, we 

can construct the discrete causal signal: x(n) = xa(nT), n = 0, 1, 2, …+∞ . 

 

 

 

 

 

 

 

 

 

Fig. 1. 5 Discrete causal signal 

 

Now we want to define for discrete causal signals a transformation analogous to the 

Laplace transform for continuous causal signals. Let a continuous causal signal xa(t) and the 

associated sampled discrete signal: For any Nn ∈ , x(n) = xa(n). The Laplace transform of the 
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Fig. 1. 6 Approximated area defined by the integral of X(s) 

 

Taking, sj eez == ω , the ZT, X(z) of the sequence x(n) is defined by the following relation [2-4]:  
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Where Z is a complex variable and the function X(z) has a convergence domain which is usually a ring 

with radiuses R1 and R2 centered on the origin (see Fig. 1. 7). That is, X(z) is defined for R1<z< R2. Rl 

and R2 values depend on the sequence x(n).  

 

 

 

 

 

 

 

 

Fig. 1. 7 Convergence domain of X(z) 

 

If x(n) represents the sequence of samples of a signal taken at nT, n = 0, 1, …, ∞+ , then a discrete 

Fourier transform (DFT) of this sequence is written: 
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For fTjez π2= , the Z transform of x(n) coincides with its FT. That is, we can carry out the 

frequency analysis of the discrete signal by the Z transform.   
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1. 3. 2 Properties  

In order to reduce the calculation complexity of the ZT, the following properties can 

be used: 

(i) Linearity: 

{ })()( 2211 nxanxaZ ± = { } { })n(xZa)n(xZa 2211 ±                                   (1.6) 

(ii) Time delay: 
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In addition with the above properties, we can exploit the results of the geometric series,∑
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So, ∑
+∞

=0n

nz  converges if 1<z , i.e., R1=0 and R2=1. 

  

Example 1. 1: 

Calculate the ZT of the following sequence:  

x(n) = (n+2)2 

 
Solution : 

For, y(n)= n2, we apply the multiplication by an evolutional variable property.  
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1. 4 Inverse Z transform  

In general, the inverse Z transform (IZT) of X(z) is performed by one of the four 

following methods: 

(i) Table method:  

The ZT of some functions mostly used in signal processing are presented in Table. 1. 1. The 

latter can be consulted to get the corresponding sequence x(n) from usual ZT functions. 

 

Table. 1. 1 Habitual ZT of some sequences 

x(n) X(z) Convergence domain 

)(nδ  1 C 

)(nu  
11

1
−− z

 1>z  



8 

)(nnu  ( )21

1

1 −

−

− z

z
 1>z  

)(2 nun  ( )31

21

1 −

−−

−
+
z

zz
 1>z  

)(3 nun  ( )41

321

1

4
−

−−−

−
++

z

zzz
 1>z  

)(nua n  11

1
−− az

 az >  

)(nuna n  ( )21

1

1 −

−

− az

az
 az >  

)(2 nuan n  
( )

( )31

11

1

1
−

−−

−
+

az

azaz
 az >  

( ) )(cos 0 nunω  2
0

1
0

1

)cos(21

)cos(1
−−

−

+−
−

zz

z

ω
ω

 1>z  

( ) )(sin 0 nunω  2
0

1
0

1

)cos(21

)sin(1
−−

−

+−
−

zz

z

ω
ω

 1>z  

( ) )(cos 0 nuna n ω  22
0

1
0

1

)cos(21

)cos(1
−−

−

+−
−

zaaz

az

ω
ω

 az >  

( ) )(sin 0 nuna n ω  22
0

1
0

1

)cos(21

)sin(1
−−

−

+−
−

zaaz

az

ω
ω

 az >  

 

(ii) Partial-fraction expansion method: 

 Here, X(z) is decomposed into a sum of several simple rational functions as follows: 

...)()()()( 321 +++= zXzXzXzX  

The IZT may be obtained using the transformations in Table. 1. 1. Hence   

...)()()()( 321 +++= nxnxnxnx  

(iii) Power-series method:  

X(z) is transformed into a finite series (z-k, k = 1, …, n) of power using polynomial division. 
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(vi) Inversion formula method (residues method):  

This method is based on the calculation of the following contour integral: 
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Where C is a closed contour containing all the singular points or poles of X(Z). The residue 

theorem is often used to determine x(n) given by 
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The residue at a pole z = a of order q of the function is formulated as [4]: 
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Example. 1. 2: 

Calculate the IZT of the sequence using the partial-fraction expansion method: 
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1. 5 Some useful definitions 

(i) Causal system: 

A causal signal is defined by x(t) for t > 0. In other words, a signal is said to be causal if that 

signal is null when t < 0. A non causal signal is not null when at least a  t < 0 value. This 

definition applies to both discrete and continuous systems. The system is causal if and only if 

its transfer function is clean. This means that the output at a given moment is not influenced 

by the future of the input. For example, the system y(n) = x(n+1), where x denotes the input 

and y denotes the output, is not causal because the value of the output signal at the time n does 

not depend on the value of the input signal at a later time (n+1). 

 

(ii) Stability of discrete systems: 

A discrete transfer function time system H(z) is stable if and only if its poles, p1, p2, … pn, that 

is, the roots of the denominator of 
))...)
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circle. Since, z = epT, we have therefore | z | < 1 if and only if 0)( <ℜ p . 

 
(iii) Systems with a minimum phase 

For a discrete system, assuming that the transfer function H(z) is rational, this system has a 

minimum phase if and only if all poles and zeros of H(z) are inside the unit disk (circle). 

 

1. 6 Related Matlab codes [5] 

(i) Calculation of ZT and IZT:  

The Matlab library offers the functions «ztrans» and «iztrans» for the calculation of ZT and 

IZT. To highlight these, the following instructions are given for two examples, 
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>> syms z n 
>> ztrans(1/4^n) 
ans =z/(z - 1/4) 
 
>> syms z n 
>> iztrans((6-9*z^-1)/(1-2.5*z^-1+z^-2)) 
ans =2*2^n + 4*(1/2)^n 
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(ii) Calculation of power series:  

The "deconv" function is used to execute the polynomial division requested by the method 

into a power series. Given the transfer function H(z) by 

m
n

n
n
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...
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1
10
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Corresponding Matlab instruction is : 

>> [q,r]=deconv(b,a) 

For the case of 
21

21

356.01

21
)( −−
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++=

zz

zz
zH , the Matlab code is as follows 

>> b=[1 2 1]; 
>> a=[1 -1 0.356]; 
>> n=5 
n = 5; 
>> b=[b zeros(1,n-1)]; 
>> [x,r]=deconv(b,a); 
>> disp(x) 
    1.0000    3.0000    3.6440    2.5760    1.2787 
 

(iii) Calculation of rational fractions:  

The residue function is used to find the coefficients and poles of the partial fractions of the 

function X(z). 
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The Matlab instruction is : 

>> [r,p,k]=residuez(b,a); 

If 
21

21

356.01

21
)( −−

−−

+−
++=

zz

zz
zH , the Matlab code is 

 
>> [r,p,k]=residuez([1,2,1],[1,-1,0.3561]) 
r = 
  -0.9041 - 5.9928i 
  -0.9041 + 5.9928i 
p = 
   0.5000 + 0.3257i 
   0.5000 - 0.3257i 
k = 
    2.8082 
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(iv) Calculation of the pole/zeros diagram: 

 The command “zplane” calculates and race the location of poles and zeros in the complex 

plane. The command is: >> zplane(b,a) 

If 
21

21

878.0516.11

618.11
)( −−

−−

+−
++=

zz

zz
zH , we can 

write 

>> b=[1 -1.618 1]; 
>> a=[1 -1.5161 0.878]; 
>> roots(a)  
ans = 
   0.7581 + 0.5508i 
   0.7581 - 0.5508i 
>> roots(b) 
ans = 
   0.8090 + 0.5878i 
   0.8090 - 0.5878i 
>> zplane(b,a) 
 

(v) Frequency response calculation: 

The ‘freqz’ command Matlab calculates and plots the frequency response of H(z). The 

command is:  

>> freqz(b,npt,Fs)  

where fs is the sampling frequency, npt is the number of points of the frequency between 0 

and  fs/2. 

If 
21

21

878.0516.11

618.11
)( −−
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zz

zz
zH , corresponding Matlab code is  

>> b=[1 -1.618 1]; 

>> a=[1 -1.5161 0.878]; 

>> freqz(b,a) 
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Tutorial # 1 

Exercise 1 : 

1- For each analog signal xa(t), calculate its Z transform (ZT). 

xa(t) = u(t)    

xa(t) = e-atu(t)                with 


 >

=
otherwise      0

0t      1
u(t)  

xa(t) = t u(t)        
 
2- Now from every discrete signal x(n), determine its ZT by means of ZT properties. 

x(n) = an 

x(n) = n –5 

x(n) = n+1 

x(n) = (n + 2)² 

x(n) = 2nn2 

 
Exercise 2 : 

We have a discrete system with the following differential relationship.  

)()5(9.0)( nxnyny +−−=  

Where x(n) is a white Gaussian with a unit power. 

1- Give the Z response and plot the localization of their poles and zeros. 

2- Has this system a minimum phase and what can be said about its stability. 

3- Deduce the frequency response of the system. 

4- Calculate the system spectrum (i.e., magnitude and phase) and characterize it. 

 
Exercise 3 : 

1- Use the table method to calculate the sequence x(n) from the following functions:  
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2- Determine the IZT of X(z) using the partial-fraction expansion method. 
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3- Use the power-series method to compute x(n) from X(z). 
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4- Use the residues method to compute IZT of the function, 
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