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II. 1 Introduction 

In target detection systems (e.g. radar), the effects of interfering signals (clutter) from 

the environment are usually partially unknown and/or varying in terms of their statistical 

properties. In such instances, where the performance of the optimal detector deteriorates 

significantly, CFAR detectors can be used since they are insensitive to changes in the 

underlying statistics of the clutter. Statistical decision theory used in such fields as radar, 

sonar, digital communication and ultrasonic imaging, attempts to discriminate between 

information bearing signals and noise or interference [4]. In recent years, general compound 

and compound Gaussian distributions have been utilized extensively to fit sea and land 

clutter. In target detection context, the main objective of radar researchers is to select the best 

statistical clutter model with consistent estimation of its parameters and robust CFAR 

detectors. 
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The present Chapter is organized as follows. Section II. 2 summarizes classical binary 

decision rules based on Bayes, minimax and Neyman-Pearson criteria. Then, Section II. 3 

presents firstly the principle of CFAR detector describes using using its general architecture. 

After that, some popular CFAR detectors used for target detection in homogeneous and 

heterogeneous environments are presented with the evaluation of false alarm and detection 

probabilities. Finally, a conclusion is drawn in Section II. 4.   

II. 2 Classical detection 

In engineering, when there is a radar signal detection problem, the returned signal is 

observed and a decision is made as to whether a target is present or absent. In a digital 

communication system, a string of zeros and ones may be transmitted over some medium. At 

the receiver, the received signals representing the zeros and ones are corrupted in the medium 

by some additive noise and by the receiver noise. The receiver does not know which signal 

represents a zero and which signal represents a one, but must make a decision as to whether 

the received signals represent zeros or ones. The process that the receiver undertakes in 

selecting a decision rule falls under the theory of signal detection [41]. 

The situation above may be described by a source emitting two possible outputs at various 

instants of time.  The outputs are referred to as hypotheses.  The null hypothesis H0 represents 

a zero (target not present) while the alternate hypothesis H1 represents a one (target present), 

as shown in Figure II.1. (a). Each hypothesis corresponds to one or more observations that are 

represented by random variables. Based on the observation values of these random variables, 

the receiver decides which hypothesis (H0 or H1) is true.  Assume that the receiver is to make 

a decision based on a single observation of the received signal. The range of values that the 

random variable Y takes constitutes the observation space Z. The observation space is 

partitioned into two regions Z0 and Z1, such that if Y lies in Z0 the receiver decides in favor of 

H0, while if Y lies in Z1 the receiver decides in favor of H1, as shown in Figure II. 1. (b). The 

observation space Z is the union of Z0 and Z1; that is, 10 ZZZ U=  
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Figure II. 1: (a) Source for binary hypothesis. 
(b) Decision regions. 

 

The PDF of Y corresponding to each hypothesis are )|( 0| 0
HyP HY  and )|( 1| 1

HyP HY , where y 

is a particular value of the random variable Y. 

Each time, a decision is made, based on some criteria, for this binary hypothesis testing 

problem, four possible cases can occur: 

(1).  Decide H0 when H0 is true. 

(2).  Decide H0 when H1 is true. 

(3). Decide H1 when H0 is true. 

(4).  Decide H1 when H1 is true. 

Observe that for cases (1) and (4), the receiver makes a correct decision, while for cases (2) 

and (3), the receiver makes an error.  From radar nomenclature, case (2) is called miss, case 

(3) a false alarm, and case (4) detection. 

In the next sections, we study some of the criteria that are used in decision theory, and the 

conditions under which these criteria are useful [41]. 
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II. 1. 1 Bayes criterion 

In using Bayes criterion, two assumptions are made. First, the probability of 

occurrence of the two source outputs is known. They are the a priori probabilities 

)( 0HP and )( 1HP .  )( 0HP is the probability of occurrence of hypothesis H0, while )( 1HP is 

the probability of occurrence of hypothesis H1. Denoting the a priori probabilities )H(P 0 and 

)H(P 1 by P0 and P1 respectively. If we let ,1 ,0   , =iDi  where 0D  denotes "decide H0" and 

1D  denotes "decide H1," we can define ,1 ,0,  , =jiCij  as the cost associated with the decision 

Di, given that the true hypothesis is jH . Given )H,D(P ji , the joint probability that we 

decide Di, and that the hypothesis Hj is true, the average cost is 

          ℜ = ][CE )H,D(PC)H,D(PC)H,D(PC)H,D(PC 1111011010010000 +++=            (II.1) 

From Bayes' rule, we have 
 

)H(P)H|D(P)H,D(P jjiji =
                                                (II.2)
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The probabilities )H|D(P 10 , )H|D(P 01 , and )H,D(P 11  represent the probability of miss, 

MP , the probability of false alarm, , and the probability of detection, DP , respectively       

( DM PP −=1  and FP)H|D(P −= 100 ). The average cost is given by    

[ ] 111010101000 )1()1( pPCpPCpPCpPCCE DFDF ++−+−==ℜ                         (II.4) 

In terms of the decision regions, the average cost is expressed as 
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The fact that ∫∫ ==
Z HYZ HY dyHyPdyHyP 1)|()|( 1|0| 10

 , we can write 
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                 ∫∫ =−=
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                                     (II.6) 

Consequently, the risk is minimized by selecting the decision region Z0 to include only 

those points of Y for which the second term is larger, and hence the integrand is negative.   

Specifically, we assign to the region Z0 those points for which 

)|()( 1|11011 1
HyPCCP HY− < )|()( 0|00100 0

HyPCCP HY−                           (II.7) 

All values for which the second term is greater will be excluded from Z0 and assigned to Z1.  

The values for which the two terms are equal do not affect the risk, and can be assigned to 

either Z0 or Z1.  Consequently, we say if 

       
)|()( 1|11011 1

HyPCCP HY− > )|()( 0|00100 0
HyPCCP HY−                             (II.8) 

then we decide H1.  Otherwise, we decide H0.  Hence, the decision rule resulting from the 

Bayes criterion is [41]. 
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The ratio of )|( 1| 1
HyP HY  over )|( 0| 0

HyP HY  is called the likelihood ratio, and is denoted 

)(yΛ . We note that if we select the cost of an error to be one and the cost of a correct 

decision to be zero, that is, 11001 == CC and 01100 == CC , then the risk function of (II.9) 

reduces to 

)(01 εPPPPP FM =+=ℜ                   (II.10) 

where  is the error probability. Thus, in this case, minimizing the average cost is 

equivalent to minimizing the probability of error.  Receivers for such cost assignment are 

called minimum probability of error receivers.  The threshold reduces to, 
1

0

P

P
=η . 

II. 1. 2 Minimax criterion 

        The Bayes criterion assigns costs to decisions and assumes knowledge of the a priori 

probabilities.  In many situations, we may not have enough information about the a priori 

probabilities and consequently, the Bayes criterion cannot be used.  One approach would be to 

select a value of P1, the a priori probability of H1, for which the risk is maximum, and then 
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minimize that risk function.  This principle of minimizing the maximum average cost for the 

selected P1 is referred to as minimax criterion. Seting 10 1 PP −= , the risk function in terms of 

P1 is given by  

])()()[()1( 00101101001111000 FMFF PCCPCCCCPPCPC −−−+−++−=ℜ                (II.11) 

Assuming a fixed value of P1, ]1,0[1  P ∈ , we can design a Bayes' test.  These decision regions 

are then determined, as are the , and miss, PM.  The test results in 
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The minimax equation is given by 

0001011010011 =−−−+− FM P)CC(P)CC()CC(                                  (II.13) 

If the cost of a correct decision is zero )0( 1100 == CC , then the minimax equation for ∗= 11 PP    

such that  reduces to [41] 

   FM PCPC 1001 =                                        (II.14) 

 
II. 1. 3 Neyman-Pearson criterion 

In the previous sections, we have seen that for the Bayes criterion we require 

knowledge of the a priori probabilities and cost assignments for each possible decision.  

Then, we have studied the minimax criterion, which is useful in situations where knowledge 

of the a priori probabilities is not possible.  In many other physical situations, such as radar 

detection, it is very difficult to assign realistic costs and a priori probabilities.  To overcome 

this difficulty, we use the conditional , and detection PD.  The Neyman-Pearson test 

requires that , be fixed to some value α while PD is maximized. Since DM PP −=1 , 

maximizing PD is equivalent to minimizing PM. 

In order to minimize PM (maximize PD) subject to the constraint that α=FAP , we use the 

calculus of extrema, and form the objective function J to be  

)( αλ −+= FAM PPJ                                 (II.15) 
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where )( 0≥λλ  is the Lagrange multiplier.  We note that given the observation space Z, 

there are many decision regions Z1 for which α=FAP .  The question is to determine those 

decision regions for which PM is minimum.  Consequently, we rewrite the objective function J 

in terms of the decision region to obtain 
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Hence, J is minimized when values for which )H|y(f)H|y(f H|YH|Y 01 01
> are assigned to the 

decision region Z1.  The decision rule is, therefore, 
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The threshold η derived from the Bayes 'criterion is equivalent to λ, the Lagrange multiplier 

in the Neyman-Pearson (N-P) test for which the is fixed to the value α.  If we define the 

conditional density of Λ  given that H0 is true as )|( 0| 0
HP H λΛ , then α=FAP  may be rewritten 

as [41] 

∫∫
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1
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The test is called most powerful of level α if its probability of rejecting H0 is α. 

 

II. 3 Automatic CFAR detection 

In practical radar signal detection systems, the problem is to automatically detect a 

target in thermal noise plus clutter [4, 41]. The input signal at the radar receiver, when a target 

is present, is an attenuated randomly phase-shifted version of the transmitted pulse in noise. A 

typical radar processor for a single-range cell sums the K samples of the matched filter output 

and compares the sum to a fixed threshold, as shown in Figure II. 2. In this case, a small 

increase in noise power causes the PFA, to increase intolerably.  
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Figure II. 2: Conventional radar detector with fixed threshold. 
 

The role of the CFAR circuitry is therefore to determine the power threshold which 

any return can be considered to probably originate from a target. If this threshold is too low, 

then more targets will be detected at the expense of increased numbers of false alarms. 

Conversely, if the threshold is too high, then fewer targets will be detected, but the number of 

false alarms will also be low [4, 41]. In most radar detectors, the threshold is set in order to 

achieve a required (or equivalently, false alarm rate or time between false alarms). If the 

background against which targets are to be detected is constant with time and space, then a 

fixed threshold level can be chosen that provides a specified  PFA, governed by the PDF of the 

noise, which is usually assumed to be Gaussian. The  PD  is then a function of the SNR of the 

target return. However, in most fielded systems, unwanted clutter and interference sources 

mean that the noise level changes both spatially and temporally. In this case, a changing 

threshold can be used, where the threshold level is raised and lowered to maintain a constant 

PFA. This is known as CFAR detection. Hence, when the noise variance is not known, and in 

order to regulate the PFA, numerous CFAR procedures have been developed in the open 

literature in order to adaptively select a threshold level by taking a rigorous account of the 

statistics of the background in which targets are to be detected. In most simple CFAR 

detection schemes, the threshold level is calculated by estimating the level of the noise floor 

around the CUT. This can be found by taking a block of cells around the CUT and calculating 

the average power level. On the other hand, some procedures calculate separate averages for 

the cells to the left and right of the CUT, and then use the greatest-of or smallest-of these two 

power levels to define the local power level. Other related approaches estimate the 

background level after ordering the samples in the window. These are referred to as            

cell-averaging CFAR (CA-CFAR), greatest-of CFAR (GO-CFAR), smallest-of CFAR              

(SO-CFAR), order-statistics CFAR (OS-CFAR), censored-mean-level CFAR                     

γ  
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(CMLD-CFAR),…etc. In the following, we give the description of some of these CFAR 

algorithms.   

  There are three main approaches to the CFAR problem: the adaptive threshold 

processor, the nonparametric processor, and the nonlinear receiver approach. The adaptive 

threshold processor is the one most commonly used, because it provides the lowest CFAR 

loss when the actual environment closely matches the design environment. Of the hundreds of 

papers published in this field, we shall mention only a few to give a sketch of the advance of 

this rich field up to the actual interest when using high-resolution radars. A real environment 

in which a radar operates cannot be described by a single clutter model. We refer to 

homogeneous clutter in situations where the outputs of the range cells are iid. In a non 

homogeneous background, the adaptive threshold setting is seriously affected, resulting in a 

degradation of the performance [4, 26, 42, 43]. 

(i) CA-CFAR detector: Finn and Johnson [26] proposed the use of a reference channel, from 

which an estimate of the noise environment can be obtained, and upon which the decision 

threshold is adapted. The radar uses the range cells surrounding the CUT as reference cells, as 

shown in Figure II. 3. The detector proposed in [26] is the CA-CFAR, where the adaptive 

threshold is obtained from the arithmetic mean or the sum of the reference cells, ∑
=

=
M

i
ixQ

1

. 

For a homogeneous background noise, and iid reference cells outputs, the arithmetic is the 

MLE. This means that the detection threshold is designed to adapt changes in the environment 

(Gaussian clutter). If we consider a Swerling 1 fluctuating target, the PDF of received signal 

for each hypothesis H0 and H1 is given by  
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where a and 22σ=b  represent the power of signal and the power of clutter respectively. 

Conventionally, FAP  and DP  are computed using the following integrals: 



                                                                                                                                                    Chapter II 

 

36 

                        












>=

>=

∫

∫
∞

∞

dq)q(p)HqCUTPr(P

dq)q(p)HqCUTPr(P

QD

QFA

1

0

0

0

α

α
                                           (II.20) 

where  α  is a scale factor, and Pr(.) denotes probability with           
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Figure II. 3: CA-CFAR detector for homogeneous background 
(a) Homogeneous clutter situation with 12 2 =σ and  SNR = 5dB 

(b) Arithmetic mean for ML estimate of clutter power 
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where SNR=a/b. The PDF of Q is found to be gamma distributed  
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Substituting (II.21), (II.22) and (II.23) into (II.20), (II.20) becomes 
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It is worth noting that the PFA is independent of the clutter power b, which means that           

the CA-CFAR algorithm has a CFAR property in presence of Gaussian clutter. 

(ii) GO-CFAR detector: In the case of clutter edge situations where there is a transition in 

the clutter power distribution, Hansen and Sawyers [44] proposed the greatest-of-selection 

logic in CA-CFAR detector (GO-CFAR) to control the increase in the . In the GO-CFAR 

detector, the estimate of the noise level in the CUT is selected to be the maximum of U and V, 

Q = max (U, V), where U and V are the sums of the outputs of the leading and the lagging 

cells, respectively (see Figures II. 4 (a) and II.4 (b)). The clutter-to-clutter ratio, CCR = 5dB is 

taken.  The random variables U and V have analog PDFs given by 
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Figure II. 4: GO-CFAR detector for hyterogeneous clutter 
(a) clutter edge situation for 12 2 =σ , CCR = 5dB and SNR = 10dB) 

(b) ML estimation of Q from the maximum of leading and lagging windows 
 

 

The Cumulative Distributed Function (CDF) of U or V is given by 
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From [4], the PDF of Q is  
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Substituting (II.27) into (II.20), the PFA and the PD have the following forms 
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(iii) SO-CFAR detector: If one or more interfering targets are present, Weiss [45] has shown 

that the GO-CFAR detector performs poorly, and suggested the use of the smallest-of-

selection logic in cell averaging constant false-alarm rate detector (SO-CFAR). In the        

SO-CFAR detector, the minimum of U and V, Q = min (U, V) , is selected to represent the 
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noise level estimate in the cell under test. The SO-CFAR detector was first proposed by Trunk 

[46] while studying the target resolution of some adaptive threshold detectors. We can 

intuitively see that the SO-CFAR detector performs well for the case shown in Figure II. 5 (a). 

From [4], the PDF of Q is 
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Substituting (I.60) into (I.63), (I.63) will be 

                 ∑
−

=

−

−
Γ

=
12

0

12

2
2

2 /M

kr

k/M

Q !k

)q(
))qexp(

)/N(

q
)q(p                                                (II.30) 

Replacing (II.30) into (II.20), the PFA and the PD are 
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(iv) OS-CFAR detector: By studying the homogeneity of the reference cells, it has been 

shown that targets can be detected by the SO-CFAR detector, especially in the case where 

secondary targets are in a single window and are not present in the other window [47, 48]. If 

interfering targets are present in both the leading and lagging windows, neither the GO-CFAR 

detector nor the SO-CFAR detector solves the problem of the capture effect. To remedy this 

limitation, [48] introduced the OS-CFAR detector, that is, the OS-CFAR as shown in Figure 

II. 6 with interfering-to-target ration, ICR = 5dB. Here, the samples of the reference window 

are sorted in ascending order and one ordered sample between them is chosen to represent the 

noise level estimate in the CUT. The kth ordered sample value, X (k), selected as the test 

statistic Q, is multiplied by the scale factor α  to achieve the desired , and then a decision 

is made by comparing the output of the CUT with the adaptive threshold, QT α= . The value 

suggested in [48] to represent a good background estimate for typical radar applications in 

Gaussian noise is k = 3N / 4. The calculations of PD and PFA require the formulation of the 

PDF of the kth ranked sample, )(kXQ = . 
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Figure II. 5: SO-CFAR detector for hyterogeneous clutter 
(a) clutter edge situation for 12 2 =σ , CCR = 5dB and  SNR = 10dB) 

(b) ML estimation of Q from the minimum of leading and lagging windows 

 

In the case of Gaussian homogeneous background, it is shown in [4, 48] that  
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Substituting (I.32) into (II.20), expressions of  PFA and PD  are 
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Figure II. 6: OS-CFAR detector used for interfering targets situations 

(a) Situation of two secondary targets ( 12 2 =σ , ICR = 5dB and SNR = 10dB). 
(b) Estimation of clutter level from a selected ranked cell 

 
If we set bqy /= ,  (II.34) is simplified to 

         













−++
+








=

−++







=

∫

∫
∞

∞

0

0

1

1

dqexp(-y))-(1 )y)kM
SNR1

exp(-(
k

M
kP

dqexp(-y))-(1 )y)kMexp(-(
k

M
kP

1-k
D

1-k
FA

α

α
                      (II.34) 

Finally, solutions of (II.34) give 
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II. 4 Conclusion 

  In this chapter, we presented some basic concepts of the radar system. Radar 

components are described firstly, as well as its classification, radar cross-section and radar 

equation. As the modeling of radar clutter plays an important role in CFAR detection, we 

presented some statistical models for high resolution radars. It is shown that radar echoes can 

be scattered from sea or land surface with different grazing angles. Targets models are also 

given using Rayleigh and other distributions. Decision theory is introduced by giving three 

decision rules. Finally, some CFAR detectors used in homogeneous and heterogeneous 

Gaussian clutter are also described where mathematical stages for computing probabilities of 

false alarm and detection are given. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                    Chapter II 

 

43 

Exercises 2 

Exercise 1: 

In the digital communication system, we consider a voltage source with a constant 

output of value m under the hypothesis H1 and an output under the hypothesis H0 of value 0. 

At reception, the received signal is contaminated by a white Gaussian noise, with zero mean 

and a variance 2σ . The probability density (fdp) function of the noise is given by: 

( ) 







−=

2

2

2
exp

2

1

σσπ
q
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a- Write the density functions for each hypothesis. 

b- Formulate the likelihood ratio and identify the decision regions using ‘Bayes’ criterion. 

c- Give the false alarm probability and the detection probability expressions. 

 

Exercise 2: 

We come back to the exercise 1 whose the priori probabilities p0 and p1 are unknown. 

a- Apply the ‘minimax’ criterion to calculate the probability of minimum error,   

MFA PpPpp 10)( +=ε  with C00=C11=0, C01=C10=1. 

Exercise 3: 

For the detection of radar targets embedded in an atmospheric noise, the density 

functions of the received echo for each hypothesis are given by: 
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where 2
0

2
1 σσ >  

a- Give the likelihood ratio test.  

b- If 22
1 =σ  and 12

0 =σ , calculate the probability of detection if the false alarm probability is 

fixed at 0.1. 

Source (Emission) 
 

m ;   H1 

0 ;    H0 

N 
(Noise due to conditions of the 

communication channel) 

∑  
Reception 

 
Y=m+N ;   H1 

Y=    N ;    H0 


