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I. 1 Introduction

In target detection systems (e.g. radar), the effeCinterfering signals (clutter) from
the environment are usually partially unknown and/arying in terms of their statistical
properties. In such instances, where the performaricthe optimal detector deteriorates
significantly, CFAR detectors can be used sincey taee insensitive to changes in the
underlying statistics of the clutter. Statisticactsion theory used in such fields as radar,
sonar, digital communication and ultrasonic imagiagtempts to discriminate between
information bearing signals and noise or interfeeef#]. In recent years, general compound
and compound Gaussian distributions have beerrzediliextensively to fit sea and land
clutter. In target detection context, the main otie of radar researchers is to select the best
statistical clutter model with consistent estimatiof its parameters and robust CFAR

detectors.
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The present Chapter is organized as follows. Sed¢tli® summarizes classical binary
decision rules based on Bayes, minimax and NeyneansBn criteria. Then, Section II. 3
presents firstly the principle of CFAR detector aéses using using its general architecture.
After that, some popular CFAR detectors used fogetadetection in homogeneous and
heterogeneous environments are presented withvidleation of false alarm and detection

probabilities. Finally, a conclusion is drawn inc8en 1. 4.

I. 2 Classical detection

In engineering, when there is a radar signal detegiroblem, the returned signal is
observed and a decision is made as to whethergettas present or absent. In a digital
communication system, a string of zeros and ongshaaransmitted over some medium. At
the receiver, the received signals representinge¢hes and ones are corrupted in the medium
by some additive noise and by the receiver noibe. receiver does not know which signal
represents a zero and which signal represents ,@bahenust make a decision as to whether
the received signals represent zeros or ones. Theegs that the receiver undertakes in

selecting a decision rule falls under the theorgighal detection [41].

The situation above may be described by a sourdairgrwo possible outputs at various
instants of time. The outputs are referred toygtheses. The null hypothesis represents
a zero (target not present) while the alternateothgsisH; represents a one (target present),
as shown in Figure 11.1. (a). Each hypothesis @poads to one or more observations that are
represented by random variables. Based on the@ig®r values of these random variables,
the receiver decides which hypothesis 0r H,) is true. Assume that the receiver is to make
a decision based on a single observation of theived signal. The range of values that the
random variableY takes constitutes the observation sp@ceThe observation space is
partitioned into two region&, andZ;, such that ifY lies inZ, the receiver decides in favor of
Ho, while if Y lies inZ; the receiver decides in favor df, as shown in Figure II. 1. (b). The

observation spac2is the union o¥, andZy; thatis,Z =72, U Z,

28



Chapter Il

—» Hg
Source
—» H;
(a)
DecideH,
Py, (Y 1 Ho)

Source

PY|H1(y| H,)

(b)

DecideH;

Figurell. 1: (a) Source for binary hypothesis.
(b) Decision regions.

The PDF ofY corresponding to each hypothesis &g (y|H,) and R, (y|H,;), wherey

is a particular value of the random varialgle

Each time, a decision is made, based on someiariter this binary hypothesis testing
problem, four possible cases can occur:

(1). DecideHo whenHy is true.

(2). DecideHo whenH; is true.

(3). DecideH; whenHjg is true.

(4). DecideH; whenHj is true.

Observe that for cases (1) and (4), the receivékema correct decision, while for cases (2)
and (3), the receiver makes an error. From radaremclature, case (2) is called miss, case
(3) afalse alarm, and case (4) detection.

In the next sections, we study some of the critér& are used in decision theory, and the

conditions under which these criteria are usefl].[4
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[I.1.1Bayescriterion
In using Bayes criterion, two assumptions are mdeiest, the probability of

occurrence of the two source outputs is known. Tlaeg thea priori probabilities

P(H,)andP(H,). P(H,)is the probability of occurrence of hypothelig while P(H,)is

the probability of occurrence of hypothebls Denoting thea priori probabilitiesP(H , ) and

P(H, )by Py andP; respectively. If we leD, , i = 0,where D, denotes'decideH," and

D, denotesdecideH,,” we can defineC; , i, j = 0,1, as the cost associated with the decision
Di, given that the true hypothesis is;. GivenP(D,;,H ), the joint probability that we

decideD;, and that the hypothedt} is true, the average cost is
EI :E[C] = COOF)( DO’HO )+C01P( DO’Hl )+C10P( Dl'HO )+C11P( Dl’Hl ) (”1)

From Bayesrule, we have

P(D;,H;)=P(D; |H;)P(H ) (11.2)

where
P(D [Ho) = [, Py, (¥ [ Ho)dy

P(Dy [Hy) = [, Py, (¥ [ Hy)dy
P(D; [Ho) = [, P, (¥ I Ho)dy

P(D, [H,) = [, Py, (y [Hy)dy

(1.3)

The probabilitiesP(D, |H,), P(D,|H,), andP(D,,H, ) represent the probability of miss,
P, the probability of false alarn/zs, and the probability of detectior,, respectively
(Py =1-P, andP(D, |H,)=1-P:-). The average cost is given by
0 = E[C] = Coo@=P-) Py + Coy = P5) Py + CyoP- Py + CpyPy Py (1.4)
In terms of the decision regions, the average isastpressed as
0= RCoo, Py, (Y1 Ho)dy+ PiCoy [, Py, (yIH,)dly

(11.5)
+ POClOIzl R, (Y1 Hg)dy+ PlCllJ‘zl R, (Y[ Hy)dy

The fact tha.fZ P, (YIHo)dy = IZ P, (YIH,)dy=1, we can write
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le Pow, (YIH;)dy= 1—IZO Ry (YIH)dy, j=01 (11.6)

Consequently, the risk is minimized by selecting decision regio#, to include only
those points o¥ for which the second term is larger, and hencertegrand is negative.

Specifically, we assign to the regidpthose points for which
P (Cor = Ci) Py, (Y H1) <Ry (Cio = Coo) Py, (Y Ho) (1.7)

All values for which the second term is greaterl Wwé excluded fronZ, and assigned td;.
The values for which the two terms are equal doatfi&ct the risk, and can be assigned to
eitherZ, or Z;. Consequently, we say if

P(Cor = Ci) Py, (Y I H1) > Ry (Cyp = Coo) Ry, (Y[ Ho) (1.8)

then we decidéd;. Otherwise, we decidel,. Hence, the decision rule resulting from the
Bayes criterion is [41].

Hl
P, (YIH) > P(C,, —Cyo)

PYlHo(ylHO) < P:L(C01_C11)
Ho

NA(y) = (1.9)
The ratio of R, (y|H,) over R, (y[H,) is called the likelihood ratio, and is denoted
A(y). We note that if we select the cost of an errobéoone and the cost of a correct
decision to be zero, that i€, =C,,= addC,, =C,, = O, then the risk function of (11.9)
reduces to

O=PR,R +P-F, =P(¢) (11.10)
where P(g) is the error probability. Thus, in this case, miizing the average cost is

equivalent to minimizing the probability of erromReceivers for such cost assignment are

. . . P
called minimum probability of error receivers. Tihneeshold reduces te, :FO'
1

I1. 1.2 Minimax criterion

The Bayes criterion assigns costs to datssand assumes knowledge of &eriori
probabilities. In many situations, we may not ham®ugh information about thee priori
probabilities and consequently, the Bayes critecamnot be used. One approach would be to

select a value doP,, thea priori probability ofH;, for which the risk is maximum, and then
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minimize that risk function. This principle of ninizing the maximum average cost for the

selectedP; is referred to aminimax criterion. Seting®, =1- P,, the risk function in terms of

P, is given by
0=Cp@=F:) +CyoP: +PI(Cyy =Cyo) +(Co, =Cp) Ry —(Cyo = Cpo) P ] (1.11)

Assuming a fixed value d?1, P, J[0,1], we can design a Baydsst. These decision regions
are then determined, as are fn&: , and missPy. The test results in
Hl
(y) > (1-P)(Cy —Cyo)

(11.12)
< Pl(Cm _Cll)
HO
The minimax equation is given by
(C—Cp)+(Cy, —C )Ry —(Cu =Cy )P =0 (1.13)

If the cost of a correct decision is zg@, =C,; =0), then the minimax equation f& = P

such thatP; £ (0,1) reduces t¢41]

CorPu = CioPx (1.14)

I1. 1. 3 Neyman-Pearson criterion
In the previous sections, we have seen that for Bages criterion we require

knowledge of thea priori probabilities and cost assignments for each plessibcision.
Then, we have studied the minimax criterion, whihiseful in situations where knowledge
of the a priori probabilities is not possible. rrany other physical situations, such as radar
detection, it is very difficult to assign realistosts andh priori probabilities. To overcome
this difficulty, we use the conditionéiz4, and detectiorPp,. The Neyman-Pearson test
requires thef.,, be fixed to some valuer while Pp is maximized. Sincg, =1-P,,
maximizingPp is equivalent to minimizing.

In order to minimizePy (maximizePp) subject to the constraint tHat, = a, we use the

calculus of extrema, and form the objective funttldo be

J=P, +A(P., - a) (11.15)
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where A (A =0) is the Lagrange multiplier. We note that givee thbservation spacg,
there are many decision regiods for whichP., =a. The question is to determine those

decision regions for whicBy is minimum. Consequently, we rewrite the objexfnctionJ

in terms of the decision region to obtain
J= Lo Row, (V| Hl)dyMUZl R, (Y1 Ho)dy—a} (11.16)

usingZ=2,UZ,, (1.49) can be rewritten as

3=[, Ry, Oy Hl)dy+/1[j20 R, (V] Ho)dy—a}

(11.17)
=A0=a)+[, [Py, (YIH) = ARy, (v Ho)ldy

Hence,J is minimized when values for which,,, (y|H,)> f,, (y|H,)are assigned to the

decision regiorZ;. The decision rule is, therefore,
Hl
/\(y)= R, (YIH) > p

P, (YIHg) <
H,

(11.18)

The threshold; derived from the Bayesriterion is equivalent t@, the Lagrange multiplier
in the Neyman-Pearson (N-P) test for which fiza is fixed to the value. If we define the

conditional density ofx given thatHo is true a®,, (41|H,), thenP, = a may be rewritten

as [41]
P = jzl Pane (Y IHo)dy = [ Py, [A(Y) [ HoldA (11.19)

The test is called most powerful of lewelf its probability of rejectindHo is a.

Il. 3 Automatic CFAR detection

In practical radar signal detection systems, th@blem is to automatically detect a
target in thermal noise plus clutter [4, 41]. Thpdt signal at the radar receiver, when a target
is present, is an attenuated randomly phase-shitesion of the transmitted pulse in noise. A
typical radar processor for a single-range cell stimK samples of the matched filter output
and compares the sum to a fixed threshold, as showaigure 1l. 2. In this case, a small

increase in noise power causeskhg to increase intolerably.
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Figurell. 2: Conventional radar detector with fixed threshold.

The role of the CFAR circuitry is therefore to detene the power threshold which
any return can be considered to probably origifrate a target. If this threshold is too low,
then more targets will be detected at the expetis@opeased numbers of false alarms.
Conversely, if the threshold is too high, then feteegets will be detected, but the number of
false alarms will also be low [4, 41]. In most radi@tectors, the threshold is set in order to
achieve a requiredr+ (or equivalently, false alarm rate or time betwésse alarms). If the
background against which targets are to be detastednstant with time and space, then a
fixed threshold level can be chosen that providsgexified Pra, governed by the PDF of the
noise, which is usually assumed to be Gaussian. Ahas then a function of the SNR of the
target return. However, in most fielded systemsyamted clutter and interference sources
mean that the noise level changes both spatialty tamporally. In this case, a changing
threshold can be used, where the threshold levalised and lowered to maintain a constant
Pea. This is known as CFAR detection. Hence, whennthise variance is not known, and in
order to regulate th®rs, numerous CFAR procedures have been developebeiropen
literature in order to adaptively select a thredhielvel by taking a rigorous account of the
statistics of the background in which targets arebé detected. In most simple CFAR
detection schemes, the threshold level is caladlbieestimating the level of the noise floor
around the CUT. This can be found by taking a blofckells around the CUT and calculating
the average power level. On the other hand, soweedures calculate separate averages for
the cells to the left and right of the CUT, andnthise the greatest-of or smallest-of these two
power levels to define the local power level. Othetated approaches estimate the
background level after ordering the samples in Wiedow. These are referred to as
cell-averaging CFAR (CA-CFAR), greatest-of CFAR (@PAR), smallest-of CFAR
(SO-CFAR), order-statistcs CFAR  (OS-CFAR), cendamean-level CFAR
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(CMLD-CFAR),...etc. In the following, we give the deption of some of these CFAR
algorithms.

There are three main approaches to the CFAR @mubkhe adaptive threshold
processor, the nonparametric processor, and thiénean receiver approach. The adaptive
threshold processor is the one most commonly usechuse it provides the lowest CFAR
loss when the actual environment closely matcheslésign environment. Of the hundreds of
papers published in this field, we shall mentiotyanfew to give a sketch of the advance of
this rich field up to the actual interest when gsimgh-resolution radars. A real environment
in which a radar operates cannot be described l®ngle clutter model. We refer to
homogeneous clutter in situations where the outpfitthe range cells are iid. In a non
homogeneous background, the adaptive thresholehgest seriously affected, resulting in a

degradation of the performance [4, 26, 42, 43].

(i) CA-CFAR detector: Finn and Johnson [26] proposed the use of a raferehnannel, from
which an estimate of the noise environment can lifaimed, and upon which the decision
threshold is adapted. The radar uses the rangestetiounding the CUT as reference cells, as
shown in Figure Il. 3. The detector proposed in] [B6the CA-CFAR, where the adaptive
M
threshold is obtained from the arithmetic meanher um of the reference cell®,= ZXi :
i=1
For a homogeneous background noise, and iid refereglls outputs, the arithmetic is the
MLE. This means that the detection threshold isghesl to adapt changes in the environment
(Gaussian clutter). If we consider a Swerling Ttihating target, the PDF of received signal
for each hypothesidy andH; is given by

Ho : px(XIHo):%eXF(_gj

1 X
H,: XH,)=——exg -
v P (XH) = F[ b+aj

wherea and b =207 represent the power of signal and the power oftesiuespectively.

(11.20)

Conventionally,P-, andP, are computed using the following integrals:
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R.x = [ Pr(CUT > agH, )py(d Mg
0

oo (1.20)
P, = j Pr(CUT > aqH, )p,(q g
0
where a is a scale factogndPr(.) denotes probability with
Pr(CUT > agH, )= exp{-%) (1.21)
and
F%CUT>aqHJ:ex{—Baf%N§J (1.22)

Intersité

[
T

I
MRS
CUT
X
— [ []] HEEN
X Xmp XMIo+1 Xm M1 ..
__________ Decisior
v < —»
M Ho
Q=2.%
i1 A
Q
o— T=0aQ T
(b)

Figurell. 3: CA-CFAR detector for homogeneous background
(a) Homogeneous clutter situation wad” =1and SNR= 5dB
(b) Arithmetic mean for ML estimate of clutter pawe
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whereSNR=a/b The PDF ofQ is found to be gamma distributed

N =$(_M)em(—%j (11.23)
Substituting (11.21), (11.22) and (11.23) into (R0), (11.20) becomes
P = li+a)”
Py =(1+ a J_M (14
1+ SNR

It is worth noting that thé®rs is independent of the clutter powby which means that
the CA-CFAR algorithm has a CFAR property in preseaf Gaussian clutter.

(i) GO-CFAR detector: In the case of clutter edge situations where tigege transition in
the clutter power distribution, Hansen and Sawyé#d proposed the greatest-of-selection
logic in CA-CFAR detector (GO-CFAR) to control tierease in th&€z4 . In the GO-CFAR
detector, the estimate of the noise level in th&d @Jselected to be the maximumlbandyV,

Q = max {, V), whereU andV are the sums of the outputs of the leading andatpging
cells, respectively (see Figures Il. 4 (a) and (b)). The clutter-to-clutter rati@;CR= 5dB is
taken. The random variablelsandV have analog PDFs given by

qM/2—l q
Py (@) = p,(a) —mexr{—gj (1.25)
”C:Jutter”ﬂi 77777 .
N
7 l ’!
IR AR
A

Portée

(@)
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Figurell. 4: GO-CFAR detector for hyterogeneous clutter
(a) clutter edge situation fav? =1, CCR= 5dB andSNR= 10dB)
(b) ML estimation ofQ from the maximum of leading and lagging windows

The Cumulative Distributed Function (CDF) of U oiis/given by

F%@)=PW®=£bMWXM/a X%-%%q (11.26)

From [4], the PDF o) is

M/ 2-1

29

Pl ) =+0572)

exp(—q/b){l exp(- q/b)Mil(qli'b)k} (1.27)

Substituting (11.27) into (11.20), thBea and thePp have the following forms

M /2-1 1 —
Pa=21+a)y™'?-2> (M/Z.“ 1)(2+a)““”’2+”
i=0 |

-M /2 M/ 2-1 M/2+|_1 —(M/2+i)
PD:2(1+ a j -2 _ (2+ a j
1+ SNR e i 1+ SNR

[ il
where() =— _I' — , 1S the binomial combination.
i) QM-

(11.28)

(iii) SO-CFAR detector: If one or more interfering targets are present,38/¢45] has shown

that the GO-CFAR detector performs poorly, and sgtgd the use of the smallest-of-
selection logic in cell averaging constant falss4al rate detector (SO-CFAR). In the
SO-CFAR detector, the minimum &f andV, Q = min U, V) , is selected to represent the
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noise level estimate in the cell under test. TheCG3FAR detector was first proposed by Trunk
[46] while studying the target resolution of som@aptive threshold detectors. We can
intuitively see that the SO-CFAR detector perfommedl for the case shown in Figure 1. 5 (a).
From [4], the PDF of Q is

Po (@) = Py (1= PR, (@)]+ py (@2~ R, ()]
= p, (@) + py (@) =[Py (@R, (@) + py (@R, ()] (1.29)
= py (@) + py (@) = P3°(a)

Substituting (1.60) into (1.63), (1.63) will be

2qM /2-1 M /2—1( q)k
= exp2
Pe(q) N/ 2) p( 0|))er:0 o 80)
Replacing (11.30) into (11.20), thBes and thePp are
MIZL (M 2+ -1 .
PFA=2(2+a)'M’22( ! J(zw)"
= (11.31)

MIiZmiz (M [ 2+i -1 B
PD=2(2+ a j 3 _ (2+ a j
1+SNR < i 1+SNR

(iv) OS-CFAR detector: By studying the homogeneity of the reference cellfias been
shown that targets can be detected by the SO-CF&Bctbr, especially in the case where
secondary targets are in a single window and aremsent in the other window [47, 48]. If
interfering targets are present in both the leadimg) lagging windows, neither the GO-CFAR
detector nor the SO-CFAR detector solves the proldéthe capture effect. To remedy this
limitation, [48] introduced the OS-CFAR detectdrat is, the OS-CFAR as shown in Figure
Il. 6 with interfering-to-target ratiodCR = 5dB. Here, the samples of the reference window
are sorted in ascending order and one ordered sdmpleen them is chosen to represent the
noise level estimate in the CUT. TkE ordered sample valug (k), selected as the test
statisticQ, is multiplied by the scale factar to achieve the desiret:., and then a decision

is made by comparing the output of BEJT with the adaptive threshold, = aQ . The value

suggested in [48] to represent a good backgrouhich&e for typical radar applications in
Gaussian noise &= 3N / 4. The calculations dPp andPra require the formulation of the

PDF of thek" ranked sampleQ = X, .
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Figurell.5: SO-CFAR detector for hyterogeneous clutter
(a) clutter edge situation fato® =1, CCR= 5dB and SNR= 10dB)
(b) ML estimation ofQ from the minimum of leading and lagging windows

In the case of Gaussian homogeneous backgrousdhbwn in [4, 48] that

JOR I COREEORED

- - (1.32)
e g) A
b\ k b b
Substituting (1.32) into (11.20), expressions Bfa andPp are
o0 _E M —k+1 B _ﬂ k-1
I{jt){bj (”X‘{bjjdq
. - (1.33)
T e ol odh) (o3 o
! (1+SNR) b b
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Figurell. 6: OS-CFAR detector used for interfering targets sidues

(a)Situation of two secondary targe¢t? =1, ICR = 5dB andSNR= 10dB).
(b) Estimation of clutter level from a selectedked cell

If we sety =q/b, (11.34) is simplified to

M _
Pea = k(k J [exp(-(a +M +1-k )y)(1-exp(-y)f*dg
° (1.34)

e
P, = k(k ] J exXp(-( et M +1-k )y)(1-exp(y)) dg

Finally, solutions of (11.34) give
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b = M T(M-k+a+l)

AO(M =K) T(M +a+1)

_ M!' T(M-k+1+al/(1+SNR))
(M -k) T(M +1+a/(1+SNR)

(11.35)

I1.4 Conclusion

In this chapter, we presented some basic conceptheo radar system. Radar
components are described firstly, as well as issification, radar cross-section and radar
equation. As the modeling of radar clutter playsiraportant role in CFAR detection, we
presented some statistical models for high resmiutadars. It is shown that radar echoes can
be scattered from sea or land surface with diffeggazing angles. Targets models are also
given using Rayleigh and other distributions. Diecisheory is introduced by giving three
decision rules. Finally, some CFAR detectors usechomogeneous and heterogeneous
Gaussian clutter are also described where matheshatages for computing probabilities of

false alarm and detection are given.
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Exercises 2
Exercise 1
In the digital communication system, we considerodiage source with a constant
output of valuem under the hypothesld; and an output under the hypothddisof value 0.

At reception, the received signal is contaminated lwhite Gaussian noise, with zero mean

and a variance” . The probability density (fdp) function of the seiis given by:

1 q’
fo (Q) = o110 ex{_ 202 j Source (Emission) Reception

m; Y=m+N; H,;

kb

N
(Noise due to conditions of the
communication channel)

a- Write the density functions for each hypothesis.
b- Formulate the likelihood ratio and identify thec#on regions using ‘Bayes’ criterion.

c- Give the false alarm probability and the detecpawbability expressions.

Exercise 2:
We come back to the exercise 1 whose the priobaiiitiesp, andp; are unknown.
a- Apply the ‘minimax’ criterion to calculate the prallity of minimum error,
p(&) = poP:s + PR, With Cop=C11=0, Cp1=Ci0=1.
Exercise 3:
For the detection of radar targets embedded in tamospheric noise, the density

functions of the received echo for each hypothasggiven by:
1 y?

f Yy/IH,)=——exg ———

Y/HO( 0) /—27_[0_0 F{ ZUSJ

(yiH)=—texg- 2
f IH,)= exp -
e o, ‘{ZO—J

whereog; > o;

a- Give the likelihood ratio test.

b- If g? =2 and o’ =1, calculate the probability of detection if theskalalarm probability is

fixed at 0.1.
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