Tutorial #2

<u>Ex#1</u> :

We want to design a digital low-pass IIR filter from a Butterworth analog filter using the bilinear transformation method. The analog filter specifications are as follows: Sampling frequency

- Pass-band attenuation of 3dB at Ω_p where $f_e = 25$ kHz and $f_c = 2.25$ kHz.
- Stop-band attenuation of 10dB at $\Omega_s = 0.45 \pi$.

NB: f_e is the sampling frequency and f_c is the cutoff frequency.

<u>Ex#2</u> :

We wish to design a digital low-pass IIR filter from a Butterworth analog filter using the impulse invariance method. The analog filter specifications are given below:

- Pass-band attenuation of 1dB at $\Omega_p = 0.25 \pi$.
- Stop-band attenuation of 10dB at $\Omega_s = 0.45 \pi$.

<u>Ex#3 :</u>

We want to design a digital low-pass filter from an analog Chebyshev filter using the method based on impulse invariance. The analog filter specifications are as follows:

- Pass-band attenuation of 3dB at $\Omega_p = 0.2 \pi$.
- Stop-band attenuation of 10dB at $\Omega_s = 0.4 \pi$.

Calculate N, Ω_c and the poles where the actual part is negative as well as the transfer function of the analog and digital filter assuming that the bandwidth specifications are met.

<u>Ex#4</u> :

We want to design a digital low-pass filter from an analog Chebyshev filter using the method based on bilinear transformation. The analog filter specifications are as follows:

- Pass-band attenuation of 1dB at $\Omega_p = 0.25 \pi$.
- Stop-band attenuation of 10dB at $\Omega_s = 0.45 \pi$.