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2. 1introduction

A digital filter is a discrete linear system (DLB)yariant in time and modifying the
time and frequency representation of the inputagrAs examples, we have:

- Noise reduction for radio, audio and images aligjfrom sensors.

- Modification of certain frequency regions in audr image signal.

- Limitation to a predefined frequency band.

- Use in telephony for example the DTMF code (&ilgi one Multiple Frequency).

The realization of a discrete linear filter invatian time requires three steps:

- Specifications of desired system properties (fezgy band gaits).

- Approximation of these specifications using asaduliscrete systerti(2).

- Implementation of this system using finite aritttra, y(n) =....
The problem is therefore to determine an apprapsat of specifications on the digital filter.
In the case of a low-pass filter, the specificatidake the form of a tolerance diagram as
shown inFig. 2. 1 The dotted represents the frequency respondeedyistem (filter) which
satisfies the following predefined specificatighk:

- Pass-band :1- ¢, <‘H (ei“’)‘ <1+9, |d<w,

- Stop-band : ‘H (e"")‘ <9, w<ld<m
- Cut-off frequency of the pass-band és;

- Cut-off frequency of the stop-band is),

The next step is therefore to find a discrete lirgstem whose response corresponds to the

predefined tolerance. IIR filter design will be saered in the following section.
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Fig. 2. 1 Tolerance limits for the approximation of low-padeal filter.



2. 2 Representation of IR discretefilters

The traditional approach is to use the transforomatf an analog filter into a digital
filter. This is due to:

- The design of analog filters includes very adwahtechniques.

- Many analog design methods have simple formulas.

- In many applications, it is interesting to usgi@il filters to simulate analog filters.
Consequently, the general TF of the linear anaystes is given by.
M
205 v

H,(9) =2
S X
k=0

2.1)

where x, (t )is the input signalX, (s )ts ‘Laplace’ transform (LT),y,(t )s the output signal

andY,(s)its LT.

Input signal with tempord{ Xa )] Ya (t) Filtered output signal with
and frequency characteristics | h,(t) — modified temporal
and frequency characteristi

So, h,(t) is the impulsive response of the system (anallbgr)i Alternatively, an analog
system beingH,(s )as a transfer function can be described by thieviolg differential
equation1]:

S 0V _ gy A0

k=0 d“t k=0 d“t
(2.2) is the inverse ‘Laplace’ transform (ILT) of.{). The rational function of the

(2.2)

corresponding system (2.2) for a digital filter hias form

> b.z" Y@

H(2) = <2 = TLI 2.3
(2) $urs X0 (TLY (2.3)

The IZT of (2.3) is given by
ZN: a y(n-k) = ibk x(n=k) (TZl) (2.4)



The input and the output are correlated by thevalhg convolution product

y(n) = ¥ x(K)h(n-K) (2.5)

k=-—00

When converting an analog system into a digitatesys one must obtaiH(z) or h(n) from

the digital filter. Then, we have to preserve tregitiency response. In this transformation, the
essential properties of the frequency response Imeistetained. Also, the stability of the
analog filter ensures the stability of the digifitter. Depending on the form of the transfer
function of the IIR system, four classes of itsusture can be considered: direct form,
cascaded form, parallel form and transposed foror. éxample, the direct structure is
considered if the rational function of the IIR ®ystis written in the following form:

ibkz’k
YD) . = (2.6a)

H = =
@=30 1Y ar

The input and the output of the system are relayed
M N
y(n) =Y bx(n-k) - a,y(n-k) (2)6b
k=0 k=1

The differential equation can be expressed bythetsire ofFig. 2. 2
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Fig. 2. 2 Structure of IR filter given by (2.6)L]



2.3 Design of discretel IR filters

In this section, three different methods for theige of Rl filters are presented.
2. 3. 1Impulseinvariance method

This method selects the digital filter pulse resg®as equal samples spaced from the
analog filter pulse responséyn) =h,(nT , WhereT is the sampling period. It has been
shown that the ZT dfi(n) is related to LT by the following equatifhy:

1& 27T
H(@) e =7 2. Ha(8+ J?kj 2.7)

k=—00

The frequency response (FR) of the digital filerlso related to the FR of the analog filter
by (Shannon’s theorem)

i 1 L@ 2T
Hlel?)== H —+ji—k 2.8

( ) T k:z—oo a(J T J T j (2.8)
From the sampling theorem, we have

i0) = T
H.(jQ) =0, |Q|2_I_

Hee)= 2 i2), lajsr

Unfortunately, there is no analog low-pass filteattis limited. This phenomenon is called

(2.9)

“Aliasing” or “overlap”, Fig. 2.3
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Fig. 2.3 Graphical representation of the overlap effechmtechnique
of design by impulsive invariance.



Taking the TF from the following analog filter:

= i (2.10)

The corresponding impulse responses are

h,(t) = X Ae™u(t)

" " ) (2.11)
h(n) = h, (nT) = ¥ Ae*u(m) =3 A (e u(n)
k=1 k=1
Calculating the ZT of the"3equation of (2.11), we obtain
N
H(z):Z;1 T (2.12)

By identification of (2.12) and (2.10), we noti¢et the pole in the S plane corresponds to the

pole z, =" in the Z plane.

Example 2. 1:
We want to usehe previous design approach in order to obtainsarete filter from the
, s+a
analog filter,H  (S) = —————
J ®) (s+a)® +b”

Solution:

This analog filter is written as a sum of partiadtions as
H.() = % +%

So, the poles calculated to be

s = atjb ands,=a-jb

A= Lig(s- s)H.(s) =05

A, =lim(s=s;)H,(s) = 05

1/2 N 1/2
st+a+jb s+a-jb

H.(s) =

Applying (2.12), we calculate the transfer functafrthe digital filter as follows

1/2 12 _ 1- (e cosoT )z
g g ibT 51 + 1-g T ehT 71 - (1_e—aTe ibT )(1 e T 7~ )

H(Z)‘1



H(z) has two zeros at= 0 andz = e cosbT . The corresponding FR is shownFiy. 2.4
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Fig. 2. 4 Frequency response of analog systenT'bo@ler.

2. 3. 2 Differential equation method
Another approach for digital filter design is basedthe differential equation solution

which uses an approximation of the derivative2a?) by finite differencegl].

dy, (t)

oD poym] =AY (2.1

T

t=nT
where y(n) =y, (nT )

The approximations of higher-order derivatives alogained by repeating the application of
(2.13).

d*y, (1)

dt* ~ 0%[y(m)] =09 [0¢dy(m)] (2.14)

Tt dtet

_Q(MJ

t=nT t=nT

Using O [y(n)] = y(n) and (2.13), (2.2) becomes
N dk at M
ch dyk (t) :de
t

k=0

dkdx;t(t) ~ ickm(k)[y(n)] :i d, 0% [x(n)] (2.15)

Where y(n) =y, (nT )and x(n) = x, (nT ).



Z[00y] = (l}z_ ]Y(z) Z[n [xm] = (l}z_ jx @
for .\« and N’
Z[D‘”[y(n)]]{l}z jv(z) Z[D“)[x(n)]]{l}z j X(2)
we obtain from the ZT of (2.15)
v (1-71)
i
H(2) = : (2.16)

M N
Comparing (2.16) and (2.H),,(s) = > d,s" /D c,s, we observe that the digital transfer
k=0

k=0
function can be obtained directly from the analognsfer function by replacing only the

_ Z_l

. 1
variables =

2. 3. 3 Bilinear transformation method
We have already seen that we can approximate theatiees by differences. An
alternative procedure is based on the integratfahe differential equation and then we use

an approximation by the integral. For example, vamsader the following differential

equation1]:
dy. (t
6 %201 cy, 0 =dx 122)
The LT of (2.17a) has the fortd,, (s) = d,
C,S+C,

t
We can writey, (t )as an integral of/, (t) as, y, (t) = [y, (t)dt +y,(t,) .

to

nT
In particular, ift =nT andt, =(n-1)T, y,(nT) = [y, (r)d7r +y,((n-DT). If the integral

(n-1T
is approximated by a trapezoidal law, we have
Tr . ‘
Ya(nT) = Y, (n=DT) + [y (0T) + ¥, (n-2)T)) (2.17b)
Based on (2.17a), we have
! —_ CO dO
Ya(nT) ==—y,(nT) +—=x,(nT) 18)
G G



Replacing (2.18) into (2.17b), we obtain

T| c d
y(n)-y(n-1 = —{——°(y(n) +y(n=1)+—2(x(n) + x(n-1) (2.19)
2 ¢ C,
Taking the ZT of (2.19), we find
H(2) = Y@ _ d°_1 -_% (2.20)
X(2) 21-z C,S+C,
- + CO
T1+2
From (2.20), it is clear th&i(2) is obtained fronHy(s) by
21-z"
s=— 2.21
T1+2z% (2.21)
H(2) = H,(9)| 212" (2.22)
T1+z7t
and
ol (T/2)s (2.23)
1-(T/2)s

2. 4 Design examples: analog-digital transformation
In this section, we will consider two templates tioe design of digital low-pass filters
characterized by desired specifications; the Bwiteth analog filter and the Chebyshev

analog filter.

2. 4. 1 Butterworth analog filter

The transfer function (squared module) of the Buiteth filter that represents a
template of an analog low-pass filter is givenby2]
1

. 2N
1+ ﬁ
Q.

For different values of, we will show that adl increases, the curve becomes sharper (closer

H.(jQ) = 12)

1

hereH,(jQ) =——F—F—.
whereH ,(jQ) 1+j(Q/QC)N

to the response of an ideal low-pass filter). Thiaracteristic is shown ifig. 2.5
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Fig. 2.5 Magnitude of analog Butterworth filter in termsNof

From (2.24) and withrs = jQ , we can write

Ha@H. (9 =17 j(s/le )" '1—j(s/1jQ )"
. ¢ ¢ (2.25)
1+ (sl jQ,)™
1 o
From (2.25), the poles ars; = (-1)2V (jQ,) . Taking Euler transformation, i.ex,1=¢e/"1?"
and j =e'”? the roots of denominator (poles) of (2.25) become
j(N+1+2k)77
s =Q.e N | avedk=0,1, ..., N-1 (2.26)

So, there areR poles also spaced in angle @f N on a circle of radiusQ)_ in the S plane.

The poles with negative real part ensuring theiktyabf the filter are given by the following

explicit expression (analyti¢?]:

_ T 2k+1 . (o 2k+1
S, =Q.cog -+ i+ Q. sin —+ T
2 2N 2 2N

, 0sksN-1 (2.27)
[ 2k+1 . 2k +1
=-Q.sin |+ ]Q_ co m
2N 2N

After calculating the anglez/ N we can also directly determine the system poleshen

circle in the following S-plane (graphical methédl) 2]:

10




After the determination of poles, H,(Q) is written in such a way thaH,(jQ)= 1

for Q =0.

N-1 _ N

H,(s) = H > - 2 (2.28)

4SS (s—5)(s~8)...
Example 2. 2:
A Butterworth digital low-pass filter can be destgihwith the following specifications:

- Attenuation in the pass-band: at 1dB we h&ve Q , = 0.277.
- Attenuation in the stop-band: at 15dB we h&e Q = 037
From the above specifications, we can write
H.(iQ)
A
. (0.271,-1dB)
{ZOIogm(Ha(JQ)) >-1
20l0g,,(H, (jQ)) < -15 1—=== ' (Q, -3dB)
S F (0.371 -15dB)
0 Q, Q. Q 0
(i) I'mpulse invariance method:
Based on the modulél, (jQ)| and specifications above, it is easy to write
02 2N
1+(—' ”j =10
QC
(2.29)

0 3 2N
1+ (_”j =10
Q

C

The solution of these equations leadsNio= 5.8858 andQ_ =0.7047. SinceN must be
integer, we round up this valubl = 6. The specifications of the two bands are net m
together becaudd = 6. To determin@ _, the 1st equation of (2.29) is used for this appho

In this case,Q, = 0.7032 where the pass-band specifications are amétthe stop-band
specifications are exceeded. To determine the puflése Butterworth filter on a circle of
radiusQ) ., the points on the radius circle must first benidfeed, also spaced at an angle with
spacingni/ N so that the points are symmetrically located neato the imaginary axis. In
this case, there are 3 pairs of poles marked id inalhe left part of the S-plangi¢. 2. 9.

s~ -0.1820t j0.6792

So.4= -0.4972+ j0.4972
Ss.6= -0.6792+ j0.1820

11
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Fig. 2. 6 Location of N poles in the S- plari\(is even).

Hence
6
H.(9) = e
(s-5)(5~5,)(5~S)(s—S,)(s~8)(s~ %) (2.30)
_ 0.12093
(s2 +0.3640s + 0.4943(32 +0.9945 + 0.4945)(52 +1.358% + 0.4945

If we expressHa(s) by a sum of fractions i.e.Ha(S)= > A and we utilize the ZT, i.e.,
k=1S— S,

H(Z) =3 btai
Z)= ) ——, We optain
ml—exT 2t

H(2) = 0.2871-0.4466z" b 2.1428-1.1454z7" N 1.8558- 0.6304z*
1-1.297121+0.694¢z22 1-1.0691z1+0.369¢z2> 1-0.9972z'+0.257(z
(2.31)

(i) Bilinear transformation method :
In this procedure, we must utilize firstly the béar transformation as

_21-¢e® 2 sinwl/2) _2

s=jQ=—"—"_—=—j——~=—jtan(w/2)
Tl+e’” T cosw/2) T

With T = 1, we write

20log,,|H ,(j2tan(0.277/2)| = -1
glO| a(J- ( )| (232)
20l0g,,|H, (j2tan(0.377/2) < -15

Q, =j2tan(0277/2) andQ = j2tan(0.377 /2)

Reformulating (2.32), we find

12



2N
1+(2tar£12(0.177)j _ 10

c

N 2.33)
1+[2tan(o.15n)j 10
QC
Solving (2.33), we get
15 01 _
_1 logla0" -/a0™ -] _ 53046 (2.34)

2 Iog[tan(O.lSn) / tan(O.ln)]

We takeN = 6. Applying the 2nd equation of (2.33) to fifd, = 0. 662. This choice is

justified by this approach in order to ensure ghecdications of the digital filter. In this case,

the bandwidth specifications will be exceeded witilese of the stopping band are met. There
are 12 poles ofHa(s)|2Which are distributed evenly in angle on a radiwsle 0.7662 (Fig.

2.6). The THH4(s) having poles with negative real parts is

0.20238
H.(8) = 5 5 (2.35)
(s® +0.396s+0.587)(s” +1.083+ 0.587)(s” +1.480%+ 0.587))
. 21-7" . . e
Taking s= T1r 1 and withT = 1, the equivalent ZT that corresponds the disdiltér is:
z
-1\ 6
H(z) = 0.000737¢L+z7)

 (1-12686z7 +0.705%27%)(1-1.01062" + 0.3583?)(1- 0.9044z* + 0.2155?)
(2.36)

M N
The recurrence functioy(n) = Zakx(n— K) —Zbk y(n—K) is requested to execute the filter
k=0 k=1

lIR by a computer. This recursive algorithm is ahéa by the IZT of (2.36).

2. 4. 2 Chebyshev analog filter

In Butterworth filters, the characteristics in thass-band and the stop-band have a
monotone nature. Consequently, if the filter speatfons are in terms of maximum pass-
band approximation error, the specifications areeeded toward the low-frequency end of
the pass-band. A more efficient approach, whichallgueads to a lower order filter, is to
distribute the accuracy of the approximation umiftyr over the pass-band or the stp-band or
both. The Chebyshev filter type 1 class has theenty that the magnitude of the frequency

response is equiripple on the pass-band and mainatothe stop-banfll, 2].

13
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Fig. 2. 7 Approximation with a Chebyshev type 1 filter ( = &)

The analytical form of the squared magnitude i®gilay[1, 2]

L2 1
H.(9) 1+ eV2(Q1Q,) 237)

whereV\(X) is the Chebyshev polynomial of ordér
V,, (X) = cos(N cos*(x)) (2.38)

For example, ifN = 0, Vy(X) = 1, if N = 1, V, (X) =cos(cos'(x)) =x, if N = 2,
V, (X) =cos@cos™(x)) =2x* -1. From equation (2.38) which defines the Chebyshev
polynomials, it is clear that a recurrence formcdan be obtained in whicky.1(X) can be
obtained fromVy(X) andVy.1(x). Hence

Vi (X) = 22XV () =V 4 (X) -39)
If 0<x<1, equation (2.38) indicates thef (x) varies between 0 and 1.%> , tos™(x) is
imaginary andvy(x) behaves like a hyperbolic cosine and thereforzedses monotonously.
From (2.37),|Ha(jQ)|2 fluctuates between 1 add(1+&” if)0<Q/Q_ <1. To characterize
the filter, three parameters must be determirgedf2, andN. In a typical designg is given
by the ripple (fluctuation) of the bandwidtk, by the desired cut-off frequency, tNeorder

is then selected in such a way that the bandwidtstap specifications are met. Chebyshev
type 1 low-pass filter properties are.

For 0<Q < Q_ and according to the properties of the Chebygloéynomial, we have

1+1g2 < ‘Ha(ejw)‘z =1

14



2- From the above characteristics, we have

H, ) :{

1/(1+£%), N even
1 N odd

3- For Q>Q_, the response has a monotonous and decreasinge néde to the

monotonous behavior &fy(x) for|x > 1.

It was shown if1] that the poles of the Chebyshev filter extend @reelliptical of the S-
plane. According to Fig. 2.8, the ellipse is dedir®/ two circles corresponding to the major

and minor axes. It was found that the rays of thesses are obtained accordingstp Q.

andN.
2 With a=et+1+67

To determine the poles of the Chebyshev filter loa ellipse (se€&ig. 2. §, one must first
identify the points on the minor and major circédso spaced at an angle spagéN so that

the points are symmetrically located relative ® ithhaginary axis.

Im
S-Plan
S, =—aQ_sin(r7/6) £ jbQ  cos(r/6)
s, = -aQ,
» Re
forN> 3

S, =—aQ_sin(7r/2N) + jbQ  cos(r/2N)
S;, = —aQ_sin@rr/2N) = jbQ cos@rr/2N)

...etc

Fig. 2. 8 Location of Chebyshev filter poles of ordér 3

A point never falls on the imaginary axis and faltsthe real axis iN is odd and never N is
even. After this calculation, it is well confirmetat the poles of th&l-order filter can be

obtained by the following general expressj2h

15



S, = —chin)—(%sinh*%]sin(%j+ chcos%%sinh’léjco{%j (2.40)
O<ks<N-1.

The following identities are useful for the caldida of the inverse functions coshand
sinhi*. Hence sinh‘l(x)=ln(x+\/x2—+1) and cosh‘l(x):ln(x+\/x2——1). The Chebyshev
analog filter is given in the following fori2]

1 N-1
V1+€? I:! S5

N-1 __
> N odd
ds-s

1
Q,/2.)
(

, Neven

H.(9) = (2.41)

- To satisfy the condition

> (1+0.)% , we chooseQ_ =Q
L+ ey 1+) <=
2

1
+£2V2(Q

< 0?2 , we choose

- To satisfy the condition
Y 1 Q)"

S

L-5,)2-1

-2

Q
V, (1/k) =coshN cosh*(1/k) =1/d , with d = and k = Q—p

S S

cosh*(/d)

The previous equality gived\ >
P quality givesy cosh™ (1/k)

Exemple. 2. 3:
To illustrate the design by the Chebyshev templatetake the same example abgije

(i) Impulse invariance approach:

cos(N cos™(Q)), Q<1
Based on the Chebyshev polynomy, we whitg(Q) =

coshNcosh*(Q)), [Q>1

For A, = 1dB andAs= 15dB, we have

20log,,(H, (jQ)) = -A, = -1
20l0g,,(H,(jQ))< -A =-15

(2.42)
Thus

{g cosz(N cos’ (1))=10' -1 (2.43)

£? cosit (N cosh*(Q,/Q p)) =10 -1

ForQ=Q,=Q_,cos(Ncos' (@) =cos’(N.0)=1= &> =10""> -1 = §, = £ = 0.508847

16



01A, _
cosf?(N cosh™(Q,/Q p)):igTAp—i = cosF(N cosh*(Q,/Q p)) =

By taking the coshon both sides, we get

cosh‘l(\/ (0%~ —1) /(10" —1))

=3.19
cosh™(Q,/Q,)

N =

So we takeN = 4. We assume that the bandwidth specificatioasreet.

Q, = 02/7= 0628318

a=4.1702

a=0.3646

b=1.0644
£ =0.508841

The Chebyshev filter parameters arQ . = 0.277=0.6283
N=4

They are used for core business calculatiang = 0, ...,N-1. Hence
S01= -0.0877+ j0.6179

S3=-0.2117+ j0.2559

The corresponding TF is

0.038286
s? +0.423%+0.1103(s” + 0.1753% + 0.3894)

Ha(s) = (

The TF of the IIR discrete filter is finally obtad as
_0.08327+0.023%" 0.08327+ 0.0246z7*
H(2) +

10MA -1

1-1565627 +0.654¢z27  1-1.493/z7 +0.839z22

(i) Bilinear transformation approach:

In this case, the specifications on the analogrfdire

i2ta r‘( 0.277}
2

i2ta r‘( 0.3”)
2

20log,, >2-1

20log,, <-15

Thus, Q, = 2tan(0.277/2) = 0. 3142 ¢ = 0.50885andN=4. The poles are

S,1=-0.0188+ 0.1280i
$,3=-0.0453+ 0.1280i

The TF becomes

(2.44)

(2.45)

(2.46)

(2.47)

17



0.04381

H,(s) = 2.48
() (s? +0.18145 + 0.4166|s? + 0.43785+ 0.1180) (2.49)
_ 1
Replacing,s = 21+ Z_l , the transfer function of the digital filter i;élly obtained by:
2
-1\ 4
H(2) 0.0018361+z7) (2.49)

- (1-1.4996z7" +0.848227%)(1-1.5548& " + 0.6493 %)
M N

The recurrence functioy(n) = z ax(n—-k)- z b, y(n—k)y(n) is required to operate the
k=0 k=1

underling filter given by (2.49).

2. 5 Frequency transformations of low-pass|IR filters

The examples of the previous IIR numerical filtare made using methods based on
impulse invariance and bilinear transformation. Senélters are inspired from analog filters
i.e, Butterworth and Chebyshev with low-pass fremyeselection properties. The answers of
the most widely used ideal filters are showifrin. 2. 9

|H(e‘”)| A
1
Low-pas:
|H(ejw)| A C()p 7l
1
High-pas:
| >,
. 7 7
|H(e‘”)| A P
1
Pas-banc
HE)| 4 % w, 7
1
Stog-banc
' >
w, W, 7N &

Fig. 2. 9 Possible frequency responses of ideal filters

18



Using rational transformation techniques, Filtenewn in Fig. 2. 9 can be designed from

available digital low-pass filter with a cut-off eljuency,. Table 2.1 shows the

corresponding transformatiofiy

Table. 2.1 Transformation from the prototype of IIR low-pagtef with a cut-off frequencys?p ,
toward other filters with desired cut-off frequeeety, , & and w, .

Filtretype Transformation Associated design formulas
Low-pass o 2'-a a =sin((8, - w,)/2)/sin((8, +w,)/2)
1-az™
High-pass L Z'+a a =-cod(w, +6,)/2)/ cod(w, - 6,)/2)
T az™t

2 20k . k-1 |a = cod(w, +@,)12)/ cod(w, - ,)12)

- zZ =-
Pass-band k—lz-z " 2ak , and

k = cot{(ew, - )/ 2)tanlg, /2)

220 . 1-K a =cod(w, +w,)12)/ cod(w, —,)12)

z
-1 _ k+1 k+1
Stop-band | Z "~ = k-1, 20k . and
z - z+1
k+1 k+1

k =tan((w, -w,)/ 2)tan@, / 2)

Example. 2. 4:
We wish to obtain a high-pass filter from the Chsdimy filter from a low-pass filter having
the following cut-off frequencyg, = 0.2/7 and discrete TH\(2) :

0.00183@1+z™")*
(1-1554&" + 0.649%?)(1-1.4996z" + 0.848227%)

H, (2) = (2.50)

If the desired cut frequency of the desired highspidter is, w, = 0.677, we get fromTable.
2.1

a = -coq (0277 + 0.677) /2)/ cod (0.677— 0.277) /2)=-0.38197

By replacing the latter intbl;(z), we find

_ + 714
H,(2) =H, (Z)| L z'-038197 = ) 0 024_qul 2) = >
? Tlossert  (L—-1.0416z27 +0.401927°)(1- 05561z + 0.764727°)

(2.51)
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2. 6 Related Matlab codes[3] :
To recognize the Matlab commands for the designiR®ffilters, we consider the

following examples:

() Butterworth filter:
The Matlab instruction ‘butter’ is used as follows

clear all;clc;

N=6;

we=0. 7032;

[b a]=butter (N, we/pi);
figure (1) ;

freqz(b, a)

axis([0 1 -30 0]);

(ii) Chebyshev filter:
The Matlab instruction ‘chebyl’ leads to compute @hebyshev typel filter.

Clear all;clc ;

N=6;

wc=0.6498;

[b2,a2] = chebyl (4,0.50885,wc/pi);
figure (3);

freqz (b2,a2);

axis([0 1 -30 0])
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Tutorial #2

Ex#1:
We want to design a digital low-pass IIR filter fnoa Butterworth analog filter using the
bilinear transformation method. The analog filieedifications are as follows:
Sampling frequency
- Pass-band attenuation of 3dB@}f wherefe= 25kHz and¢ = 2.25kHz .
- Stop-band attenuation of 10dB@t = 0.457.

NB: fe is the sampling frequency ahds the cutoff frequency.

Ex#2 :
We wish to design a digital low-pass IIR filter fmoa Butterworth analog filter using the

impulse invariance method. The analog filter speaifons are given below:

- Pass-band attenuation of 1dB§a]; =0.257.

- Stop-band attenuation of 10dB@t = 0.457.

Ex#3:
We want to design a digital low-pass filter fromamalog Chebyshev filter using the method

based on impulse invariance. The analog filter fjgpations are as follows:

- Pass-band attenuation of 3dB§aL =0.2n.
- Stop-band attenuation of 10dB@t = 0.47.

CalculateN, Q_and the poles where the actual part is negatiwveetisas the transfer function

of the analog and digital filter assuming that bla@dwidth specifications are met.

Ex#4 :
We want to design a digital low-pass filter fromamalog Chebyshev filter using the method

based on bilinear transformation. The analog fd@cifications are as follows:

- Pass-band attenuation of 1dB§aL =0.257.

- Stop-band attenuation of 10dB @t = 0.457.
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