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2. 1 Introduction 

A digital filter is a discrete linear system (DLS) invariant in time and modifying the 

time and frequency representation of the input signals. As examples, we have: 

 - Noise reduction for radio, audio and images signals from sensors. 

 - Modification of certain frequency regions in audio or image signal. 

 - Limitation to a predefined frequency band. 

 - Use in telephony for example the DTMF code (Digital Tone Multiple Frequency). 

The realization of a discrete linear filter invariant in time requires three steps: 

- Specifications of desired system properties (frequency band gaits). 

- Approximation of these specifications using a causal discrete system, H(z). 

- Implementation of this system using finite arithmetic, y(n) =…. 

The problem is therefore to determine an appropriate set of specifications on the digital filter. 

In the case of a low-pass filter, the specifications take the form of a tolerance diagram as 

shown in Fig. 2. 1. The dotted represents the frequency response of the system (filter) which 

satisfies the following predefined specifications [1] : 

- Pass-band :   11 1)(1 δδ ω +<<− jeH    pωω <  

- Stop-band :      2)( δω <jeH     πωω <<s  

- Cut-off frequency of the pass-band is: pω  

- Cut-off frequency of the stop-band is: sω  

The next step is therefore to find a discrete linear system whose response corresponds to the 

predefined tolerance. IIR filter design will be considered in the following section.  

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. 1 Tolerance limits for the approximation of low-pass ideal filter. 
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2. 2 Representation of IIR discrete filters 

The traditional approach is to use the transformation of an analog filter into a digital 

filter. This is due to: 

- The design of analog filters includes very advanced techniques. 

- Many analog design methods have simple formulas. 

- In many applications, it is interesting to use digital filters to simulate analog filters. 

Consequently, the general TF of the linear analog system is given by. 
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where )(txa is the input signal, )(sX a  its ‘Laplace’ transform (LT), )(tya  is the output signal 

and )(sYa its LT.  

 

 

 

 

 

 

So, )(tha  is the impulsive response of the system (analog filter). Alternatively, an analog 

system being )(sH a  as a transfer function can be described by the following differential 

equation [1]: 
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(2.2) is the inverse ‘Laplace’ transform (ILT) of (2.1). The rational function of the 

corresponding system (2.2) for a digital filter has the form 
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The IZT of (2.3) is given by 
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The input and the output are correlated by the following convolution product 

∑
+∞

−∞=
−=

k

knhkxny )()()(                                                          (2.5) 

When converting an analog system into a digital system, one must obtain H(z) or h(n) from 

the digital filter. Then, we have to preserve the frequency response. In this transformation, the 

essential properties of the frequency response must be retained. Also, the stability of the 

analog filter ensures the stability of the digital filter. Depending on the form of the transfer 

function of the IIR system, four classes of its structure can be considered: direct form, 

cascaded form, parallel form and transposed form. For example, the direct structure is 

considered if the rational function of the IIR system is written in the following form: 
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The input and the output of the system are related by  
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The differential equation can be expressed by the structure of Fig. 2. 2. 

 
 
 
 

 

 

 

 

 
 
 
 
 
 
 

Fig. 2. 2 Structure of IIR filter given by (2.6) [1] 
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2. 3 Design of discrete IIR filters 

In this section, three different methods for the design of RII filters are presented. 
 
2. 3. 1 Impulse invariance method 

This method selects the digital filter pulse response as equal samples spaced from the 

analog filter pulse response, )()( nThnh a= , where T is the sampling period. It has been 

shown that the ZT of h(n) is related to LT by the following equation [1]: 
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The frequency response (FR) of the digital filter is also related to the FR of the analog filter 

by (Shannon’s theorem) 
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From the sampling theorem, we have  
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Unfortunately, there is no analog low-pass filter that is limited. This phenomenon is called 

“Aliasing” or “overlap”, Fig. 2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Graphical representation of the overlap effect in the technique 
of design by impulsive invariance. 
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Taking the TF from the following analog filter: 
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The corresponding impulse responses are  
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Calculating the ZT of the 2nd equation of (2.11), we obtain 
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By identification of (2.12) and (2.10), we notice that the pole in the S plane corresponds to the 

pole Ts
k

kez = in the Z plane. 

 
Example 2. 1:  

We want to use the previous design approach in order to obtain a discrete filter from the 
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H(z) has two zeros at z = 0 and bTez aT cos−= . The corresponding FR is shown in Fig. 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 4 Frequency response of analog system of 2nd order. 

 

2. 3. 2 Differential equation method 

Another approach for digital filter design is based on the differential equation solution 

which uses an approximation of the derivatives of (2.2) by finite differences [1]. 
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The approximations of higher-order derivatives are obtained by repeating the application of 

(2.13). 
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Using [ ] )()(]0[ nyny =∇  and (2.13), (2.2) becomes 
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Where )()( nTyny a= and )()( nTxnx a= .  
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for  
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we obtain from the ZT of (2.15) 
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Comparing (2.16) and (2.1), ∑∑
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2. 3. 3 Bilinear transformation method 

We have already seen that we can approximate the derivatives by differences. An 

alternative procedure is based on the integration of the differential equation and then we use 

an approximation by the integral. For example, we consider the following differential 

equation [1]: 
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Replacing (2.18) into (2.17b), we obtain 

( ) ( )







−++−+−=−− )1()()1()(

2
)1()(

1

0

1

0 nxnx
c

d
nyny

c

cT
nyny                           (2.19) 

Taking the ZT of (2.19), we find 
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From (2.20), it is clear that H(z) is obtained from Ha(s) by  
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2. 4 Design examples : analog-digital transformation 

In this section, we will consider two templates for the design of digital low-pass filters 

characterized by desired specifications; the Butterworth analog filter and the Chebyshev 

analog filter. 

 
2. 4. 1 Butterworth analog filter 

The transfer function (squared module) of the Butterworth filter that represents a 

template of an analog low-pass filter is given by [1, 2] 
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For different values of N, we will show that as N increases, the curve becomes sharper (closer 

to the response of an ideal low-pass filter). This characteristic is shown in Fig. 2.5. 
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Fig. 2.5 Magnitude of analog Butterworth filter in terms of N 
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From (2.25), the poles are: )()1( 2
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So, there are 2N poles also spaced in angle of N/π  on a circle of radius, cΩ  in the S plane. 

The poles with negative real part ensuring the stability of the filter are given by the following 

explicit expression (analytic) [2]: 
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After calculating the angle, N/π  we can also directly determine the system poles on the 

circle in the following S-plane (graphical method) [1, 2]: 
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After the determination of poles sk, )(ΩaH  is written in such a way that 1)( =ΩjH a            

for 0=Ω . 
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Example 2. 2: 

A Butterworth digital low-pass filter can be designed with the following specifications: 

-  Attenuation in the pass-band:  at 1dB we have π2.0=Ω=Ω p . 

-  Attenuation in the stop-band: at 15dB we have π3.0=Ω=Ω s  

From the above specifications, we can write 
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(i) Impulse invariance method:  

Based on the module )( ΩjH a  and specifications above, it is easy to write 
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The solution of these equations leads to N = 5.8858 and =Ωc 0.7047. Since N must be 

integer, we round up this value, N = 6. The specifications of the two bands are not met 

together because N = 6. To determine cΩ , the 1st equation of (2.29) is used for this approach. 

In this case, =Ωc  0.7032 where the pass-band specifications are met and the stop-band 

specifications are exceeded. To determine the poles of the Butterworth filter on a circle of 

radius cΩ , the points on the radius circle must first be identified, also spaced at an angle with 

spacing N/π  so that the points are symmetrically located relative to the imaginary axis. In 

this case, there are 3 pairs of poles marked in bold in the left part of the S-plane (Fig. 2. 6). 
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Fig.  2. 6 Location of 2N poles in the S- plan (N is even).  
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(ii) Bilinear transformation method :  

In this procedure, we must utilize firstly the bilinear transformation as 
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Solving (2.33), we get  
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We take N = 6. Applying the 2nd equation of (2.33) to find 7662.0=Ωc . This choice is 

justified by this approach in order to ensure the specifications of the digital filter. In this case, 
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(2.36) 

The recurrence function ∑∑
==

−−−=
N

k
k

M

k
k knybknxany

10

)()()(  is requested to execute the filter 

IIR by a computer. This recursive algorithm is obtained by the IZT of (2.36). 

 

2. 4. 2 Chebyshev analog filter 

In Butterworth filters, the characteristics in the pass-band and the stop-band have a 

monotone nature. Consequently, if the filter specifications are in terms of maximum pass-

band approximation error, the specifications are exceeded toward the low-frequency end of 

the pass-band. A more efficient approach, which usually leads to a lower order filter, is to 

distribute the accuracy of the approximation uniformly over the pass-band or the stp-band or 

both. The Chebyshev filter type 1 class has the property that the magnitude of the frequency 

response is equiripple on the pass-band and monotonic in the stop-band [1, 2].    
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Fig.  2. 7 Approximation with a Chebyshev type 1 filter ( εσ =p ) 

 

The analytical form of the squared magnitude is given by [1, 2] 

)/(1

1
)(

22

2

cN
a

V
jH

ΩΩ+
=Ω

ε
                                                  (2.37) 

where VN(x) is the Chebyshev polynomial of order N 

))(coscos()( 1 xNxVN
−=                                                       (2.38) 

For example, if N = 0, VN(x) = 1, if N = 1, xxxVN == − ))(cos(cos)( 1 , if N = 2, 

12))(cos2cos()( 21 −== − xxxVN . From equation (2.38) which defines the Chebyshev 

polynomials, it is clear that a recurrence formula can be obtained in which VN+1(x) can be 

obtained from VN(x) and VN-1(x). Hence  

)()(2)( 11 xVxxVxV NNN −+ −=                                                  (2.39) 

If 10 << x , equation (2.38) indicates that (x)V 2
N  varies between 0 and 1. if 1>x , )(cos 1 x−  is 

imaginary and VN(x) behaves like a hyperbolic cosine and therefore decreases monotonously. 

From (2.37), 
2

)( ΩjH a  fluctuates between 1 and )1/(1 2ε+ if 1/0 <ΩΩ< c . To characterize 

the filter, three parameters must be determined; ε , cΩ  and N. In a typical design, ε  is given 

by the ripple (fluctuation) of the bandwidth, cΩ  by the desired cut-off frequency, the N order 

is then selected in such a way that the bandwidth or stop specifications are met. Chebyshev 

type 1 low-pass filter properties are. 

For cΩ<Ω≤0  and according to the properties of the Chebyshev polynomial, we have 

1)(
1

1 2

2
≤≤

+
ω

ε
j

a eH  

Ω  

p

     

δ−1

1
 

pΩ  

)( ΩjH a  

sδ  

sΩ  
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2- From the above characteristics, we have 



 +

=
odd  N                   1

even  N     ),1/(1
)0(

2
2 ε

aH  

3- For cΩ>Ω , the response has a monotonous and decreasing nature due to the 

monotonous behavior of VN(x) for .1>x  

It was shown in [1] that the poles of the Chebyshev filter extend over an elliptical of the S-

plane. According to Fig. 2.8, the ellipse is defined by two circles corresponding to the major 

and minor axes. It was found that the rays of these circles are obtained according toε , cΩ  

and N. 

( )

( )








+=

−=

−

−

NN

NN

b

a

/1/1

/1/1

2

1
2

1

αα

αα
     with   21 1 −− ++= εεα  

To determine the poles of the Chebyshev filter on the ellipse (see Fig. 2. 8), one must first 

identify the points on the minor and major circles also spaced at an angle space, N/π  so that 

the points are symmetrically located relative to the imaginary axis.  

 

)6/cos()6/sin(2,1 ππ cc jbas Ω±Ω−=  

cas Ω−=3  

 

 

for N > 3 

)2/cos()2/sin(2,1 NjbNas cc ππ Ω±Ω−=  

)2/3cos()2/3sin(4,3 NjbNas cc ππ Ω±Ω−=  

…etc 

 

Fig. 2. 8 Location of Chebyshev filter poles of order N = 3 

 

A point never falls on the imaginary axis and falls on the real axis if N is odd and never if N is 

even. After this calculation, it is well confirmed that the poles of the N-order filter can be 

obtained by the following general expression [2]: 

caΩ  cbΩ  
Re 

Im 
S-Plan 3/π  
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






 +







Ω+






 +







Ω−= −−

N

k

N
j

N

k

N
s cck 2

)12(
cos

1
sinh

1
cosh

2

)12(
sin

1
sinh

1
sinh 11 π

ε
π

ε
    (2.40) 

10 −≤≤ Nk .  

The following identities are useful for the calculation of the inverse functions cosh-1 and   

sinh-1. Hence ( )1ln)(sinh 21 ++=− xxx  and ( )1ln)(cosh 21 −+=− xxx . The Chebyshev 

analog filter is given in the following form [2] 













−
−

−
−

+=

∏

∏
−

=

−

=

odd N                  

even N     ,
1

1

)(
1

0

1

0
2

N

k k

k

N

k k

k

a

ss

s

ss

s

sH
ε

                                        (2.41) 

- To satisfy the condition, ( )
2

22
)1(

/1

1
p

cpNV
δ

ε
+≥

ΩΩ+
 , we choose pc Ω=Ω  

- To satisfy the condition, ( )
2

22 /1

1
s

csNV
δ

ε
≤

ΩΩ+
 , we choose 

 dkNkVN /1)/1(coshcosh()/1( 1 ≥= − , with 
1

1)1(
2

2

−
−−

= −

−

s

pd
δ
δ

  and  
s

pk
Ω
Ω

=  

The previous equality gives, 
)/1(cosh

)/1(cosh
1

1

k

d
N −

−

≥  

Exemple. 2. 3 :  

To illustrate the design by the Chebyshev template, we take the same example above [1]. 

 
(i) Impulse invariance approach: 

Based on the Chebyshev polynomy, we write: 






>ΩΩ

≤ΩΩ
=Ω

−

−

1)),(coshcosh(

1)),(coscos(
)(

1

1

      N

         N
VN  

For Ap = 1dB and As = 15dB, we have 

( )
( )





−=−≤Ω

−=−≥Ω

15)(log20

1)(log20

10

10

sa

pa

AjH

AjH
                                             (2.42) 

Thus 

( )
( )





−=ΩΩ
−=

−

−

110)/(coshcosh

110)1(coscos
1.0122

1.0122

As
ps

A

N

N p

ε
ε

                                    (2.43) 

For pc Ω=Ω=Ω , ( ) 10.cos))1(cos(cos 212 ==− NN ⇒ 110 1.02 −= pAε  ⇒ 508847.0== εδ p  
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( )
110

110
)/(coshcosh

1.0

1.0
12

−
−=ΩΩ−

p

s

A

A

psN ⇒  ( )
110

110
)/(coshcosh

1.0

1.0
1

−
−=ΩΩ−

p

s

A

A

psN  

By taking the cosh-1 on both sides, we get 

)/(cosh

)110/()110(cosh

1

1.01.01

ps

AA ps

N
ΩΩ






 −−

≥ −

−

=3.19                                 (2.44) 

So we take N = 4. We assume that the bandwidth specifications are met. 

628318.02.0 ==Ω πc  

1702.4=α  

3646.0=a  

0644.1=b  

The Chebyshev filter parameters are : 








=
==Ω

=

4

6283.02.0

508841.0

N
c π

ε
  

They are used for core business calculations, sk , k = 0, …, N-1. Hence 

s0,1= -0.0877 ±  j0.6179 

s2,3= -0.2117 ±  j0.2559 

The corresponding TF is 

( )( )3894.017535.01103.04233.0

038286.0
)(

22 ++++
=

ssss
sH a                            (2.45) 

The TF of the IIR discrete filter is finally obtained as 

21

1

21

1

8392.04934.11

0246.008327.0

6549.05658.11

0239.008327.0
)( −−

−

−−

−

+−
++

+−
+=

zz

z

zz

z
zH                          (2.46) 

 
(ii) Bilinear transformation approach: 

In this case, the specifications on the analog filter are 













−≤








−≥








15
2

3.0
tan2log20

1
2

2.0
tan2log20

10

10

π

π

j

j

                                            (2.47) 

Thus, 3142.0)2/2.0tan(2 ==Ω πc , 50885.0=ε  and N=4. The poles are 

s0,1= -0.0188 ±  0.1280i 

s2,3= -0.0453 ±  0.1280i 

The TF becomes 
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( )( )1180.04378.04166.01814.0

04381.0
)(

22 ++++
=

ssss
sH a                               (2.48) 

Replacing, 
1

1

1

1
2 −

−

+
−=

z

z
s , the transfer function of the digital filter is finally obtained by: 

)6493.05548.11)(8482.04996.11(

)1(001836.0
)(

2121

41

−−−−

−

+−+−
+=

zzzz

z
zH                        (2.49) 

The recurrence function ∑∑
==

−−−=
N

k
k

M

k
k knybknxany

10

)()()( y(n) is required to operate the 

underling filter given by (2.49). 

 
2. 5 Frequency transformations of low-pass IIR filters 

The examples of the previous IIR numerical filters are made using methods based on 

impulse invariance and bilinear transformation. These filters are inspired from analog filters 

i.e, Butterworth and Chebyshev with low-pass frequency selection properties. The answers of 

the most widely used ideal filters are shown in Fig. 2. 9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 9 Possible frequency responses of ideal filters 

)( ωjeH  
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)( ωjeH  
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Using rational transformation techniques, Filters shown in Fig. 2. 9 can be designed from 

available digital low-pass filter with a cut-off frequency pθ . Table 2.1 shows the 

corresponding transformations [1] 

 

Table. 2.1 Transformation from the prototype of IIR low-pass filter with a cut-off frequency pθ , 

toward other filters with desired cut-off frequencies pω , 1ω  and 2ω . 

Filtre type Transformation Associated design formulas 

Low-pass 

1

1
1

1 −

−
−

−
−=
z

z
z

α
α

 
( ) ( )2/)(sin/2/)(sin pppp ωθωθα +−=  

High-pass 
1

1
1

1 −

−
−

+
+−=
z

z
z

α
α

 
( ) ( )2/)(cos/2/)(cos pppp θωθωα −+−=  

 

Pass-band 

1
1

2

1

1
1

1

1

2

12

12

1

+
+

−
+
−

+
−+

+
−

−=
−−

−−

−

z
k

k
z

k

k
k

k
z

k

k
z

z
α

α

 

( ) ( )2/)(cos/2/)(cos 1212 ωωωωα −+=  

and 

( ) ( )2/tan2/)(cot 12 pk θωω −=  

 

Stop-band 

1
1

2

1

1
1

1

1

2

12

12

1

+
+

−
+
−

+
−+

+
−

=
−−

−−

−

z
k

k
z

k

k
k

k
z

k
z

z
α

α

 

( ) ( )2/)(cos/2/)(cos 1212 ωωωωα −+=  

and 

( ) ( )2/tan2/)(tan 12 pk θωω −=  

 

 
Example. 2. 4 : 

We wish to obtain a high-pass filter from the Chebyshev filter from a low-pass filter having 

the following cut-off frequency, πθ 2.0=p  and discrete TF, Hl(z) :  

)8482.04996.11)(6493.05548.11(

)1(001836.0
)(

2121

41

−−−−

−

+−+−
+=

zzzz

z
zH l               (2.50) 

If the desired cut frequency of the desired high-pass filter is, πω 6.0=p , we get from Table. 

2. 1 

( ) ( )2/)2.06.0(cos/2/)6.02.0(cos ππππα −+−= =-0.38197 

By replacing the latter into Hl(z), we find 

)7647.05561.01)(4019.00416.11(

)1(02426.0
)()(

2121

41

38197.01

38197.0
1

1
1 −−−−

−

−
−−= +−+−

+==
−

−
−

zzzz

z
zHzH

z

z
zld    (2.51) 
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2. 6 Related Matlab codes [3] : 

To recognize the Matlab commands for the design of IIR filters, we consider the 

following examples: 

 
(i) Butterworth filter: 

The Matlab instruction ‘butter’ is used as follows 

clear all;clc; 
N=6; 
wc=0.7032; 
[b a]=butter(N,wc/pi);   
figure(1); 
freqz(b,a) 
axis([0 1 -30 0]); 
 

(ii) Chebyshev filter: 

The Matlab instruction ‘cheby1’ leads to compute the Chebyshev type1 filter. 

Clear all;clc ; 
N=6; 
wc=0.6498; 
[b2,a2] = cheby1(4,0.50885,wc/pi); 
figure(3); 
freqz(b2,a2); 
axis([0 1 -30 0]) 
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Tutorial #2 

 

Ex#1 : 

We want to design a digital low-pass IIR filter from a Butterworth analog filter using the 

bilinear transformation method. The analog filter specifications are as follows: 

Sampling frequency  

- Pass-band attenuation of 3dB at pΩ  where fe = 25kHz  and fc = 2.25kHz . 

- Stop-band attenuation of 10dB at sΩ = 0.45π . 

NB: fe is the sampling frequency and fc is the cutoff frequency. 

 
Ex#2 : 

We wish to design a digital low-pass IIR filter from a Butterworth analog filter using the 

impulse invariance method. The analog filter specifications are given below: 

- Pass-band attenuation of 1dB at pΩ = 0.25π . 

- Stop-band attenuation of 10dB at sΩ = 0.45π . 

 

Ex#3 :  

We want to design a digital low-pass filter from an analog Chebyshev filter using the method 

based on impulse invariance. The analog filter specifications are as follows: 

- Pass-band attenuation of 3dB at pΩ = 0.2π . 

- Stop-band attenuation of 10dB at sΩ = 0.4π . 

Calculate N, cΩ and the poles where the actual part is negative as well as the transfer function 

of the analog and digital filter assuming that the bandwidth specifications are met. 

 

Ex#4 : 

We want to design a digital low-pass filter from an analog Chebyshev filter using the method 

based on bilinear transformation. The analog filter specifications are as follows: 

- Pass-band attenuation of 1dB at pΩ = 0.25π . 

- Stop-band attenuation of 10dB at sΩ = 0.45π . 

 

 

 


