Chapitre 1

Espace vectoriel

1.1 Espaces et sous-espaces vectoriels

1.1.1 Espaces vectoriels

Dans ce chapitre, $\mathbb{K} = \mathbb{R}, \mathbb{C}$ ou un corps commutatif quelconque.

Définition 1.1 Un espace vectoriel sur \mathbb{K} est un ensemble non vide E muni de deux lois :

- une loi de composition interne dite d'addition et noté "+", c'est-à-dire de l'application $E \times E$ vers E.
- une loi de composition externe dite de multiplication par un scalaire et noté multiplicativement "·", c'est-à-dire de l'application $\mathbb{K} \times E$ vers E, telles que :
 - (i) (E, +) est un groupe commutatif;
 - (ii) La loi externe doit vérifier pour tout $x \in E$ et $\alpha, \beta \in \mathbb{K}$: $\alpha \cdot (\beta \cdot x) = (\alpha \beta) \cdot x$ et $1 \cdot x = x$ où 1 est le neutre de la multiplication de \mathbb{K} ;
- (iii) Les deux lois vérifient entre elles pour tout $x, y \in E$ et $\alpha, \beta \in \mathbb{K}$: $(\alpha + \beta) \cdot x = \alpha \cdot x + \beta \cdot x$ et $\alpha \cdot (x + y) = (\alpha \cdot x) + (\alpha \cdot y)$.

Convention:

On dira souvent un "K-espace vectoriel" au lieu d'un "espace vectoriel sur K".

Propriétés élémentaires :

Soit E un K-espace vectoriel. Soient $x \in E$ et $\alpha \in K$. Alors on a:

- $\alpha \cdot x = 0_E$ si et seulement si $\alpha = 0_K$ ou $x = 0_E$;
- $\bullet -(\alpha \cdot x) = \alpha \cdot (-x) = (-\alpha) \cdot x.$

Exemple 1.1 \mathbb{R} est un \mathbb{Q} -espace vectoriel.

Exemple 1.2 L'ensemble $V = \mathcal{F}(\mathbb{R}, \mathbb{R})$ des fonctions de \mathbb{R} dans \mathbb{R} muni des lois usuelles d'addition des fonctions, et de multiplication d'une fonction par un scalaire : (f+g)(x) = f(x) + g(x) et $(\alpha \cdot f)(x) = \alpha \cdot f(x)$, est un \mathbb{K} -espace vectoriel.

1.1.2 Sous-espaces vectoriels

Dans cette sous-section, E désignera un \mathbb{K} -espace vectoriel.

Définition 1.2 Une partie F de E est appelée sous-espace vectoriel sur \mathbb{K} de E si les conditions suivantes sont vérifiées :

- (i) $0_E \in E$;
- (ii) $\forall x, y \in E, x + y \in E$;
- (iii) $\forall \alpha \in \mathbb{K}, \forall x \in E; \alpha \cdot x \in E$.

Interprétation:

Les conditions de la définition ci-dessus signifient q'un sous-ensemble non vide F de E est un sous-espace vectoriel de E si F est stable pour l'addition et pour la multiplication par un scalaire.

Lemme 1.1 Une partie F de E est appelée sous-espace vectoriel sur \mathbb{K} de E si :

- (i) (F, +) est un sous-groupe de (E, +);
- (ii) $\forall \alpha \in \mathbb{K}, \ \forall x \in E; \ \alpha \cdot x \in E$.

Théorème 1.1 (Théorème de caractérisation) F est un sous-espace vectoriel sur \mathbb{K} de E si et seulement si F est non vide et vérifie :

$$\forall x, y \in F, \forall \alpha, \beta \in \mathbb{K}; \alpha \cdot x + \beta \cdot y \in F.$$
 (1.1)

Corollaire 1.1 Si F est un sous-espace vectoriel de E, et qu'on le munit des lois induites par celles de E, alors c'est un espace vectoriel. Autrement dit, un sous-espace vectoriel d'un espace vectoriel est un espace vectoriel.

Exemple 1.3 E et $\{0_E\}$ sont des sous-espaces vectoriels de E.

Exemple 1.4 Une droite passant par l'origine, un plan passant par l'origine sont des sousespaces vectoriels de $E = \mathbb{R}^3$ sur $\mathbb{K} = \mathbb{R}$.

Exemple 1.5 L'ensemble $F = \{(x,y) \in \mathbb{R}^2 \mid x-y+1=0\}$ n'est pas un sous-espace vectoriel de \mathbb{R}^2 , car le vecteur nul $0_{\mathbb{R}^2}$ n'appartient pas à F.

Proposition 1.1 L'intersection de deux sous-espaces vectoriels est encore un sous-espace vectoriel.

Remarque 1.1 En général, l'union de deux sous-espaces vectoriels n'est pas un sous-espace vectoriel (sauf si l'un des deux espaces contient l'autre). En effet, si nous considérons $E = \mathbb{R}^2$ et les deux sous-espaces vectoriels $\mathcal{D}_1 = \{(x,y) \in \mathbb{R}^2 \mid y = o\}$ et $\mathcal{D}_2 = \{(x,y) \in \mathbb{R}^2 \mid x = o\}$. Alors, $\mathcal{D}_1 \cup \mathcal{D}_2$ n'est pas un sous-espace vectoriel de E. Par exemple, $(\frac{1}{2},0) + (0,\frac{1}{2}) = (\frac{1}{2},\frac{1}{2})$ est la somme d'un élément de \mathcal{D}_1 et d'un élément de \mathcal{D}_2 , mais n'est pas dans $\mathcal{D}_1 \cup \mathcal{D}_2$.

1.2 Familles libres, Génératrices, Bases

Notion de combinaison linéaire :

Une combinaison linéaire de vecteurs $u_1, u_2, ..., u_n$ (avec $n \in \mathbb{N}^*$) d'un \mathbb{K} -espace vectoriel E, est un vecteur qui peut s'écrire $\sum_{i=1}^n \lambda_i \cdot u_i$. Les éléments $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{K}$ sont appelés coefficients de la combinaison linéaire.

Exemple 1.6 Soient $u_1, u_2, ..., u_n$; n vecteurs d'un \mathbb{K} -espace vectoriel E. On peut toujours écrire 0_E comme combinaison linéaire de ces vecteurs, car il suffit de prendre tous les coefficients nuls.

Remarque 1.2 Si F est un sous-espace vectoriel de E, et si $u_1, u_2, ..., u_p \in F$, alors toute combinaison linéaire $\sum_{i=1}^{p} \lambda_i \cdot u_i$ est dans F.

Notation 1.1 Etant donné des vecteurs $u_1, u_2, ..., u_n$ d'un \mathbb{K} -espace vectoriel E, on note $Vec(u_1, u_2, ..., u_n)$ l'ensemble des combinaisons linéaires de $u_1, u_2, ..., u_n$. Alors on écrit :

$$Vec(u_1, u_2, ..., u_n) = \{u \in E \mid \exists (\lambda_1, \lambda_2, ..., \lambda_n) \in \mathbb{K}^n; u = \sum_{i=1}^n \lambda_i \cdot u_i \}.$$

Exemple 1.7 $Vec(0_E) = \{0_E\}.$

Maintenant, on considère une famille non vide $A = (u_1, u_2, ..., u_p)$ de vecteurs d'un \mathbb{K} -espace vectoriel E avec $p \in \mathbb{N}^*$.

Définition 1.3 On dit que A engendre E, ou encore qu'elle est génératrice de E si et seulement si $Vec(u_1, u_2, ..., u_p) = E$. En d'autres termes, tout vecteur de E est combinaison linéaire des éléments de A.

Définition 1.4 On dit que A est libre si et seulement si le vecteur nul $\{0_E\}$ est combinaison linéaire des éléments de A de façon unique. Autrement dit :

$$si \sum_{i=1}^{p} \lambda_i \cdot u_i = 0_E \ alors \sum_{i=1}^{p} \lambda_i = 0_E.$$

Remarque 1.3 Nous pouvons utiliser les expressions suivantes :

- Si A est libre alors on dit aussi que les vecteurs $u_1, u_2, ..., u_p$ sont linéairement indépendants.
- Si A est n'est pas libre on dit que A est liée.

Propriétés:

- 1- Toute partie contenant une partie génératrice de E est encore une partie génératrice.
- 2- Une famille d'un seul vecteur est libre si et seulement si ce vecteur est non nul.
- 3- Tout famille qui contient le vecteur nul est liée.
- 4- Toute famille qui contient une famille liée est liée.
- 5- Toute partie contenue dans une partie libre est libre.

Définition 1.5 On dit que A est une **base** d'un sous-espace vectoriel F de E si elle est **libre et génératrice**. En d'autres termes, tout vecteur de F est combinaison linéaire des éléments de A de façon unique. On a donc :

$$\forall u \in F, \exists! (\lambda_1, \lambda_2, ..., \lambda_p) \in \mathbb{K}^p; u = \sum_{i=1}^p \lambda_i \cdot u_i,$$

où $\lambda_1, \lambda_2, ..., \lambda_p$ sont **les coordonnées** du vecteur u dans la base A, et on dit que F est de dimension finie.

1.3 Espaces vectoriels de type fini

Définition 1.6 Un espace vectoriel est dit de type fini s'il admet une famille génératrice finie. Autrement dit : si un espace vectoriel est engendré par une famille finie de vecteurs, on dit qu'il est de type fini.

Théorème 1.2 (Théorème de la dimension) Dans un espace vectoriel de dimension finie E, toutes les bases ont le même nombre d'éléments. Ce nombre noté $\dim(E)$ est appelé la dimension de E.

Soit A une famille d'éléments de E de dimension finie n. Les propriétés suivantes sont équivalentes :

- (i) A est une base de E.
- (ii) A est libre et génératrice de E.
- (iii) A est libre et de cardinal n.
 - (v) A est génératrice de E et de cardinal n.

Remarque 1.4 Pratiquement, on utilise le théorème ci-dessus pour montrer qu'une famille A est une base de E.

Exemple 1.8 Soient $u_1(1,2), u_2(2,-1)$ deux vecteurs de l'éspace vectoriel $E = \mathbb{R}^2$ dans $\mathbb{K} = \mathbb{R}$. Vérifier que la famille $A = (u_1, u_2)$ engendre \mathbb{R}^2 . Que peut-on conclure?

Pour montrer que A est une famille génératrice, on cherche deux réelles λ_1, λ_2 tel que : pour tout $u(x,y) \in \mathbb{R}^2$, $u = \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2$. Après le calcul on aura $\lambda_1 = \frac{1}{5}(x+2y)$, $\lambda_2 = \frac{1}{5}(2x-y)$. Ce qui signifie que A engendre \mathbb{R}^2 . D'autre part, il est clair que A est libre, de cardinal 2, donc A est une base de \mathbb{R}^2 .

Corollaire 1.2 Tout espace vectoriel de type fini admet une base finie, et toutes ses bases ont le même cardinal.

Corollaire 1.3 Dans un espace vectoriel de dimension n, on a:

- Toute famille libre a au plus n éléments.
- Toute famille génératrice a au moins n éléments.

Proposition 1.2 Dans un espace vectoriel de type fini E, toute famille libre (ou génératrice) dont le nombre d'élément est égal à la dimension de E est une base.

1.3.1 Rang d'une famille finie de vecteurs

Définition 1.7 Soient E un \mathbb{K} -espace vectoriel et $G = \{v_1, v_2, ..., v_m\}$ une famille de m vecteurs de E. Le rang de la famille G noté rg(G) est la dimension du sous-espace vectoriel $F = Vect(v_1, v_2, ..., v_m)$ engendré par les vecteurs $v_1, v_2, ..., v_m$, i.e.,

$$rg(G) = dim(F)$$
.

Propriétés:

Soient E un \mathbb{K} -espace vectoriel et $G = \{v_1, v_2, ..., v_m\}$ une famille de vecteurs de E. Alors on a :

- $0 \le rg(G) \le m$.
- Si dim(F) = n (finie), alors $rg(G) \le n$.
- rq(G) = m si et eulement si G est libre.
- rg(G) = 0 si et eulement si tous les vecteurs de G sont nuls.

Exemple 1.9 Soit $G = \{v_1 = (2,3), v_2 = (4,2), v_3 = (-3,4)\}$ une famille de l'espace vectoriel \mathbb{R}^2 . Déterminer le rang de G.

Il est clair que v_2 et v_3 sont linéairement indépendants. D'autre part, en résolvant le système linéaire $\alpha_1 \cdot v_1 + \alpha_2 \cdot v_2 + \alpha_3 \cdot v_3 = 0$, on obtient $2v_1 - v_2 - v_3 = 0$. La famille G est donc liée. On en déduit que $Vect(v_1, v_2, v_3) = Vect(v_2, v_3)$. Donc, rg(G) = 2.

1.4 Somme de deux sous-espaces vectoriels

Définition 1.8 Soient F_1 et F_2 deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. On appelle somme de F_1 et de F_2 l'ensemble noté $F_1 + F_2$, des vecteurs qui sont la somme d'un vecteur de F_1 et d'un vecteur de F_2 :

$$F_1 + F_2 = \{ u \in E \mid u = u_1 + u_2, u_1 \in F_1, u_2 \in F_2 \}.$$

Remarque 1.5 On peut caractériser les vecteurs u de la somme $F_1 + F_2$, par :

$$u \in F_1 + F_2 \Leftrightarrow \exists (u_1, u_2) \in F_1 \times F_2 \mid u = u_1 + u_2$$
.

Exemple 1.10 Nous considérons deux droites vectorielles D_1 et D_2 dans l'espace vectoriel $E = \mathbb{R}^2$. Alors, il est bien clair que $D_1 + D_2 = \mathbb{R}^2$.

Proposition 1.3 Si F_1 et F_2 deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E, alors $F_1 + F_2$ est un sous-espace vectoriel de E.

1.5 Somme directe de deux sous-espaces vectoriels

Définition 1.9 Soient F_1 et F_2 deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. On dit que la somme $F_1 + F_2$ est directe si tout vecteur de $F_1 + F_2$ se décompose de manière unique comme la somme d'un élément de F_1 et d'un élément de F_2 .

Notation 1.2 Lorsque F_1 et F_2 sont en somme directe, on note $F_1 + F_2 = F_1 \oplus F_2$.

Remarque 1.6 On peut caractériser les sous-espaces vectoriels en somme directe, par :

$$F_1 + F_2$$
 est directe $\Leftrightarrow F_1 \cap F_2 = \{0_E\}$.

Théorème 1.3 (Formule de Grassmann) Si F_1 et F_2 sont des sous-espaces vectoriels de E et que $F_1 + F_2$ est de type fini, alors

$$dim(F_1 + F_2) = dim(F_1) + dim(F_2) - dim(F_1 \cap F_2).$$

Théorème 1.4 Si E est de type fini, alors les conditions suivantes sont équivalentes.

- (i) $E = F_1 \oplus F_2$.
- (ii) $F_1 \cap F_2 = \{0_E\}$ et $dim(E) = dim(F_1) + dim(F_2)$.
- (iii) $E = F_1 + F_2$ et $dim(E) = dim(F_1) + dim(F_2)$.