REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Faculté de Technologie Département de génie électrique 1^{er} Année Master CMT Matière: CAME

Chargé de la matière : Dr CHEBABHI Al

Université Mohamed Boudiaf de M'sila

TD 3: Modélisation dynamique de la machine Asynchrone et son alimentation

Exercice1

La transformation de PARK utilisé pour le passage du système triphasé (abc) vers le système biphasé (uvo) est donné par :

$$\begin{split} \left[P(\theta_a)\right] &= k \begin{bmatrix} \cos(\theta_a) & \cos(\theta_a - \frac{2\pi}{3}) & \cos(\theta_a - \frac{4\pi}{3}) \\ -\sin(\theta_a) & -\sin(\theta_a - \frac{2\pi}{3}) & -\sin(\theta_a - \frac{4\pi}{3}) \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \end{split}$$

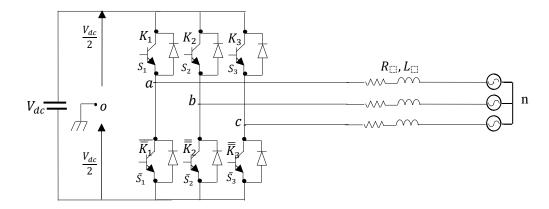
- 1- Démontrer que : $[P(\theta_a)]^{-1} = [P(\theta_a)]^T$.
- 2- Calculer $[P(\theta_a)][M_{sr}][P(\theta_a)]^{-1}$ dans les deux cas de k.
- 3- Exprimer les tensions statoriques v_{su} et v_{sv} en fonction de i_{su} , i_{sv} , ω_s , φ_{su} et φ_{sv} dans les deux cas de k.
- 4- Exprimer les tensions rotoriques v_{ru} et v_{rv} en fonction de i_{ru} , i_{rv} , ω_s , φ_{ru} et φ_{rv} dans les deux cas de k.
- 5- Exprimer les quatre flux statoriques et rotoriques en fonction de i_{su} , i_{sv} , i_{ru} , i_{rv} dans les deux cas de k.
- 6- Exprimer la puissance électrique absorbé par la MAS en fonction de i_{su} , i_{sv} , ω_s , φ_{su} et φ_{sv} dans les deux cas de k.
- 7- Déterminer l'expression du couple en fonction de i_{su} , i_{sv} , φ_{su} et φ_{sv} dans les deux cas de k.
- 8- Déterminer l'expression du couple en fonction de i_{su} , i_{sv} , φ_{ru} et φ_{rv} dans les deux cas de k.
- 9- Déterminer l'expression du couple en fonction de i_{su} , i_{sv} , i_{ru} et i_{rv} dans les deux cas de k.

Exercice2

On désire varie la vitesse d'un moteur asynchrone de moyenne puissance par l'un des techniques de commandes.

- 1- Quelles sont les trois technique de commandes les plus connus, et quel est le repère biphasé adaptative avec chaque technique.
- 2- Que égale l'angle de Park θ_a pour passé d'une repère triphasé vers les trois repères biphasés pour les deux grandeurs statoriques et rotoriques.
- 3- Si on utilise la transformation de **Concordia**.
 - 3-1 Donner la matrice de **Concordia** $\begin{pmatrix} x_{\alpha} \\ x_{\beta} \end{pmatrix} = T \begin{pmatrix} x_{a} \\ x_{b} \\ x_{c} \end{pmatrix}$.
 - 3-2 Exprimer les tensions statoriques v_{sd} et v_{sq} en fonction de i_{sd} , i_{sq} , ω_s , φ_{sd} et φ_{sq} .
 - 3-3 Exprimer les tensions rotoriques v_{rd} et v_{rq} en fonction de i_{rd} , i_{rq} , ω_s , φ_{rd} et φ_{rq} .
 - 3-4 Exprimer les quatre flux statoriques et rotoriques φ_{sd} , φ_{sq} , φ_{rd} et φ_{rq} en fonction de i_{sd} , i_{sq} , i_{rd} et i_{rq}
 - 3-5 Déterminer l'expression du couple en fonction de i_{sd} , i_{sq} , φ_{sd} et φ_{sq} et en fonction de i_{sd} , i_{sq} , φ_{rd} et φ_{rq} .

Exercice3


La commande direct du couple et de flux DTC du moteur asynchrone se fait en régime dynamique dans le repère lié au stator ($\alpha\beta$) après la transformation de **Concordia**.

- 1- Que égale l'angle de Park θ_a afin de passé à partir de la repère triphasé vers le repère lié au stator ($\alpha\beta$) pour les deux grandeurs statoriques et rotoriques.
- 2- Exprimer les tensions statoriques v_{sd} et v_{sq} en fonction de i_{sd} , i_{sq} , ω_s , φ_{sd} et φ_{sq} .
- 3- Exprimer les tensions rotoriques v_{rd} et v_{rq} en fonction de i_{rd} , i_{rq} , ω_s , φ_{rd} et φ_{rq} .

- 4- Exprimer les quatre flux statoriques et rotoriques φ_{sd} , φ_{sq} , φ_{rd} et φ_{rq} en fonction de i_{sd} , i_{sq} , i_{rd} et i_{rq} .
- 5- Déterminer l'expression du couple en fonction de i_{sd} , i_{sq} , φ_{sd} et φ_{sq} et en fonction de i_{sd} , i_{sq} , φ_{rd} et φ_{rq} .
- 6- Si on utilise le vecteur d'état $X^T = (i_{sd} \ i_{sq} \ \varphi_{rd} \ \varphi_{rq})$ et le vecteur de commande $U^T = (v_{sd} \ v_{sq})$.
 - 6-1 Donner la représentation d'état de la machine.
 - 6-2 Donner les deux matrices A et B.
 - 6-3 Donner le schéma fonctionnel Simulink de la machine asynchrone.
- 7- Si on utilise le vecteur d'état $X^T = (\varphi_{rd} \ \varphi_{rq})$ et le vecteur de commande $U^T = (i_{sd} \ i_{sq})$.
 - 7-1 Donner la représentation d'état de la machine.
 - 7-2 Donner les deux matrices A et B.
 - 7-3 Donner le schéma fonctionnel Simulink de la machine asynchrone.

Exercice 4

Le schéma de la figure représente un onduleur de tension à deux niveaux alimenté par un source de tension continue à point million.

- 1- Exprimer les trois tensions v_{ao} , v_{bo} et v_{co} en fonction des signaux de commande $(S_1, S_2 \text{ et } S_3)$ et la tension continue V_{dc} .
- 2- Exprimer les tensions composées V_{ab} , V_{bc} et V_{ca} en fonction des signaux de commande (S_1, S_2, S_3) et la tension continue V_{dc} .
- 3- Exprimer la tension v_{no} en fonction des tensions $v_{\text{ao}},\,v_{\text{bo}}$ et $v_{\text{co}}.$
- 4- Exprimer les trois tensions simples de sortie de l'onduleur en fonction des tensions v_{ao}, v_{bo} et v_{co}.
- 5- Exprimer les trois tensions simples de sortie de l'onduleur en fonction des signaux de commande (S₁, S₂, S₃).
- 6- Si on applique sur les interrupteurs de l'onduleur le vecteur des signaux de commande (010).
 - 6-1 Déterminer les tensions de sortie de l'onduleur dans les deux repères (abc) et $(\alpha\beta)$.
 - 6-2 Représenter le vecteur de tension généré par l'onduleur dans le plant (αβ).