REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

Université Mohamed boudiaf de M'sila

Faculté de Technologie Département de génie électrique 1er Année Master CMT

Matière: CCE

TD 1: Commande scalaire de la MAS

Exercice1

Solen les hypothèses simplificatrices, la machine asynchrone triphasée est représentée schématiquement par la figure. 1. Elle est munie de six enroulements:

- Le stator de la machine est formé de trois enroulements identiques décalés entre elles de $\frac{2\pi}{3}$ rad dans l'espace traversés par trois courants variables et soit en avance soit en retard par rapport au rotor par un angle θ ,.
- Le rotor peut être modélisé par trois enroulements identiques décalés dans l'espace entre elles de $\frac{2\pi}{3}$ rad et soit en avance soit en retard par rapport au stator par un angle θ . Ces enroulements sont en court-circuit et la tension à leurs bornes est nulle.

On différencie les vecteurs statoriques par l'indice 's' et les vecteurs rotoriques par l'indice 'r'.

- ① Partie fixe : Stator. ② Partie mobile : Rotor. ③ Entrefer constant. θ est un angle électrique variable en fonction du temps définie la position de la phase (a) du rotor par rapport au phase (a) du stator.
- 1-Donner les expressions des tensions statoriques et rotoriques $(v_{sa}$ et $v_{ra})$ de la MAS en fonction des courants $(i_{sa}$ et $i_{ra})$ et du flux $(SR)(\phi_{sa}$ et $\phi_{ra})$.

Phase statorique :
$$v_{sa} = R_s i_{sa} + \frac{d}{dt} \phi_{sa}$$

 v_{sa} : Tension par phase statorique (la phase a);

 R_s : Résistance d'une phase statorique;

 i_{sa} : Courant de phase statorique (la phase a);

 ϕ_{sa} : Flux totalisé par phase statorique (la phase a).

Phase rotorique:
$$v_{ra} = 0 = R_r i_{ra} + \frac{d}{dt} \phi_{ra}$$
 (rotor court-circuit)

 v_{ra} :Tension par phase rotorique (la phase a);

 R_r : Résistance d'une phase rotorique ;

 i_{ra} :Courant de phase rotorique (la phase a);

 ϕ_{ra} : Flux totalisé par phase rotorique (la phase a).

2- Donner les expressions des flux(SR) (ϕ_{sa} et ϕ_{ra}) en fonction des courants (SR),des inductances cycliques propres (L_s et L_r) et mutuelles cycliques(SR) M.

Phase statorique:
$$\phi_{sa} = (l_s - m_s)i_{sa} + \frac{3}{2}m_{sr}i_{ra}$$
 avec $i_{ra} = I_r \cos(\omega_s t - \alpha_r)$

 l_s : inductance proper statorique;

 m_s : Inductance mutuelle entre phases statoriques;

 m_{sr} : Valeur de l'inductance mutuelle SR lorsque les bobines SR sont en coïncidants;

 α_r : Déphasage entre le courant rotorique (la phase a) et la tension statorque (la phase a);

 $\omega_s = 2\pi f$: pulsation statorique.

Phase rotorique:
$$\phi_{ra} = (l_r - m_r)i_{ra} + \frac{3}{2}m_{sr}i_{sa}$$
 avec $i_{sa} = I_s \cos(\omega_s t - \alpha_s)$

 l_{x} : inductance proper rotorique;

 m_r : Inductance mutuelle entre phases rotoriques;

 α_s : Déphasage entre le courant statorque (la phase a) et la tension statorque (la phase a).

3-Donner les expressions complexe des flux (SR) ϕ_s et ϕ_r en fonction des \underline{I}_s , \underline{I}_r L_s , L_r et M.

$$i_{sa} = I_s \cos(\omega_s t - \alpha_s) \Rightarrow \underline{I}_s = I_s e^{-j\alpha_s}$$
 et $i_{ra} = I_r \cos(\omega_s t - \alpha_r) \Rightarrow \underline{I}_s = I_s e^{-j\alpha_r}$

Phase statorique : $\phi_s = L_s \underline{I}_s + M \underline{I}_r$

Phase rotorique: $\underline{\phi}_r = L_r \underline{I}_r + M \underline{I}_s$

 $M = \frac{3}{2} m_{sr}$: Inductance mutuelle cyclique SR;

 $L_s = (l_s - m_s)$: Inductance cyclique propre statorique;

 $L_r = (l_r - m_r)$: Inductance cyclique propre rotorique.

4- Donner les expressions complexe des tensions (SR) \underline{V}_s et \underline{V}_r en fonction des \underline{I}_s , \underline{I}_r , \underline{L}_s , \underline{L}_r , M et de la pulsation statorique ω_s en régime permanent.

Phase statorique:
$$\underline{V}_s = R_s \underline{I}_s + \frac{d}{dt} (\phi_s) = R_s \underline{I}_s + \frac{d}{dt} (L_s \underline{I}_s + M \underline{I}_r)$$

$$\underline{V}_{s} = R_{s} \underline{I}_{s} + j\omega_{s} L_{s} \underline{I}_{s} + j\omega_{s} M \underline{I}_{r}$$

Phase rotorique:
$$\underline{V}_r = 0 = R_r \underline{I}_r + \frac{d}{dt} (\phi_r) = R_r \underline{I}_r + \frac{d}{dt} (L_r \underline{I}_r + M \underline{I}_r)$$

$$\underline{V}_r = 0 = R_r \underline{I}_r + j\omega_r L_r \underline{I}_r + j\omega_r M \underline{I}_s$$

Avec:
$$\frac{\omega_r}{\omega_s} = g$$
 le glissement

$$\underline{V}_r = 0 = \frac{R_r}{\varrho} \underline{I}_r + j\omega_s L_r \underline{I}_r + j\omega_s M \underline{I}_s$$

5-Donner le schéma équivalent de la machine asynchrone qui traduisent les expressions complexe des tensions (SR) de la quatrième question (Modèle à inductances couplées) en régime sinusoïdal (en régime permanent).

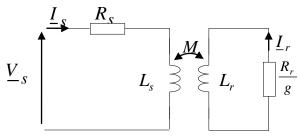
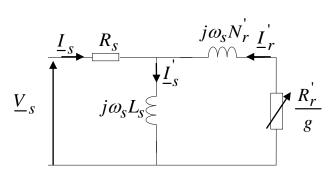


Schéma équivalent du moteur asynchrone-Modèle à inductances couplées

- 6-Par l'utilisation de la rapport de transformation qui permet de ramenée le rotor au stator $m_{r \to s} = M/L_s$.
 - 6-1 Donner le schéma équivalent du moteur asynchrone-modèle ramené au stator avec fuites magnétiques totalisées au rotor et représenter les composantes ramenées au stator.



- 6-2 Donner les expressions de flux statoriques et rotoriques de ce modèle en fonctions des courants SR, de l'inductance cyclique propre statorique et de l'inductance mutuelle cyclique (SR).
- 6-3 Donner l'expression du courant rotorique ramené au stator I_r en fonction de \underline{I}_r , L_s et M et établir l'expression du flux statorique en fonction de I_r .
- 6-4 Donner le coefficient de dispersion de Blondel σ en fonction des L_s , L_r et M .
- 6-5 Donner l'inductance de fuites totalisée au rotor N_r en fonction de σ et L_r .
- 6-6 Etablir l'expression de flux rotorique en fonction de \underline{I}_r , \underline{I}_s , I_r , N_r et M.

$$\underline{\phi}_{s} = L_{s}\underline{I}_{s} + M\underline{I}_{r} = L_{s}\underline{(I}_{s} + \frac{M}{L_{s}}\underline{I}_{r})$$
(6-2)

Avec $\frac{M}{L_r}I_r = m_{r\to s}I_r = I_r$ courant rotorique ramené au stator (6-3)

$$\underline{\phi}_r = L_r \underline{I}_r + M \underline{I}_s = L_r \underline{I}_r + M \underline{I}_s + (\frac{M^2}{L_s} \underline{I}_r - \frac{M^2}{L_s} \underline{I}_r)$$
(6-2)

$$\underline{\phi}_{r} = L_{r}(1 - \frac{M^{2}}{L_{r}L_{s}})\underline{I}_{r} + M(\underline{I}_{s} + \frac{M}{L_{s}}\underline{I}_{r}) = \sigma L_{r}\underline{I}_{r} + M(\underline{I}_{s} + \underline{I}_{r})$$

Avec $\sigma = 1 - \frac{M^2}{L_r L_s}$: le coefficient de dispersion de Blondel (6-4)

$$\underline{\phi}_r = N_r \underline{I}_r + M(\underline{I}_s + \underline{I}_r)$$
 (6-6)

 $N_r = \sigma L_r$: l'inductance de fuites totalisée au rotor (6-5)

7-Etablir les expressions des tensions \underline{V}_s et \underline{V}_r en fonction de R_s \underline{I}_r , \underline{I}_s , \underline{I}_r , N_r , g, M et ω_s .

$$\underline{V}_{s} = R_{s}\underline{I}_{s} + j\omega_{s}L_{s}\underline{I}_{s} + j\omega_{s}M\underline{I}_{r} = R_{s}\underline{I}_{s} + j\omega_{s}L_{s}(\underline{I}_{s} + \underline{I}_{r})$$

$$\underline{V}_{r} = 0 = \frac{R_{r}}{g}\underline{I}_{r} + j\omega_{s}L_{r}\underline{I}_{r} + j\omega_{s}M\underline{I}_{s} = \frac{R_{r}}{g}\underline{I}_{r} + j\omega_{s}\underline{\phi}_{r}$$

$$\underline{V}_{r} = 0 = \frac{R_{r}}{g}\underline{I}_{r} + jg\omega_{s}N_{r}\underline{I}_{r} + jg\omega_{s}M(\underline{I}_{s} + \underline{I}_{r})$$

- 8-Donner l'inductance des fuites totalisées au rotor N_r en fonction de N_r , L_s et M
- 9-Donner la résistance rotorique ramenée au stator $R_r^{'}$ en fonction de R_r, L_s et M .

$$\underline{V}_r = 0 = \frac{R_r}{g} \underline{I}_r + jg \omega_s N_r \underline{I}_r + jg \omega_s M(\underline{I}_s + \underline{I}_r) \quad \text{on multiplion cette équation par le carré de } \frac{1}{m_{r \to s}} = \frac{L_s}{M}$$

$$\underline{V}_r = 0 = \frac{R_r}{g} (\frac{L_s}{M})^2 \underline{I}_r + jg\omega_s N_r (\frac{L_s}{M})^2 \underline{I}_r + jg\omega_s M (\frac{L_s}{M})^2 (\underline{I}_s + \underline{I}_r)$$

on obtient

$$\underline{V}_{r} = 0 = \frac{R_{r}^{'}}{g}\underline{I}_{r} + jg\omega_{s}N_{r}\underline{I}_{r} + jg\omega_{s}M(\frac{L_{s}}{M})^{2}(\underline{I}_{s} + \underline{I}_{r}^{'})$$

avec
$$N_r = N_r (\frac{L_s}{M})^2 = \frac{N_r}{m_{r \to s}^2}$$
 et $R_r = R_r (\frac{L_s}{M})^2 = \frac{R_r}{m_{r \to s}^2}$

$$\underline{V}_r = 0 = \frac{R_r^{\prime}}{g} \underline{I}_r + jg \omega_s N_r^{\prime} \underline{I}_r + jg \omega_s M (\frac{L_s}{M})^2 (\underline{I}_s + \underline{I}_r^{\prime}) \text{ on multiplion cette équation par } m_{r \to s} = \frac{M}{L_s} \text{ on obtient}$$

$$\underline{V}_{r} = 0 = \frac{R_{r}^{'}}{g} \underline{I}_{r} \left(\frac{M}{L_{s}} \right) + jg \omega_{s} N_{r}^{'} \underline{I}_{r} \left(\frac{M}{L_{s}} \right) + jg \omega_{s} M (\frac{L_{s}}{M})^{2} \left(\frac{M}{L_{s}} \right) (\underline{I}_{s} + \underline{I}_{r}^{'})$$

$$\underline{V}_{r} = 0 = \frac{R_{r}^{'}}{g} \underline{I}_{r}^{'} + jg \omega_{s} N_{r}^{'} \underline{I}_{r}^{'} + jg \omega_{s} L_{s} (\underline{I}_{s} + \underline{I}_{r}^{'})$$

10- Donner l'expression de I_r en fonction V_s , R_r , N_r , g et ω_s .

Si l'on néglige le chut ohmique de R_s on obtient

$$\underline{V}_{s} = \frac{R_{r}^{'}}{g} \underline{I}_{r}^{'} + jg \omega_{s} N_{r}^{'} \underline{I}_{r}^{'} \Rightarrow \underline{I}_{r}^{'} = \frac{\underline{V}_{s}}{\frac{R_{r}^{'}}{g} + jg \omega_{s} N_{r}^{'}} \quad \text{donc} \qquad I_{r}^{'} = \frac{V_{s}}{\sqrt{\left(\frac{R_{r}^{'}}{g}\right)^{2} + \left(g \omega_{s} N_{r}^{'}\right)^{2}}}$$

11- Donner l'expression de la puissance électromagnétique (puissance transmise au rotor) P_{tr} en fonction I_r et R_r .

$$P_{tr} = \frac{p_{jr}}{g} = \frac{3}{g} R_r I_r^2$$

12- Donner l'expression du couple électromagnétique C_e en fonction des I_r , R_r et ω_s .

Le couple est donné par $C_e = \frac{P_e}{\Omega}$

$$C_{e} = \frac{P_{u}}{\Omega} = \frac{P_{tr} - p_{jr}}{\Omega} = \frac{P_{tr} - gP_{tr}}{\Omega} = \frac{P_{tr}(1-g)}{\Omega_{s}(1-g)} = \frac{\frac{3}{g}R_{r}^{'}I_{r}^{'2}}{\Omega_{s}}$$

$$C_{e} = \frac{\frac{3}{g}pR_{r}^{'}I_{r}^{'2}}{\omega_{e}}$$

Donc

13- Donner l'expression du couple électromagnétique C_e en fonction de V_s , g , R_r , N_r et ω_s .

$$C_{e} = \frac{\frac{3}{g} p R_{r}^{'}}{\omega_{s}} \frac{V_{s}^{2}}{\left(\frac{R_{r}^{'}}{g}\right)^{2} + \left(g \omega_{s} N_{r}^{'}\right)^{2}} = \frac{3p V_{s}^{2}}{\omega_{s}} \frac{\frac{R_{r}^{'}}{g}}{\left(\frac{R_{r}^{'}}{g}\right)^{2} + \left(g \omega_{s} N_{r}^{'}\right)^{2}}$$

14- Pour quel glissement maximal g_{max} , le couple est-il maximal? Quelle est l'expression du couple maximal $C_{e \text{max}}$ en fonction de la tension statorique et de l'inductance de fuites totalisées au rotor N_r ?

$$C_{e} = \frac{3pV_{s}^{2}}{\omega_{s}} \frac{\frac{R_{r}}{g}}{\left(\frac{R_{r}^{'}}{g}\right)^{2} + \left(g\omega_{s}N_{r}^{'}\right)^{2}}$$

$$C_{e} = C_{e\,\text{max}} \text{ lorsque}\left(\frac{R_{r}^{'}}{g}\right) = g\omega_{s}N_{r}^{'} \Rightarrow g_{\,\text{max}} = \frac{R_{r}^{'}}{\omega_{s}N_{r}^{'}} \qquad C_{e\,\text{max}} = \frac{3p}{2N_{r}^{'}} \left(\frac{V_{s}}{\omega_{s}}\right)^{2}$$

15- Déduire l'expression du couple $C_{e \max}$ en fonction de la pulsation rotorique ω_r .

$$C_{e \max} = \frac{3p}{2N_r} \left(\frac{V_s}{\omega_s}\right)^2 = \frac{3pg^2}{2N_r} \left(\frac{V_s}{\omega_r}\right)^2$$

16- Déduire l'expression du couple $C_{e\max}$ en fonction du courant I_s de la pulsation rotorique ω_r .

$$\begin{cases} I_{s}^{'} = I_{r}^{'} + I_{s} \\ j\omega_{s}L_{s}I_{s}^{'} = (\frac{R_{r}^{'}}{g} + j\omega_{s}N_{r}^{'})\underline{I}_{r}^{'} \Rightarrow \begin{cases} I_{s}^{'} = I_{r}^{'} + I_{s} \\ j\omega_{s}L_{s}(\underline{I}_{r}^{'} + I_{s}^{'}) = (\frac{R_{r}^{'}}{g} + j\omega_{s}N_{r}^{'})\underline{I}_{r}^{'} \Rightarrow I_{s}^{'} = \frac{j\omega_{s}L_{s}}{\frac{R_{r}^{'}}{g} + j\omega_{s}(N_{r}^{'} - L_{s}^{'})} I_{s}^{'} \end{cases}$$

$$I_{r}^{'} = \frac{\omega_{s}L_{s}}{\sqrt{\left(\frac{R_{r}^{'}}{g}\right)^{2} + \omega_{s}^{2}(N_{r}^{'} - L_{s}^{'})^{2}}} I_{s} \quad \text{avec } g = \frac{\omega_{r}}{\omega_{s}}$$

$$I_{r}^{'} = \frac{\omega_{s}L_{s}}{\sqrt{\left(\frac{R_{r}^{'}}{\omega_{r}^{'}}\right)^{2} + \omega_{s}^{2}(N_{r}^{'} - L_{s}^{'})^{2}}} I_{s} = \frac{L_{s}}{\sqrt{\left(\frac{R_{r}^{'}}{\omega_{r}^{'}}\right)^{2} + (N_{r}^{'} - L_{s}^{'})^{2}}} I_{s}$$

$$C_{e} = 3pL_{s}^{2} \frac{R_{r}^{'}}{(R_{r}^{'})^{2} + \omega_{r}^{2}(N_{r}^{'} - L_{s}^{'})^{2}} I_{s}^{2}$$

17- Pour quelle pulsation rotorique maximale $\omega_{r\, \rm max}$, le couple est-il maximal (à courant statorique $I_{\rm s}$ constant)? Quelle est l'expression du couple maximal $C_{e\, \rm max}$ en fonction de $I_{\rm s}$?

$$C_e = C_{e \max} \text{ lorsque } \left(\frac{R_r^{'}}{\omega_r}\right) = (N_r^{'} - L_s) \Rightarrow \omega_{r \max} = \frac{R_r^{'}}{N_r^{'} - L_s}$$

$$C_{e \max} = \frac{3pL_s^2}{2(N_r^{'} - L_s)}I_s^2$$

18- Quel type de commande il est important de faire afin de maintenir le $C_e = C_{e \max}$ disponible quel que soit la fréquence.

Exercice2

On désire varie la vitesse d'un MAS alimentée en tension dans le régime permanent par la commande scalaire.

On donne: $V_s = 220V$, f = 50Hz, p = 2, $n_n = 1470r/\min$, $R_r = 1,05\Omega$, $N_r = 32mH$, $L_s = 15,15mH$.

Partie1:

- 1- Le schéma équivalent du moteur asynchrone ramené au stator avec fuites magnétiques totalisées au rotor
- 2- Quelle condition faut-il remplir pour négliger la résistance R_s?
- 3- Donner l'expression de la tension V_s en fonction de I_r .

$$V_s = \sqrt{\left(\frac{R_r^{'}}{g}\right)^2 + \left(g\omega_s N_r^{'}\right)^2} J_r^{'} \qquad \text{(voir l'exercice 1)}$$

 $\begin{array}{c|c}
\underline{I}_{S} & R_{S} & J\omega_{S} & \underline{I}_{r} \\
\hline
 & j\omega_{S} L_{S} & \underline{I}_{S} & \underline{R}_{r} \\
\hline
\end{array}$

4- Le couple électromagnétique développé peut se mettre sous la forme:

$$C_e = \frac{3pV_s^2}{\omega_s} \frac{\frac{R_r}{g}}{\left(\frac{R_r}{g}\right)^2 + \left(N_r\omega_s\right)^2}$$
 (voir l'exercice 1)

5- Montrer que lorsque le glissement est maximal, le couple électromagnétique maximal $C_{e\,{
m max}}$ est donné par:

$$C_{e \max} = k \left(\frac{V_s}{f} \right)^2$$
 (voir l'exercice 1) avec $k = \frac{3p}{8\pi^2 N_r} = 23.43 \Rightarrow C_{e \max} = 103Nm$

5-1 Calculer la valeur de la vitesse correspondant le couple max.

$$g_{\text{max}} = \frac{n_s - n(g_{\text{max}})}{n_s} \Rightarrow n(g_{\text{max}}) = (1 - g_{\text{max}})n_s = (1 - g_{\text{max}})\frac{f}{p} 60$$

$$g_{\text{max}} = \frac{R_r^{'}}{\omega N_s^{'}} = \frac{1,05}{2\pi 50.32 \cdot 10^{-3}} = 0.1$$

Donc $n(g_{\text{max}}) = 1350 tr/\text{min}$

6- Donner l'expression du couple C_e en fonction des $C_{e\,\mathrm{max}}$, g et $g_{\,\mathrm{max}}$ et calculer K, $g_{\,\mathrm{max}}$ et $C_{e\,\mathrm{max}}$

$$g = \frac{1500 - 1470}{1500} = 0.02$$

$$C_{e} = \frac{3pV_{s}^{2}}{\omega_{s}} \frac{R_{r}^{'}/g}{\left(R_{r}^{'}/g\right)^{2} + \left(N_{r}^{'}\omega_{s}\right)^{2}} = \frac{3pV_{s}^{2}}{2N_{r}^{'}\omega_{s}\omega_{s}} \frac{2N_{r}^{'}\omega_{s}R_{r}^{'}/g}{R_{r}^{'}/g} = 2C_{e\max} \frac{1}{\left[\left(R_{r}^{'}/g\right) + \left(N_{r}^{'}\omega_{s}\right)^{2}\right]} = 2C_{e\max} \frac{1}{\left[\left(R_{r}^{'}/g\right) + \left(N_{r}^{'}\omega_{s}\right)^{2}/g\right]} = C_{e\max} \frac{1}{\left[\left(R_{r}^{'}/g\right) + \left(N_{r}^{'}\omega_{s}\right)^{2}/g\right]} = C_{e\max} \frac{1}{\left[\left(R_{r}^{'}/g\right) + \left(N_{r}^{'}\omega_{s}\right)^{2}/g\right]} = C_{e\max} \frac{1}{\left(0.1/2.02\right) + \left(0.02/2.1\right)} = 39,61Nm \quad \text{lorsque} \quad g_{\max} = \frac{R_{r}^{'}}{\omega_{s}N_{r}^{'}}$$

6-1- Calculer le couple de démarrage C_{ed} .

le couple de démarrage C_{ed} correspondent $g_d = 1$

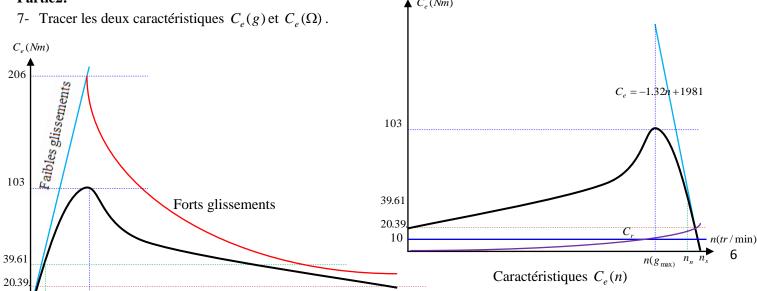
$$C_{ed} = \frac{2.103}{(0.1/1) + (1/0.1)} = 20,39Nm$$

6-2- Calculer les valeurs efficaces des courants I_r , I_s et I_s

$$I_r' = \frac{V_s}{\sqrt{\left(\frac{R_r'}{g}\right)^2 + \left(g\omega_s N_r'\right)^2}} = \frac{220}{\sqrt{\left(\frac{1,05}{0,02}\right)^2 + \left(0,02.2\pi.50.32.10^{-3}\right)^2}} = 4,19A$$

$$I_{r}^{'} = \frac{\omega_{s}L_{s}}{\sqrt{\left(\frac{R_{r}^{'}}{g}\right)^{2} + \omega_{s}^{2}(N_{r}^{'} - L_{s})^{2}}}I_{s} \Rightarrow I_{s} = \frac{\sqrt{\left(\frac{R_{r}^{'}}{g}\right)^{2} + \omega_{s}^{2}(N_{r}^{'} - L_{s})^{2}}}I_{r}^{'} = \frac{\sqrt{\left(\frac{1,05}{0,02}\right)^{2} + \left(314,14\right)^{2}\left(32.10^{-3} - 15.15.10^{-3}\right)^{2}}}{314,14.15,15.10^{-3}}4,19$$

$$I_s = 46.5A I_s' = \sqrt{(I_s)^2 + (I_r')^2} = 46.68A$$



- 8- Donner les expressions des différents parties des deux caractéristiques.
 - 8-1- l'expression du couple dans la partie droite (Zone utile) correspondants les faibles glissements c-à-d $g \prec \prec g_{max}$.

$$C_e = \frac{2C_{e \max}}{\left(g_{\max}/g\right)} = \frac{2C_{e \max}}{g_{\max}}g$$
 lorsque $\left(g/g_{\max}\right) \to 0$

8-2- l'expression du couple dans la partie hyperbole correspondants les forts glissements c-à-d $g \succ \succ g_{\text{max}}$..

$$C_e = \frac{2C_{e \max}}{\binom{g}{g_{\max}}} = 2g_{\max}C_{e \max} \frac{1}{g} \quad \text{lorsque} \quad \binom{g_{\max}}{g} \to 0$$

$$\frac{2C_{e\,\text{max}}}{g_{\,\text{max}}}g = 2g_{\,\text{max}}C_{e\,\text{max}} \frac{1}{g} \Rightarrow \frac{g}{g_{\,\text{max}}} = \frac{g_{\,\text{max}}}{g} \Rightarrow g = g_{\,\text{max}} \Rightarrow C_{e} = 2C_{e\,\text{max}}$$
 le point d'intersection entre les deux graphes.

- 8-3-l'expression du couple dans la partie droite de la caractéristique $C_{e}(n)$ en fonction de n.
- 8-4- l'expression du couple dans la partie droite est une équation de la forme $C_e = An + B$ lorsque la droite non passe pas par l'origine.

$$C_e = An + B \begin{cases} \dot{a} & n = 1500 \Rightarrow C_e = 0 = 1500A + B \\ \dot{a} & n = 1470 \Rightarrow C_e = 39.61 = 1470A + B \end{cases} \Rightarrow \begin{cases} A = -1.32 \\ B = 1981 \end{cases}$$
 donc
$$C_e = -1.32n + 1981$$

- 9- Calculer la vitesse pour une fréquence de 40Hz et 0.8 du couple nominale.
- 10-Calculer la fréquence pour une de vitesse 1050tr/min et un couple nominale.
- 11-Calculer le couple pour une fréquence de 30Hz et une vitesse de 1100tr/min.

Partie3: Ce moteur entraîne une charge dont le couple résistant est constant et égal à 6 Nm.

12- Le démarrage en charge du moteur est-il possible?

Oui par ce que le couple de démarrage du moteur (30.39 Nm) est supérieur au couple résistant (10 Nm).

13-Déterminer la vitesse de rotation de l'ensemble en régime établi.

En régime établi, le couple moteur compense exactement le couple résistant c-à-d $C_e = C_r$.

$$C_e = C_r \Rightarrow -1.32n + 1981 = 10$$
 donc $n = 149318tr/$ min

14- Calculer la puissance transmise à la charge par le moteur.

la puissance transmise à la charge par le moteur est donné par: $P_{tr} = C_e \cdot \Omega = \frac{C_e \cdot 2\pi n}{60} = \frac{10.2\pi \cdot 149318}{60} = 156286Wat$

- 15-Ce moteur est entraîner une pompe dont le couple résistant est donné par : $C_r = 10^{-5} n^2$ avec C_r en Nm et n en tr/min.
 - 14-1- Représenter sur le graphique précédent la courbe $C_r(n)$.

$$C_r = 10^{-5} n^2 \Rightarrow \begin{cases} n = 1500 \Rightarrow C_r = 22.5Nm \\ n = 1350 \Rightarrow C_r = 18.22Nm \end{cases}$$

14-2- En régime établi, déterminer la vitesse de rotation de l'ensemble ainsi que le couple utile du moteur.

En régime établi, le couple moteur compense exactement le couple résistant c-à-d $C_e = C_r$.

 $C_p = C_r \Rightarrow 10^{-5} n^2 + 1.32 n - 1981 = 0$ Cette équation possède deux solutions dont une physiquement acceptable :

$$n = \frac{(-1.32 + \sqrt{(1.32^2 + 4.10^{-5}.1981)})}{2.10^{-5}} = 1450 \text{ min}$$

Le couple utile du moteur $C_e = 10^{-5} n^2 = 1450^2 \cdot 10^{-5} = 21.025 Nm$

Partie4:

16- Montrer que la tension statorique est exprimée en fonction du flux statorique par la rolation: la tension rotorique sous forme complexe est donné par:

$$\underline{V}_r = 0 = R_r \underline{I}_r + j\omega_r L_r \underline{I}_r + j\omega_r M \underline{I}_s$$

A partir de cette équation, en déduit le courant rotorique en fonction du courant statorique:

$$\underline{I}_r = -\frac{j\omega_r M}{R_r + j\omega_r L_r} \underline{I}_s$$

Le flux statorique est donné par:

$$\phi_{s} = L_{s} \underline{I}_{s} + M \underline{I}_{r}$$

En reportant l'équation du courant rotorique en fonction du courant statorique dans l'équation de flux statorique on obtient:

$$\underline{\phi}_{s} = L_{s}\underline{I}_{s} + M\left(-\frac{j\omega_{r}M}{R_{r} + j\omega_{r}L_{r}}\underline{I}_{s}\right) = (L_{s} - \frac{j\omega_{r}M^{2}}{R_{r} + j\omega_{r}L_{r}})\underline{I}_{s} = L_{s}(1 - \frac{j\omega_{r}\frac{M^{2}}{L_{s}}}{R_{r} + j\omega_{r}L_{r}})\underline{I}_{s}$$

$$\Rightarrow \underline{I}_{s} = \frac{\underline{\phi}_{s}}{L_{s}}\left(\frac{R_{r} + j\omega_{r}L_{r}}{R_{r} + j\omega_{r}L_{r}\sigma}\right) \Rightarrow I_{s} = \frac{\underline{\phi}_{s}}{L_{s}}\left(\sqrt{\frac{1 + \left(\frac{\omega_{r}L_{r}}{R_{r}}\right)^{2}}{1 + \left(\frac{\omega_{r}L_{r}\sigma}{R_{r}}\right)^{2}}}\right)$$

la tension statorique sous forme complexe est donné par:

$$\underline{V}_s = R_s \underline{I}_s + j\omega_s L_s \underline{I}_s + j\omega_s M \underline{I}_r$$

En reportant l'équation du courant rotorique en fonction du courant statorique dans l'équation de la tension statorique on obtient:

$$\underline{V}_{s} = R_{s}\underline{I}_{s} + j\omega_{s}L_{s}\underline{I}_{s} + \frac{\omega_{s}\omega_{r}M^{2}}{R_{r} + j\omega_{r}L_{r}}\underline{I}_{s} = \left[R_{s} + j\omega_{s}L_{s} + \frac{\omega_{s}\omega_{r}M^{2}}{R_{r} + j\omega_{r}L_{r}}\right]\underline{I}_{s}$$

$$\underline{V}_{s} = \left[R_{s} + j\omega_{s}L_{s} + \frac{\omega_{s}\omega_{r}\frac{M^{2}}{R_{r}}}{1 + j\omega_{r}\frac{L_{r}}{R_{r}}} \right] \underline{I}_{s} = \left[R_{s} + \frac{j\omega_{s}L_{s} - \omega_{s}L_{s}\omega_{r}\frac{L_{r}}{R_{r}} + \omega_{s}\omega_{r}\frac{M^{2}}{R_{r}}}{1 + j\omega_{r}\frac{L_{r}}{R_{r}}} \right] \underline{I}_{s}$$

$$\underline{V}_{s} = \left[\frac{R_{s} \left(1 + j\omega_{r} \frac{L_{r}}{R_{r}} \right)}{1 + j\omega_{r} \frac{L_{r}}{R_{r}}} + \frac{j\omega_{s}L_{s} - \omega_{s}\omega_{r} \frac{L_{s}L_{r}}{R_{r}} + \omega_{s}\omega_{r} \frac{M^{2}}{R_{r}}}{1 + j\omega_{r} \frac{L_{r}}{R_{r}}} \right] \underline{I}_{s}$$

$$\underline{V}_{s} = \frac{R_{s}}{1 + j\omega_{r}} \left[\left(1 + j\omega_{r} \frac{L_{r}}{R_{r}} \right) + j\omega_{s} \frac{L_{s}}{R_{s}} - \omega_{s}\omega_{r} \frac{L_{s}L_{r}}{R_{s}R_{r}} + \omega_{s}\omega_{r} \frac{M^{2}}{R_{s}R_{r}} \right] \underline{I}_{s}$$

$$\underline{V}_{s} = \frac{R_{s}}{1 + j\omega_{r} \frac{L_{r}}{R_{r}}} \left[\left(1 + j\omega_{r} \frac{L_{r}}{R_{r}} \right) + j\omega_{s} \frac{L_{s}}{R_{s}} - \omega_{s}\omega_{r} \frac{L_{s}L_{r}}{R_{s}R_{r}} + \omega_{s}\omega_{r} \frac{L_{r}L_{s}M^{2}}{R_{s}R_{r}L_{r}L_{s}} \right] \underline{I}_{s}$$

$$\underline{V}_{s} = \frac{R_{s}}{1 + j\omega_{r}} \left[\left(1 + j\omega_{r} \frac{L_{r}}{R_{r}} \right) + j\omega_{s} \frac{L_{s}}{R_{s}} - \omega_{s}\omega_{r} \frac{L_{s}L_{r}}{R_{s}R_{r}} (1 - \frac{M^{2}}{L_{r}L_{s}}) \right] \underline{I}_{s}$$

$$\underline{V}_{s} = \frac{R_{s}}{1 + j\omega_{r}} \left[\left(1 + j\omega_{r} \frac{L_{r}}{R_{r}} \right) + j\omega_{s} \frac{L_{s}}{R_{s}} - \omega_{s}\omega_{r} \frac{L_{s}L_{r}}{R_{s}R_{r}} \sigma \right] \underline{I}_{s}$$

$$\underline{V}_{s} = \frac{R_{s}}{1 + j\omega_{r}} \left[1 + j(\omega_{r} \frac{L_{r}}{R_{r}} + \omega_{s} \frac{L_{s}}{R_{s}}) - \omega_{s}\omega_{r} \frac{L_{s}L_{r}}{R_{s}R_{r}} \sigma \right] \underline{I}_{s}$$

$$V_s^2 = \frac{R_s^2}{1 + \left(\omega_r \frac{L_r}{R_r}\right)^2} \left[\left(1 - \omega_s \omega_r \frac{L_s L_r}{R_s R_r} \sigma\right)^2 + (\omega_r \frac{L_r}{R_r} + \omega_s \frac{L_s}{R_s})^2 \right] I_s^2$$
avec
$$I_s^2 = \frac{\phi_s^2}{L_s^2} \left(\frac{1 + \left(\frac{\omega_r L_r}{R_r}\right)^2}{1 + \left(\frac{\omega_r L_r \sigma}{R_r}\right)^2} \right)$$

$$V_s^2 = \frac{R_s^2}{1 + \left(\omega_r \frac{L_r}{R_r}\right)^2} \frac{\phi_s^2}{L_s^2} \left[\left(1 - \omega_s \omega_r \frac{L_s L_r}{R_s R_r} \sigma\right)^2 + \left(\omega_r \frac{L_r}{R_r} + \omega_s \frac{L_s}{R_s}\right)^2 \right] \frac{1 + \left(\frac{\omega_r L_r}{R_r}\right)^2}{1 + \left(\frac{\omega_r L_r}{R_r}\right)^2}$$

$$V_s^2 = R_s^2 \frac{\phi_s^2}{L_s^2} \left[\frac{\left(1 - \omega_s \omega_r \frac{L_s L_r}{R_s R_r} \sigma\right)^2 + (\omega_r \frac{L_r}{R_r} + \omega_s \frac{L_s}{R_s})^2}{1 + \left(\frac{\omega_r L_r \sigma}{R_r}\right)^2} \right]$$

$$V_{s} = \omega_{s} \phi_{s} \sqrt{\frac{\left(\frac{R_{s}}{\omega_{s} L_{s}} - \sigma \omega_{r} \tau_{r}\right)^{2} + \left(1 + \frac{\omega_{r} \tau_{r} R_{s}}{\omega_{s} L_{s}}\right)^{2}}{1 + \left(\sigma \omega_{r} \tau_{r}\right)^{2}}} \text{ Avec } \tau_{r} = \frac{L_{r}}{R_{r}}$$

17-Lorsque $L_r \prec \prec R_r$, donner l'expression de la tension statorique.

$$L_r \prec \prec R_r \Rightarrow \tau_r \to 0 \quad \text{donc} \quad V_s = \omega_s \phi_s \sqrt{\frac{\left(\frac{R_s}{\omega_s L_s} - 0\right)^2 + (1 + 0)^2}{1 + (0)^2}} = \omega_s \phi_s \sqrt{\left(\frac{R_s}{\omega_s L_s}\right)^2 + 1}$$

18-Donner l'expression de la tension statorique lorsqu'on néglige R_s.

$$V_{\rm s} = \omega_{\rm s} \phi_{\rm s}$$

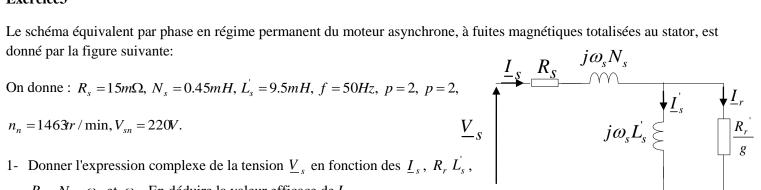
19- Que signifie le rapport V_s / f et quel est l'intérêt de garder ce rapport constant ?

 $\frac{V_s}{f}$ signifie l'émage de flux statorique et en garder ce rapport constant afin de varie le couple avec flux constant c-à-d pour réalisé le découplage entre le flux et le couple.

Exercice3

Le schéma équivalent par phase en régime permanent du moteur asynchrone, à fuites magnétiques totalisées au stator, est

$$n_n = 1463 tr / \min_{s}, V_{sn} = 220 V.$$



- R_s , N_s , ω_s et ω_r . En déduire la valeur efficace de I_{sn} .
- 2- Donner les expressions complexe des courants (SR) \underline{I}_r et \underline{I}_s en fonctions des \underline{I}_s , R_r , L_s , et ω_r . Calculer I_{rn} et I_{sn} .
- 3- Donner l'expression du couple C_e en fonction des I_s , R_r , L_s , et ω_r . Calculer C_{en} .
- 4- Donner l'expression du couple $\,C_{e\,{
 m max}}\,$ en fonction de I_{s} .Calculer $g_{\,{
 m max}}\,$ et $\,C_{e\,{
 m max}}\,$.
- 5- Calculer la valeur de la vitesse correspondant le couple max.
- 6- Donner l'expression du courant I_r en fonction des C_e , R_r , g, et ω_s .
- 7- Tracer les deux caractéristiques $C_e(g)$ et $C_e(\Omega)$.
- 8- Calculer les valeurs efficaces I_r , I_s et I_s pour un glissement de 1.2% et un couple de 20Nm.
- 9- Calculer les puissances P,Q et S absorbées au réseau.
- 10- A l'aide de la relation d'autopilotage $\theta_s = \theta_r + \theta$ et le rapport V_s / f constant.
 - 10-1- Donner le schéma de la commande scalaire en courant et expliquer le rôle des différentes parties de chaque schéma.