Université de M'sila

Faculté : MI Département : d'informatique Année Universitaire : 2021 / 2022

2^{ème} Année Licence (2L)

Nom:
Prénom:
Groupe :

Ι	Date: 06/06/2022 Examen de Systemes d'Exploitation I Durée: 1h30 - Documentation non autorisée
Ex	xercice 1 : (Questions de Cours : 9 pts) (30 minutes)
	artie A) (QCM) Mettez une croix sur une seule réponse (1.5 pts). 1'ordonnancement Rond Robin:
1.	Favorise les processus qui sont susceptibles d'avoir un temps CPU court.
	Favorise les processus à priorité élevée.
	☐ Ajuste dynamiquement la priorité des processus en fonction de leur utilisation du CPU passé.
	Donne à chaque processus une part égale de temps CPU
2.	Laquelle parmi les transitions suivantes n'est pas supportée par l'ordonnancement sans préemption :
3.	Quand est-ce la préemption peut avoir lieu?
•	☐ Lorsqu'un quantum expire. ☐ Quand un processus demande une Entrée/Sortie.
	☐ Lorsqu'un processus se termine sur erreur. ☐ Lorsque le processus moins prioritaire arrive.
Pa	artie B) Qui suis-je ? (2.5 pts)
	Je suis le premier programme qui est lancé à la mise sous tension de l'ordinateur.
2.	Je suis une structure de donnée contenant toutes les informations relatives à un processus donné (PID, état, fichiers ouverts,).
3.	Je suis un appel système qui permet de créer un processus
4.	Je suis un appel système qui affiche le PID du processus père.
5.	Je suis la version avec réquisition de l'algorithme d'ordonnancement SJF.
Pa	artie C) (Questions de Compréhension : 5 pts)
1.	Pourquoi l'algorithme d'ordonnancement SJF n'est-il pas réellement applicable ?
2.	Quel est l'effet de la diminution du quantum sur les performances de l'algorithme RR (tourniquet)?
۷.	Quer est refret de la diffinitation du quantum sur les performances de l'argorithme RR (tourniquet).

1/4 Dr. A. DABBA

 I. Po												
. Po		•••••										
tra			nsitions suivan (Mettez une 2		-	ibles d'un pro	ocessus, indi	quez si la				
					Transitio	n possible.	Transition	n impossible.				
			cution (actif) -									
ļ	` '		cution (actif) -	> bloqué								
	(c) prêt -> 1			(
	· · · •		ours d'exécution	on (actii)								
	(e) bloqué	-> termi	ne									
lo	•	rtir de la	ant la segment a table des seg	-			-					
	Segment	Base	Limite	Adress	se logique	Ad	lresse physi	que				
	0	1100	500	<0,	300>							
	1	2500	1000	<2,	, 800>							
	2	200	600	<1,	600>							
	3	4000	1200	<1,	1111>	•••••	• • • • • • • • • • • • • • • • • • • •					
Exer	cice 2 : (Ges	tion de	s Processus :	8 pts) (40 1	minutes)							
Parti	e A) (3 pts)											
		archite	ecture monopr	ocesseur de	ans laquelle	on désire ev	écuter l'ens	emble des pro				
uiva		arcinic	cture monopro	occsseur de	ins raquerie	on desire ex	ceuter i ens	emore des pre				
]	Processus					7				
				A	В	C	D					
		Da	te d'arrivée	0	B 0	1	D 5	-				

Dr. A. DABBA 2/4

SJF	
TRM=	

Partie B) (5 pts)

Considérons l'exécution de trois programmes A, B et C sur une configuration monoprocesseur (CPU, MC, périphériques d'E/S). On suppose qu'à l'instant t=0, la liste de processus à l'état prêt renferme les programme A, B et C. ceux-ci ont été soumis au système dans cet ordre et effectuant du calcul et des entrées/sortie selon les temps donnés ci-dessous :

	A	В	C
Temps d'exécution sur le CPU	3	4	3
E/S	7	2	3
Temps d'exécution sur le CPU	2	3	2
E/S	3	2	
Temps d'exécution sur le CPU	1	1	

1. On considère que l'ordonnancement sur le processeur se fait selon une politique à priorité préemptible : le processus élu à un instant t est celui qui est le processus prêt de plus forte priorité. On donne : priorité (A) > priorité (B) > priorité (C). On considère que l'ordre de service des requêtes d'E/S pour le disque se fait toujours selon une politique FIFO (Algorithme 1).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
CPU																									
File d'attente																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Disque																									
File																									
d'attente																									

2. On considère que l'ordonnancement sur le processeur se fait selon une politique tourniquet avec un quantum de 2 unités de temps. On suppose que l'ordre d'arrivée a été A puis B puis C. On considère que l'ordre de services des requêtes d'E/S pour le disque se fait en FIFO (**Algorithme 2**).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
CPU																									
File d'attente																									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Disque																									
File																									
d'attente																									

Dr. A. DABBA 3/4

3. Donnez les temps de réponse moyen pour chacun des 2 algorithmes précédents ? Calculer pour chaque algorithme le rendement (\mathbf{R}) (ou le taux d'occupation) du processeur.

	TRM	R
Algorithme 1		
Algorithme 2		

Exercice 3: (Gestion des processus: 3 pts) (20 minutes)

1. Quel est le résultat d'exécution de ce code (1.5 pts)	2. Préciser le nombre de processus créer et dessiner l'arbre généalogique des processus engendrées par le programme suivant : (1.5 pts)
<pre>int main (void) { pid_t p=1 ; while (p>0) p=fork(); printf (" Je suis %d \n " , getpid()) ; return 0 ; }</pre>	<pre>int main() { int temp = 0; while (temp < 5) { if (fork() > 0) temp++; else temp = 5; }</pre>
Résultat d'exécution	L'arbre généalogique Nombre de processus créer :

Bon courage

Dr. A. DABBA 4/4