

1

Watermarking Source Code

version 0.5

Peter Meerwald
Dept. of Computer Sciences, University of Salzburg Jakob-Haringer-Str. 2, A-5020 Salzburg, Austria

Abstract

This package provides source code for some watermarking algorithms in hopefully portable C code. The programs can
be used to study watermarking techniques, per- form comparative robustness tests and develop new attacks against
embedded water- marks.

However, the provided programs are by no means suitable for real-world application (i.e. copyright protection) and

the code solely serves some educational purpose.

1 Introduction

Academic research in the watermarking field has grown dramatically since approximately 1995. But
surprisingly, source code for the proposed watermarking schemes has not been made available. The reason is
most likely the security of many watermarking systems lies at least to some extent in the embedding and
detection algorithm itself, and not in the keys used – violating the Kerckhoff principle [1].

With the availability of public robustness test for watermarking algorithms, StirMark [4, 3, 5], Unzign1
 and very

recently Checkmark[2], the situation begins to improve. Now it is possible to measure the performance of
watermarking systems.

In order the compare and evaluate new embedding and detection techniques, it is also necessary to have
some reference implementations of the older, now often called classical schemes. In this work, we provide
some implementations of watermarking schemes, some of which can be considered ’classical’.

It was the goal to capture the main ideas of the proposed algorithms, as layed out in the respective papers.
This is clearly not an easy task as some papers do not disclose all details or state which particular parameters
were used to obtain the results outlined in the communications.

2 Software

The software in the archive is organized in the following sub-directories:

Meerwald/ contains the work

images/ contains the Lena image in PGM format; the default parameters of most algorithms are tuned to
work best with that image

make/ contains the Makefile options to build the code on supported platforms

For the purpose of this software package, a watermarking system comprises four parts, namely: signature
generation, watermark embedding, watermark extraction and signature comparison or detection. Signature is
used more less as a synonym for mark and can be thought of as the payload (at least for some schemes).

All programs only accept the image in NetPBM format and will also produce only NetPBM-format files (see

section 4.1). Unfortunately, most programs have only been tested with 8-bit gray-scale images of size 512 ×
512.

In order to simplify batch testing, the programs allow to read either from a file, e.g.

wm_cox_e -s cox.sig image.pgm

or from standard input, i.e. wm_cox_e -s cox.sig < image.pgm

The output is usually written to standard output, i.e. wm_cox_e -s cox.sig image.pgm > wm_image.pgm

unless redirected to a file, e.g.

wm_cox_e -s cox.sig -o wm_image.pgm image.pgm

2

2.1 List of Algorithms

1- Bruyndonckx, refer to

o O. Bruyndonckx, Jean-Jacques Quisquater, and Benoit M. Macq. Spatial method for copyright labeling
of digital images. In IEEE Workshop on Nonlinear Signal and Image Processing ’95, Thessaloniki,
Greece, pages 456 - 459, 1995.

2- Corvi, refer to

o Marco Corvi and Gianluca Nicchiotti. Wavelet-based image watermarking for copyright protection. In
Scandinavian Conference on Image Analysis SCIA ’97, Lappeenranta, Finland, June 1997.

3- Cox, refer to

o Ingemar J. Cox, Joe Kilian, Tom Leighton, and Talal G. Shamoon. Secure spread spectrum watermarking
for multimedia. In Proceedings of the IEEE ICIP ’97, volume 6, pages 1673 - 1687, Santa Barbara,
California, USA, 1997.

4- Dugad, refer to

o Rakesh Dugad, Krishna Ratakonda, and Narendra Ahuja. A new wavelet-based scheme for watermarking
images. In Proceedings of the IEEE International Conference on Image Processing, ICIP ’98, Chicago, IL, USA,
October 1998.

5- Fridrich (2. scheme), refer to

o Jiri Fridrich. Combining low-frequency and spread spectrum watermarking. In Proceedings of the SPIE
Symposium on Optical Science, Engineering and Instrumentation, San Diego, USA, July 1998.

6- Kim, refer to

o Jong Ryul Kim and Young Shik Moon. A robust wavelet-based digital watermark using level-adaptive
thresholding. In Proceedings of the 6th IEEE International Conference on Image Processing ICIP ’99,
page 202, Kobe, Japan, October 1999.

7- Koch, refer to

o Eckhard Koch and Jian Zhao. Towards robust and hidden image copyright labeling. In Proceedings of
the IEEE International Workshop on Nonlinear Signal and Image Processing, pages 452 - 455, Halkidiki,
Marmaras, Greece, June 1995.

8-9-10 Kundur [3 variants], refer to

o Deepa Kundur and Dimitrios Hatzinakos. Digital watermarking using multiresolution wavelet
decomposition. In Proceedings of IEEE ICASSP ’98, volume 5, pages 2969-2972, Seattle, WA, USA, May
1998.

o Deepa Kundur and D. Hatzinakos. Diversity and attack char acterization for improved robust
watermarking. IEEE Transactions on Signal Processing, 29(10):2383-2396, October 2001.

11- Wang, refer to

o Houng-Jyh Wang, Po-Chyi Su, and C.-C. Jay Kuo. Waveletbased digital image watermarking. Optics
Express, volume 3, pp. 497, December 1998.

12- Xia, refer to

o Xiang-Gen Xia, Charles G. Boncelet, and Gonzalo R. Arce. Wavelet transform based watermark for
digital images. Optics Express, volume 3, pp. 497, December 1998.

13-14 Xie [2 variants], refer to

o Liehua Xie and Gonzalo R. Arce. Joint wavelet compression and authentication watermarking. In
Proceedings of the IEEE International Conference on Image Processing, ICIP ’98, Chicago, IL, USA,
1998.

15- Zhu, refer to

o Wenwu Zhu, Zixiang Xiong, and Ya-Qin Zhang. Multiresolution watermarking for images and video: a
unified approach. In Proceedings of the IEEE International Conference on Image Processing, ICIP ’98,
Chicago, IL, USA, October 1998.

2.2 Utility programs

A good way to check the effect of a watermarking algorithm is computing the difference image, i.e. subtracting
the original image from the watermarked image. Alternatively, one can also have a look at the modified
coefficients in the transform domain. The following programs facilitate these tasks:

cmp_pgm compute difference image, PSNR, ...

cmp_dct compute full-frame DCT domain difference image

cmp_dct8x8 compute 8x8 block-based DCT difference image

cmp_dwt compute DWT domain difference image

For example, to produce the difference image of two PGM files and compute the PSNR along with some other

3

measures, the following command can be used: cmp_pgm -p -i original.pgm -o diff.pgm watermarked.pgm

3 Usage

Note, almost all programs will output usage information if called with the –h argument.

3.1 Generating a mark

First, you have to generate an appropriate signature file for the corresponding embedding/detection
algorithm; e.g. if you are going to use Cox’ scheme, then you would run

gen_cox_sig

The programs outputs some parameters and a sequence of Gaussian distributed random numbers (which is the
watermark sequence). You want to save that into a signature file, so you run

gen_cox_sig > cox.sig or gen_cox_sig -o cox.sig

You can influence e.g. the embedding strength that will be used in the embed- ding step by running

gen_cox_sig -a 0.5 > too_strong_cox.sig

Usually, the programs for generating a signature will supply reasonable default values for marking a 8-bit

gray-scale image of size 512 × 512.

3.2 Watermark embedding

Watermark embedding is performed with the following command (for our ex- ample, we are using Cox’
scheme):

wm_cox_e -s cox.sig -o cox_lena.pgm lena.pgm

The signature file is parsed to obtain the particular watermark sequence and the embedding strength. The
watermarked image is written to the file cox_lena.pgm. Now it the time to check the perceptual quality of the
produced image and also have a look at the difference image (see section 2.2).

3.3 Watermark extraction

To extract the embedded signature, we execute the command

wm_cox_d -s cox.sig -i lena.pgm -o cox.wm cox_lena.pgm

Since Cox’ algorithm is not blind, the original image is needed as a reference to extract the embedded mark.
The embedded mark will be stored in cox.wm. The original signature, cox.sig, is used to get the auxiliary
embedding parameter correct (e.g. embedding strength).

3.4 Comparing the mark

The final step is comparing the original signature against the extracted signature. The result here is usually a
correlation factor. Values around 0 indicate that the mark has not been found, values around 1.

In most programs an analytical detection threshold for some detection probability is not used. Hence, one has
to observe the output of the detector for many different keys (around 1000 I’d suggest) to establish a
reasonable threshold for detection. A good value to go with initially might be 0.2 which means we claim the
watermark detected if the correlation factor is > 0.2.

The appropriate command for comparing the mark is

cmp_cox_sig -s cox.sig cox.wm

3.5 Batch testing - benchmarking

If you want to run many test you can pipe the images to be do be watermarked (and tested) through the
embedder and detector. The programs then act like a filter. Try something like the following in a Unix shell
script:

gen_cox_sig > cox.sig for i in *.pgm

do

wm_cox_e -s cox.sig $i | \ wm_cox_d -s cox.sig -i $i | \ cmp_cox_sig -s cox.sig

done

4

4 Recompiling

Note, that most watermark embedding/extraction programs use the built-in random number generator of the
C library, i.e. srandom() and random(). There- fore, if you recompile, chances are that you won’t be able to use
your images watermarked with the previous version.

The Makefile options for compiling on the different platforms can be found in the make/ sub-directory of the
archive.

4.1 Prerequisites

4.1.1 NetPBM

NetPBM is responsible for image file I/O and provides a definition of a simple image file format along with
many image file format filters that allow to convert images to and from NetPBM format.

You need to get and install the NetPBM library at http://wuarchive.wustl.
edu/graphics/graphics/packages/NetPBM/ or http://netpbm.sourceforge. net. The library provides
pgm.h and the appropriate implementation.

4.1.2 getopt

When compiling on Windows, the getopt() function call required. An imple- mentation of getopt() can be
found in the NetPBM package.

4.2 Unix/Linux platform

All programs were developed using Linux and GNU C. The programs should compile and work with all
recent versions of Linux and GNU C.

4.3 Win32 platform

The programs were ported to the Windows platform using the Cygwin and Mingw environment. Most notable,
the file mode for standard input and stan- dard output has to be set to binary mode. This is accomplished with
the setmode() or _fsetmode() commands.

5 FAQ

Q: The compiler complains about pgm.h?

A: You need to get and install the NetPBM library, see section 4.1.

Q: What is the best algorithm?

A: Depends on your application.

Q: What is the most robust algorithm?

A: Depends on the attack. See some results on http://www.cosy.sbg.ac.at/~pmeerw/Watermarking.

Q: I need code for a full-frame DCT?

A: See the files Meerwald/dct.* in the archive.

Q: I need code for a 8x8 block DCT?

A: See the files Meerwald/dct.* in the archive.

Q: I need code for the wavelet transform (DWT)?

A: See the files Meerwald/wavelet.* in the archive.

Q: I get the message ’unable to open filter.dat’ - what to do?

A: Make sure the file filter.dat is in the current directory or accessible via path/filename specified in the
signature file. Use the signature generation command to specify an absolute path if necessary.

Q: I can’t compile the code using some Microsoft product?

A: Make your life easier, install GNU software! See section 4.

http://wuarchive.wustl./
http://netpbm.sourceforge/
http://www.cosy.sbg.ac.at/

5

References

[1] Auguste Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, 9:5–83, January 1883.

[2] Shelby Pereira, Sviatoslav Voloshynovskiy, M. Madueno, and Thierry Pun. Second generation
benchmarking and application oriented evaluation. In Proceedings of the 4th Information Hiding
Workshop ’01, volume 2137 of Lecture Notes in Computer Science, pages 340–353, Portland, OR, USA,
April 2001. Springer.

[3] Fabien A. P. Petitcolas and Ross J. Anderson. Weaknesses of copyright marking systems. In Multimedia
and Security Workshop at the 6th ACM International Multimedia Conference, pages 55–61, Bristol,
England, 1998.

[4] Fabien A. P. Petitcolas and Ross J. Anderson. Evaluation of copyright marking systems. In Proceedings of
IEEE International Conference on Multimedia Computing and Systems ’99, volume 1, pages 574–579,
Florence, Italy, June 1999.

[5] Fabien A. P. Petitcolas, Ross J. Anderson, and Markus G. Kuhn. Attacks on copyright marking systems.
In David Aucsmith, editor, Information Hiding: Second International Workshop, volume 1525 of Lecture
Notes in Computer Science, pages 218–238, Portland, OR, USA, April 1998. Springer Verlag, Berlin,
Germany.

