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3. 1 Introduction 

We presented in the previous chapter the design of IIR filters. Although these filters 

have advantages, they also have disadvantages. For example, if we want to use the advantage 

of the speed of the FFT, this is not possible and therefore we must use a FIR filter. On the 

other hand, it is clear that with an IIR filter, it is not possible to obtain a linear phase. With a 

FIR filter, it is possible to obtain exactly a linear phase. The transfer function of a causal FIR 

filter is of the form 
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H(z) is a polynomial in z-1 of order N-1. Thus, H(z) has (N-1) zeros that are located in the Z 

plane and (N-1) poles  of z = 0. The frequency response )( jweH  is the trigonometric 

polynomial  
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Each finite sequence is completely specified by N samples of its Fourier transform. So the 

design of a FIR filter is accomplished by finding either the coefficients of the impulse 

response or N samples of its frequency response. If the impulse response meets the condition   

)1()( nNhnh −−=                                                             (3.3) 

Then the filter has a linear phase.  Replacing (3.3) into (3.2), we have 

( )      

pair N                          
N

nnhe

impair N      ,
N

nnh
N

he

eH
N

n

Nj

N

n

Nj

j




























 −−
















 −−+






 −

=

∑

∑
−

=

−−

−

=

−−

,
2

1
(cos)(2

2

1
(cos)(2

2

1

12/

0

2/)1(

2/)3(

0

2/)1(

ω

ω

ω

ω

ω        (3.4) 

The condition of (3.3) implies a linear phase shift which corresponds to a delay of (N-

1)/2 samples. If N is odd, the phase offset is a delay of an integer number of samples. If N is 

even, this delay corresponds to an integer plus half a sample. This distinction between N is of 

great importance. Some examples are shown in Fig. 3.1. 

 
3. 2 FIR filter design by window method 

A direct approach to obtaining a finite impulse response is to truncate an infinite 

impulse response. If one assumes that ( )ωj
d eH  is an ideal frequency response desired, then 
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Fig. 3. 1  Typical impulse responses for linear phase FIR filters 

 
where hd(n) is the corresponding impulse response, i.e.,  
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In general, ( )ωj
d eH  for a selective frequency filter is a constant response with 

discontinuities at the boundaries between bands. In this case hd(n) is infinite and must be 

truncated to obtain a finite impulse response. Equations (3.5) can be considered as the 

representation of the Fourier series of the periodic frequency response ( )ωj
d eH  with hd(n) as 

the Fourier coefficients. If hd(n) is infinite, one way to obtain a causal and finite h(n)  

impulsive response is to simply truncate hd(n) as 
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En général, on peut représenter h(n) comme le produit de la réponse impulsionnelle désirée 

hd(n) avec une « fenêtre » )(nw i.e., 

In general, h(n) can be represented as the product of the desired impulse response hd(n) with a 

“window” )(nw i.e., 
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where 
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Using complex convolution 
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That is, ( )ωjeH  is the continuous periodic convolution of the desired frequency response with 

the window’s T.F. From (3.9), we see that if )( ωjeW  is narrow compared to the variations in 

( )ωj
d eH , then ( )ωjeH looks more like ( )ωj

d eH . Therefore, the choice of the window is 

dictated (inspired) by the desire to have w(n) as short as possible for reasons of calculation 

and )( ωjeW  as narrow as possible in frequency to be as close as possible to the desired 

response. These are two contradictory conditions. In the case of a rectangular window, we 

have 
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(i.e., the result of the geometric series, ∑
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Fig. 3. 2 sketches typical needed functions ( )ωj
d eH  and  )( θω−jeW  in (3.9). The magnitude 

of )( ωjeW is shown in Fig. 3.3 for N = 8. 

 

From (3.10), it is clear that the phase is linear. As N increases, the width of the main 

lobe decreases ( NN /2,/2 ππ− ). However, for a rectangular window, the secondary lobes 

are not insignificant and if N increases, the amplitude peaks of the primary and secondary 

lobes increase so that the area under each lobe is the same. By making the transition smoothly 

between 1 and 0. The heights of the secondary lobes can be decreased or depends on a larger 

main lobe and therefore wider transition band. 

Some examples of the most used windows for 10 −≤≤ Nn are given in Fig. 3. 4. 

- Rectangular window : 1)( =nw        
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Fig. 3. 2 (a) Convolution process involved in truncating the desired impulse response 
(b) Typical Result approximation from the desired window impulse response. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. 3 Magnitude of Module of rectangular window Fourier transform with N = 8. 
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Fig. 3. 4  Usual windows for truncation of hd(n) 

 
 

For the previously mentioned truncation windows, the basic parameters for designing 

a low-pass filter are summarized in Table. 3. 1. It is well noted that the values in this table are 

approximate and depend only on N and the break frequency. 

 

Table. 3. 1 Features of truncation windows. 

Fenêtre Pic d’amplitude du lobe 
secondaire (dB) 

Largeur de transition 
du lobe principal 

Atténuation minimale de la 
bande d’arrêt (dB) 

Rectangulaire 

Bartlett 

Hanning 

Hamming 

Blackman 

-13 

-25 

-31 

-41 

-57 

4π /N 

8π /N 

8π /N 

8π /N 

12π /N 

-21 

-25 

-44 

-53 

-74 

 

Pulse response of a linear phase FIR filter: 

A causal linear phase low-pass filter is considered. The desired frequency response is given 

by   
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The corresponding impulse response is given by 
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Clearly, hd(n) has an infinite duration. To create a linear phase causal linear filter of finite 

duration N, we define 

)().()( nwnhnh d=                                                    (3.13) 

where 
2

1−= Nα  (linear phase condition). 

It is easy to verify that if w(n) is symmetrical, the choice of results in a sequence h(n) that 

satisfies equation (3.3). 

 
3. 3 FIR filter design by frequency sampling method 

We have already seen that a finished sequence can be represented by its discrete 

Fourier transform.  So FIR filters have a representation in terms of frequency samples. 
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H(z) can be represented by its samples according to the expression 
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If ωjez = , the frequency response is obtained 
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Where 
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The approach is therefore to specify the filter in terms of these samples from a single period 

of its desired response (Fig. 3. 5). 
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(a) Fig. 3. 5. Samples of the ideal low-pass filter frequency response  
(a)  Sampling without transition 

(b)  Sampling with transition 
 

The phase is assumed to be linear with a duration of (N-1)/2 samples. The impulse response 

can be obtained using the discrete reverse Fourier transform as 
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The desired answers of the ideal filters considered in the field of signal processing are shown 

in Fig. 3. 6.  
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Fig. 3. 6. Frequency responses of ideal filters. 

 

3. 4 Performances comparison of IIR and FIR filters 

The Table. 3. 2 shows comparisons between SIR filters and FIR filters that may be 

encountered in practice. 

 

 

Table. 3. 2 IIR and FIR filters comparisons.  

Criterion FIR IIR 

Phase control yes no 

Complexity very low 

possible calculation by DFT 

low 

 

Stability 

 

always 
problem risk in the case of 

insufficient calculation 
accuracy 

Necessary coefficients 
number 

medium low 

Necessary calculation 
accuracy 

medium large enough 

Adapted to multi-
cadence 

yes no 
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Ideal pass-ban filter 
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3. 5 Recitation 

Exercise 1 :  

Calculate the impulse response, h(n) of a linear phase FIR low-pass filter (Fig. 1) with the 

following assumptions: 

N = 8, cω = 0.25π  and utilization of the following Hamming window 
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Fig. 1: FIR low-pass filter 

Exercise 2 :  

We also want to design a linear phase RIF low pass filter (Fig. 1) but with the use of the 

Hanning window with, N = 7 and cω = 0.2π . 

1) Calculate the impulse response coefficients. 

2) Calculate the frequency response phase and amplitude. 

 

Exercise 3 :  

We want to design a linear phase FIR band pass filter (see Fig. 2) using the Hamming window 

with:  

N = 7,  1ω  = 0.2π  and 2ω  = 0.4π . 

1) Calculate the impulse response coefficients. 

2) Calculate the frequency response phase and amplitude. 

 

 

 

 

 

 
 

 

Fig. 2 : Pass-band FIR filter. 

)( ωj
d eH  

ω  
cc      ωω−  

)( ωj
d eH  

ω  
2   ωω1  

1-   ωω2−  


