
II.4. Diagramme de prédominance des espèces

La forme logarithmique de la constante de dissociation est :

$$pL = \frac{1}{n} \left(pK_d + \log \frac{[I]}{[L_n I]} \right)$$

D'où le diagramme de prédominance des espèces (comme en acido-basique) :

Si on gradue un axe en pL=-log[L];

- Pour $pL = pK_d/n$ on a [I] = [LnI]
- $pL > pK_d$ on a [I] > [LnI]; on définit le domaine de prédominance de l'accepteur I.
- par contre, si pL < pK_d, [LnI] > [I]; on définit la prédominance du complexe LnI.

Remarque: on peut poursuivre l'analogie plus loin; un acide est d'autant plus faible que son pKa est plus grand. Pour un complexe; un complexe est d'autant plus stable que son pKd est plus grand; un complexe très stable, très peu dissocié c'est un complexe parfait.

II.5 Facteurs influençant la stabilité d'un complexe

II.5.1 Compétition entre complexes d'un même ion central

Exemple 1:

 Ag^+ avec différents ligands $S_2O_3^{\ 2^-}$ et NH_3 . D'après les valeurs de pK_i ; les complexes sont de plus en plus stable dans l'ordre de $Ag(NH_3)^+$ (3,3); $Ag(S_2O_3)_2^{\ 3^-}$ (8,8) et $Ag(S_2O_3)^-$ (13,5)

<u>Remarque</u>: ajoutons au complexe $Ag(NH_3)^+$, le ligand $S_2O_3^{2-}$; le complexe $Ag(S_2O_3)^-$ étant plus stable que $Ag(NH_3)^+$. La réaction prépondérante sera :

$$Ag(NH_3)^+ + S_2O_3^{2-} - Ag(S_2O_3)^- + NH_3$$

Exemple 2:

$$Fe^{3+} + SCN^{-} \leftrightharpoons Fe(SCN)^{2+}$$
 rouge $pk_{d1}=2,1$

$$Fe^{3+} + F^{-} \leftrightharpoons FeF^{2+}$$
 incouleur $pk_{d2}=5,2$

$$Fe(SCN)^{2+} + F^{-} \leftrightarrows FeF^{2+} + SCN^{-}$$

$$K_d = \frac{Kd1}{Kd2} = 10^{2,1}$$

$$FeF^{2+} + C_2O_4^{2-} \leftrightharpoons Fe(C_2O_4)^+$$
 jaune

$$K_d = \frac{Kd1}{Kd3} = 10^{2.2}$$

Le complexe de pk_d le plus élevé déplace les autres complexes.

II.5.2 Compétitions entre complexes d'un même ligand

Considérons les complexes entre l'EDTA (Y⁴⁻) et les cations métalliques ;

$$Ni^{2+} + CaY^{2-} \rightleftharpoons NiY^{2-} + Ca^{2+}$$

$$K = \frac{K_{dCa}}{K_{dNi}} = \frac{10^{-1}}{10^{-18.6}} = 10^8 \gg 1$$

Le complexe CaY^{2-} (p K_{dCa} =10,6) est moins stable que le complexe NiY^{2-} (p K_{dNi} =18,6); le nickel déplace donc l'EDTA du complexe CaY^{2-} .

II.6. Influence du pH

Exemple : complexe FeF²⁺ en milieu acide ;

$$FeF^{2+} \leftrightharpoons Fe^{3+} + F^{-}$$

$$K_{d1}=10^{-5,2}$$

$$H^+ + F^- \hookrightarrow HF$$

$$K_{d2} = 10^{-3,2}$$

$$FeF^{2+} + H^+ \leftrightharpoons Fe^{3+} + HF$$

$$K = \frac{Kd1}{Kd2} = 10^{-2}$$

La réaction n'est pas spontanée (K< 1) dans le sens gauche \rightarrow droite. En milieu acide HF ; les ions Fe³⁺ sont naturellement complexé en FeF²⁺.

Soit $c_0 = [FeF^{2+}]$ la concentration de départ :

$$c_0 = [FeF^{2+}] + [Fe^{3+}] = [HF] + [F^-] + [FeF^{2+}]$$

Soit
$$[Fe^{3+}] = [HF] + [F^{-}] = [F^{-}] (1 + [H^{+}] / Ka)$$

Si le complexe est stable (pk_d élevé) : $[FeF^{2+}]=c_0$ d'où

$$K_d = \frac{[Fe^{2+}][F^-]}{[FeF^{2+}]} = \frac{[Fe^{2+}][F^-]}{c_0}$$

Soit:

$$[F] = \frac{Kdc_0}{[Fe^{2+}]}$$

On reporte dans 1:

$$[Fe^{3+}] = \{K_d c_0 (1 + \frac{[H+]}{Ka})\}^{1/2} = f(pH)$$

 $\ddot{\textbf{u}}$ pH < pK_a le milieu est acide ([H⁺]/K_a>>1) alors [Fe³⁺] = (K_dc₀[H⁺]/K_a)^{1/2}soit

$$log [Fe^{3+}] = 1/2(pk_a-pk_d+logc_0-pH)$$

 $\ddot{\mathbf{u}}$ pH > pK_a si le pH est assez élevé (1 \gg [H⁺]); [Fe³⁺]=(K_dC₀)^{1/2} soit

$$log [Fe3+] = 1/2(logc_0-pk_d) = cst$$

 $\ddot{\textbf{u}} \quad Ph = pKa; \ [H^+]/K_a = 1 \ et \ [Fe^{3+}] = 2K_d c_0)^{1/2} \ soit \ log \ [Fe^{3+}] = (log c_0 - pk_d + 0,301) = cst \ ;$ constante décalé de 0,301 de la constante précédente.