Diagnostic Methods

Model Based Diagnostic Methods Fault tree (FT) part 2

Outline

- Introduction
- Fault tree Analysis
 - Qualitative analysis
 - Example 1
 - Quantitative analysis
 - Example 2
 - References

Introduction

- There is a need to analyze all the possible failure mechanisms in complex systems
- This can be achieved by performing qualitative and quantitative analyses for the expected failures

Fault tree Analysis

- To perform the fault tree analysis, these steps should be applied:
- Definition of the system, the TOP event (the potential accident), and the cause-effect relationships
- Construction of the fault tree
- Identification of the minimal cut sets
- Qualitative analysis of the fault tree
- Quantitative analysis of the fault tree
- Reporting of results

Fault tree Analysis

- A cut set in a fault tree is a set of basic events whose (simultaneous) occurrence ensures that the TOP event occurs
- A cut set is said to be minimal if the set cannot be reduced without loosing its status as a cut set
- The TOP event will therefore occur if all the basic events in a minimal cut set occur at the same time

Qualitative analysis

- The TOP event occurs if one of the minimal cut sets occurs
- The main challenge is therefore to identify the minimal cut sets
- Qualitative analysis of the fault tree may include:
 - Analysis of minimal cut sets to identify and verify any single points of failure
 - Review minimal cut sets up to check if there are dependencies

- We can from this small fault tree identify the following cut sets:
 - C1 = {leakage}
 - C2 = {leakage, use of inappropriate fuel}
 - C3 = {short circuit}
 - C4 = {wrong connectors, lighter }
- With larger and more complex fault trees we need to use special tools (implementing algorithms for extraction) of minimal cut sets.

Quantitative analysis

- It uses top event reliability information to estimate failure frequencies and likelihoods, and relative importance of various failure sequences and contributing events
- Use statistical characterizations regarding the failure and repair of specific events and conditions in the fault tree model to predict future performance for the system.

Quantitative analysis

- Single AND-gate Q0 (t) = Pr(The TOP event occurs at time t) Q0 (t) = Pr(E1 (t) \cap E2 (t)) = Pr(E1 (t)) · Pr(E2 (t))
- Single OR-gate
 Q0 (t) = Pr(E1 (t) ∪ E2 (t))
 = Pr(E1 (t)) + Pr(E2 (t))

- Construct a simple fault tree for a fire
- For the fire to occur there needs to be:
 - Fuel.
 - Oxygen.
 - An ignition source
- A probability for each of the primary failures being present or occurring can be established, is also provided

Al Master 1 Dr. R. Bentrcia

- Add the probabilities which sit below an OR gate (this isn't strictly correct, but is a 'rare event' approximation).
- Multiply the probabilities which sit below an AND gate
- So, in this example, combining probabilities upwards to the next level gives:
 - Probability of FUEL being present = 0.1 + 0.02 + 0.09 = 0.21
 - Probability of OXYGEN being present = 1
 - Probability of IGNITION being present = 0.2 + 0.05 + 0.1 = 0.35

• The probability of a fire to occur is 0,0735

References

- Slides related to the book:
 - System Reliability Theory Models, Statistical Methods, and Applications Wiley, 2004
- Training, R. R. C. "Identifying Hazards, Assessing and Evaluating Risks." NEBOSH National Diploma in Occupational Health and Safety (2010).