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4. 1 Introduction 

We have already seen in the previous chapter the representation of sequences in terms 

of the Z transform. In the particular case where the sequence is finite, it is possible to develop 

an alternative Fourier representation as the TFD (Discrete Fourier Transform). This 

representation is based on the relationship between finite sequences and periodic sequences. 

 
4. 2 Representation of periodic sequences 

 We consider a periodic sequence )(~ nx with a period N. i.e., )(~)(~ nxkNnx =+  for k 

integer. This sequence cannot be represented by its ZT because there is no value of z for 

which the sequence converges. However, it is possible to represent )(~ nx in terms of Fourier 

series (a sum of sine and cosine or exponential with frequencies that are multiple integers of 

the fundamental frequency N/2π ). However, there is only N distinct exponential complexes 

N. This is due to 
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Which is periodic in k with a period N. )()(0 nene N= , )()( 11 nene N += , …, )()( nene kNk += . 

So the representation with Fourier series requires N terms. 
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For convenience, 1/N is included in (4.2). In order to obtain the coefficients )(
~

kX from the 

periodic sequence, )(~ nx , we use the fact that 
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By changing the summation order, we can write 
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Using (4.3) and the result of the geometric series i.e.,
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, the coefficients )(
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kX in (4.2) are obtained by 
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We observe that )(
~

kX  of (4.6) is periodic with a period N, i.e., )(
~

)0(
~

NXX = , 

)1(
~

)1(
~ += NXX , …. (4.2) and (4.6) form a transform pair and are called discrete Fourier 

series (DFS). It is more convenient to use the relation, N
j

N eW
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=  in (4.6). Hence 
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Where )(~ nx and )(
~

kX are periodic sequences. The periodic sequence )(
~

kX has an adequate 

interpretation as the samples of the unit circle spaced equally in angle of a ZT of a period of 

)(~ nx . To get this relationship, we take 
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Since x(n) = 0 if n>N-1 and n<0 thus 
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Comparing (4.5) and (4.7), we have 
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This corresponds to a sampling of the ZT in N dots spaced at an angle around the unit circle 

with the first sample z = 1. 

 

 

 

 

 

 

 

Example: 

Given a periodic sequence, )(~ nx as represented by the following figure: 

 

 

 

 

 

 

The ZT evaluated on the unit circle of a period of )(~ nx is 
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Or, we use the formula (4.5) in order to confirm the previous result 
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4. 3 Properties of Fourier series 

The following properties should be used to facilitate the calculation of DFT. 
 
- Linearity 

If we have two periodic sequences )(~
1 nx and )(~

2 nx of period N, we can write  

)(~)(~)(~
213 nxbnxanx +=  

Thus, the coefficients of the DFS of )(~
3 nx are given by 
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- Delayed sequence 
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- Periodic convolution 
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Table 4. 1 Summary of properties of DFS representation of periodic sequences. 
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4. 4 Sampling of ZT 

We have already seen that the values of )(
~

kX in the DFS representation of a periodic 

sequence are identical to the samples of the ZT of a period of )(~ nx points equal spaced on the 

unitary circle. We will consider the relationship between the aperiodic sequence with its ZT 

X(z) and the periodic sequence for which the DFS coefficients correspond to the samples of 

X(z) equal spaced in angle on the unit circle 
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Has a convergence region that includes the unit circle (a condition always checked for finite 

sequences). If we evaluate the ZT in N equal points spaced in angle on the unitary circle, we 

obtain a periodic sequence  
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Replacing (4.11) into (4.13), we obtain 
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By changing the summation order, we find by using the result of the geometric series that 
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This equation expresses X(z), the ZT of a finite sequence of time N as a function of N 

"Frequency samples" of X(z) on the unit circle. 

By replacing ωjez = , we can show that (4.14) will be 
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The function )2/sin(/)2/sin( ωω NN  is plotted on the following Figure for N=5. 
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4. 5 Fourier representation of finite sequences 

Finite sequences of N duration can be represented by a periodic sequence of N period, 

one of which is identical to the finite sequence. In the sense that the periodic sequence has a 

single representation in DFS, then the original finite sequence also since we can calculate a 

single period of the DFS periodic sequence. 

We can also represent a sequence finished by the samples of its Z transform. 
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We have already seen that the DFS coefficients )(
~

kX of the periodic sequence )(~ nx are 

periodical of period N. to maintain a duality between time and frequency we will choose the 

Fourier coefficients that we associate to the finite sequence to be a finite sequence 

corresponding to a single period. 
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Since the sums in (4.20.a) and (4.20.b) take into account the interval [0, N-1], it follows that 

The DFT 
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4. 6 Fast Fourier transform (FFT) 

The invention of the FFT algorithm by Professors Cooley and Tukey in 1965 was a 

major advance in the field of digital signal processing. Prior to this date, the practical use of 

DFT was limited to problems where the number of data to be processed is relatively small. 

The DFT of equation (4.21) requires N multiplications to calculate a Fourier coefficient, the 

DFT calculation would be N2 complex multiplications. So it’s a big calculation. Cooley and 

Tukey have noticed that if N is a power of 2, it is possible to do a calculation much faster. 

Indeed, by using even and odd symmetries, it is possible to reduce the number of transactions 

to NN 2log  instead of N2. For N = 1024, the FFT calculation time becomes 100 times shorter 

than the calculation time elapsed by the TFD. The algorithm is simple and very elegant if      

N = 2n, there are other equivalent methods but clearly a little complex. Since the TFDI is 

equivalent to the TFD, with a sign and a factor of 1/N, it is possible to generate the reverse 

transformation in the same way for the fast version. Attention, the name FFT does not deceive 

you, the FFT algorithms are only equivalent procedures of calculation of the DFT, and they 
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are not new transformations. Currently, FFT is confidently applicable in most digital signal 

processing.   

 
4. 6. 1. Cooley-Tukey’s decomposition algorithm 

The Cooley-Tukey algorithm for calculating DFT is based on the factorization of N, 

the size of DFT as the product of numbers below N. Putting N = PQ where both factors are 

greater than 1.   
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Starting by dividing the domain of integer values from 0 to N-1 in two different ways. For the 

time index n, the division is for Q dimension intervals P. For the frequency index, k, the 

division is for P dimension intervals Q. We can then formulate the variables n and k as 

follows: 
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The product nk appears in the WN exhibitor whose TFD formula can be written according to 
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We define the following P sequences of Q dimension 

)()( pPqxqx p += ,  10 −≤≤ Qq , 10 −≤≤ Pp                               (4.28) 
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Each )(qxp is called a decimated sequence because it is obtained by choosing ‘one’ from P 

elements of x(n). For this, the selected elements are evenly spaced. The DFT of )(~ qx  is  
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Substitution of (4.29) into (4.27) gives 
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We define for each 10 −≤≤ Qr , the sequence of dimension P 
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En remplaçant   (4.31) dans (30), on obtient 

sp
P

P

p
rp WpyrQsX −

−

=
∑=+

1

0

)(~)(
~

                                                  (4.32) 

Equation (4.32) with auxiliary definitions given by (4.28), (4.29) and (4.31) represents the 

Cooley-Tukey decomposition algorithm of the DFT. This algorithm can be implemented 

easily by the following procedure: 

1.  Form the decimated P-dimension sequences )(qx p  and calculate the DFT 

associated with the Q-point for each 

2.  Multiply each output of each TFD by the corresponding complex number rp
NW − , 

these numbers are called the rotated factors (twiddle factors). 

3.  For each r, determine the FDR associated with the P-point of the sequence )(~ pyr .  

 

As an example, the following figure represents the decomposition of Cooley-Tukey for N = 6, 

P = 3 and Q = 2. The three decimated sequences are,{ })3(),0( xx , { })4(),1( xx  and { })5(),2( xx  

. Each of these sequences is transformed using the DFT2 operation. The outputs of the three 

DFTs are multiplied by the six factors (twiddle factors). After, the order of the numbers is 

changed to two sequences of the three numbers each,{ })2(),1(),0( 000 yyy  

and{ })2(),1(),0( 111 yyy . Finally, each of these two sequences is transformed using the TFD3 

operation to find the DFT in question of the primary sequence of the signal to be processed 

x(n).  Figure 2 shows the decomposition operation of Cooley and Tukey DFT. 
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Figure. 5. 2 Cooley-Tukey’s DFT algorithm illustrated for P = 3 and Q = 2. 
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4. 7 Recitation  

Exercise #1: 

Given a periodic sequence  (n)x~ with a period N. 

a-  Show that the DFT of this delayed signal of m is given by )(
~

kXW nm
N
−  

b-  Is there an ambiguity based on m values? 

 
Exercise #2: 

The periodic sequence )(~ nx is represented by the following figure: 

 

 

 

 

 

 

a- Determine the ZT of )(~ nx . 

b- Calculate )(
~

kX using the ZT and the definition of the DFT.  
 
Exercise #3: 

If )(~ nrecta (n)x N
n=  is real signal with finite duration where a<1 is real. 

a- Determine its DFT and discrete amplitude and phase spectrum,  

where a = 0.75 and N = 8 

 
Exercise #4:  

If )(~ nx is signal with finite duration N = 8 where its DFT is given by the following figure 

 

 

 

 

 

 

We form a new signal  (n)y~ with period N = 16. 





=
odd  n for              

even  n for      nx
ny

0

)2/(
)(~  

a- Sketch the form of )(
~

kY and justify your response. 

)(~ nx  

n 0  1   2  3   4    5    6    7    8     9 

)(~ nx  

n 0  1   2  3   4    5    6    7    8     9 


