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Discret Fourier Transform (TFD)
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4. 1 Introduction

We have already seen in the previous chapter firesentation of sequences in terms
of the Z transform. In the particular case wherdbquence is finite, it is possible to develop
an alternative Fourier representation as the TFDscfete Fourier Transform). This

representation is based on the relationship betfieg® sequences and periodic sequences.

4. 2 Representation of periodic sequences
We consider a periodic sequengén) with a periodN. i.e., X(n+kN) = X(n) for k
integer. This sequence cannot be represented & Titsecause there is no value of z for

which the sequence converges. However, it is plessibrepresen(n ih terms of Fourier

series (a sum of sine and cosine or exponenti&l freguencies that are multiple integers of
the fundamental frequen@y:/ N ). However, there is onli distinct exponential complexes
N. This is due to

o ()=en" (4.2)
Which is periodic irk with a periodN. g,(n) = e, (n), e (n) =ey.,(n), ...,e.(N) =€y, (n).

So the representation with Fourier series requNressms.
. 1N~ P
x(n) =WZX(k)e N 4.%)
k=0

For convenience, W is included in (4.2). In order to obtain the cd:tﬂé‘nts)?(k) from the

periodic sequenceX(n , we use the fact that

N-1 27 1 if r=mN
iZe' N = _ (4.3)
N = 0 otherwise
i
Thus, we multiply (4.2) bg N and summing from O tN-1, we obtain
N-1 i 1 NN 2% (k=r)n
X(ne N == X(k)e N (4.4)
n=0 N k=0 k=0
By changing the summation order, we can write
N-1 Zj2 NAL 1 N1 27 ryn
D X(me N =Y X(K)|=>eN (4.5)
n=0 k=0 N n=0



N q=1
N-1
Using (4.3) and the result of the geometric se'rjeszqn =11-¢" gzl for k=r,

n=0

1-q
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X(Me N =X(r), the coefficientsX (k) in (4.2) are obtained by

>
Il
o

X (K) = Nz_li(n)e_"zNﬂ”k (4.6)

We observe thatX(k )of (4.6) is periodic with a periodN, i.e., X(0)=X(N),

X(@)=X(N+1), .... (4.2) and (4.6) form a transform pair and ea#led discrete Fourier
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series (DFS). It is more convenient to use thdigglaW,, = e Nin (4.6). Hence

X (K) = Zi(n)vak” (4.7)
R(r) = > X (M @38)

Wherex(n) and)?(k )are periodic sequences. The periodic sequgmkehas Jan adequate
interpretation as the samples of the unit circleced equally in angle of a ZT of a period of
X(n) . To get this relationship, we take

X 0s<snsN-1
x(ry = X i

0 Otherwise

Is the ZT
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X(2)= Y x(n)z™"

n=-co

Sincex(n) = 0 if >N-1 andn<0 thus

N_

X(2) =) x(n)z™" 4.7)

=0

LN
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Comparing (4.5) and (4.7), we have
X (k)= X(2)| 4.8)

z:eJWk:W,]k
This corresponds to a sampling of the ZTINiots spaced at an angle around the unit circle

with the first sample = 1.
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Example:
Given a periodic sequencg(n) as represented by the following figure:

2 X(0)

1e

———00—0—
0123456 7 8 9 n

The ZT evaluated on the unit circle of a periodk¢h) is

. 4 _ 1_2—5
X =3 z"=
@)=37" =120

it sinGw/ 2)
sin(w/2)
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Replacing,z = e]Wk , the coefficientsf(k) are



—jgk jgk —jgk
2n -
€ e e .

~ — 75 - 10 AR
X(k) =1 Z—l 2n =1 ° om T Vs Vg =€ ] 10 Sln(rk/Z)
=27 5 e i [ejlok B e—jka sin(7k /10)

Or, we use the formula (4.5) in order to confirra frevious result
~ 4 4 - i sin(rk /2)
X(k)=SW*=Ye 10" =g 10 WD

() ZO 10 ZO sin(7k /10)

4. 3 Properties of Fourier series
The following properties should be used to fadditthe calculation of DFT.

- Linearity

If we have two periodic sequencggn) and X, (n) of periodN, we can write
X5 (n) = ax; (n) + bx; (n)

Thus, the coefficients of the DFS &f(n arg given by

X4(K) = aX, (k) + bX, (K)

- Delayed sequence

If a periodic sequenc&(n) has Fourier coefficientg(k) , then the sequence(n+m has the

coefficientsW,;“" X (k)

- Periodic convolution

X (n) and X,(n)are two periodic squences with a periNdtheir Fourier coefficients are
respectivelﬂl(k )and)zz(k). We want to determine the sequerg® where the DFS is

X, (K) X, (k)

R(K) =3 % (MW

m=0

- N-1 .
X, (K) =D % (rW™
r=0

Hence
- - N-IN-1 - e
Xy ()X, (K) =D 3 ()X, (rw <™
m=0r=0
Thus



z ZIH

Nz XL 00X, 0

_ N - _ 1N—1
X1 ZX r){ Wk(nmr)j|
N i

BM

If we considerx;(n )for 0O<n<N-1, thus

1N—1wk(nmr) 1 ifr=n-m+IN
N iz 0 otherwise

Thus

%,(n) = Y %,(M%,(n-m)

Table 4. 1ISummary of properties of DFS representation ofgolicisequences.

Periodic sequence (periodN) Coefficients of DFS
X(n) X (k) with a periodN
y(n) Y (k) with a periodN
ax(n) +by(n) ax (k) +bY (k)
X(n+m) Wk X (K)
W% (n) X(k+1)
fi(m)?(n -m) (periodic convolution) X(K)Y (k)
OO ”z‘lx ¥k
X (n) X" (k)
X (-n) X" (k)




4. 4 Sampling of ZT
We have already seen that the vaIueéZQk) in the DFS representation of a periodic
sequence are identical to the samples of the ZA pEriod ofX(n) points equal spaced on the

unitary circle. We will consider the relationshiptiveen the aperiodic sequence with its ZT
X(2) and the periodic sequence for which the DFS ameffts correspond to the samples of

X(2) equal spaced in angle on the unit circle

X(2)= Y x(nz™" (4.9)
Has a convergence region that includes the urgtec(a condition always checked for finite
sequences). If we evaluate the ZTNrequal points spaced in angle on the unitary cirgke

obtain a periodic sequence

X(K) = X(2) oy = 2 XMWY (4.10)
_2m
whereW, =e N
We know that
_ 1 N-1 __ i
X(n) = NZ X (K)W,, @)1
k=0

Replacing values on(k of (4.10) into (4.11), we obtain

N-1 4o

2 2 X (MWW

i(n) = i
N (o=

Changing the summation order

()= 33| &S we |

Using (4.3), we get

1 Niw"‘(”‘m) |1 m=n+rN
NZ ™ 0  autrement

Thus
x(n) = ix(nﬂN) (4.12)
If x(n)=X(n) for0sn<N-1

X(2) = Elx(n) z" (4.13)



Replacing (4.11) into (4.13), we obtain

_N 1 S kn —n
X(2) _Z:‘m; (KW, "z

By changing the summation order, we find by using tesult of the geometric series that

X(2) = fX(k){Z(\N il }

X(2) = Z_X( ) e _1_5_ 21—5\/(?2-1 (4.14)

This equation expresseqz), the ZT of a finite sequence of tim as a function oiN
"Frequency samples” &f(z) on the unit circle.

By replacingz = e'“, we can show that (4.14) will be
N-1 __
X(e“) =Y X(k)d)( _2n kj (4.15)
k=0
Where

o(e) = sin(eN /2) —Jw—‘lew{l—N]

N sin(w/?2) (4.16)

The functionsin(aN /2)/ Nsin(a /2) is plotted on the following Figure foN=5.

o 277k 0 k=1,2,..,N-1
N 1 k=0

X(eiw)\w:zjk =X(k), k=0, 1, ...
N

sin(aN /2)
N sin(w/?2)

N=5
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4. 5 Fourier representation of finite sequences

Finite sequences ™ duration can be represented by a periodic sequaideeriod,
one of which is identical to the finite sequengetHe sense that the periodic sequence has a
single representation in DFS, then the originaitdisequence also since we can calculate a
single period of the DFS periodic sequence.

We can also represent a sequence finished by theles of its Z transform.

+00

X(n) = D x(n+rN) (4.4y
X(n) = x(nmodulo N) (4.17.b
The following notation is used
x(n) = (x(n)), (4.18.3)

X(n) = X(n) ifOs.nsN-l
0 otherxise

For convenience, the following function is consatéer

1 s0<nsN-1
Ry (n) = .
0 ailleurs
Thus
X(n) = X(N)Ry, (n) (4.88.
We have already seen that the DFS coefficieﬁt(sk) of the periodic sequenc&(n aje

periodical of period\. to maintain a duality between time and frequemweywill choose the
Fourier coefficients that we associate to the dingequence to be a finite sequence
corresponding to a single period.

X (k) = (X (K))y 18.3)
X (k) = X ()R, (K) (4.19.b
We have
X (K) = Nz_li(n)ka“ (4.2p.
%(n) =%Nf>2 (W™ (4.20.b)

Since the sums in (4.20.a) and (4.20.b) take iotoant the interval [Q\-1], it follows that
The DFT



-1
XMW" 0<k<N-1

MZ

X(k) =14 (4.21.0)
0 ailleurs
The IDFT (Inverse DFT)
1 N-1
~ =D XKW  0snsN-1
x(n) =< N = (4.21.b)
0 ailleurs

L2

whereW, = e N, (4.21) represents the pair of the DFT

In a matrix form, (4.21.a) is given by

X (0 <

>?(1) 1 1 1 .1 X()

<) Tow, owzoowye | O

X 1 W WL wWEN x@) -2

1 WM WMy X(N _)

X (N -1)

4. 6 Fast Fourier transform (FFT)

The invention of the FFT algorithm by Professorolég and Tukey in 1965 was a
major advance in the field of digital signal progieg. Prior to this date, the practical use of
DFT was limited to problems where the number ohdatbe processed is relatively small.
The DFT of equation (4.21) requirsmultiplications to calculate a Fourier coefficigtite
DFT calculation would b&? complex multiplications. So it's a big calculaticBooley and
Tukey have noticed that N is a power of 2, it is possible to do a calculatiouch faster.
Indeed, by using even and odd symmetries, it isiptesto reduce the number of transactions

toNlog, N instead ofN’. ForN = 1024, the FFT calculation time becomes 100 tighester
than the calculation time elapsed by the TFD. Tigerdhm is simple and very elegant if

N = 2", there are other equivalent methods but clearijtla complex. Since the TFDI is
equivalent to the TFD, with a sign and a factold, it is possible to generate the reverse
transformation in the same way for the fast versidtention, the name FFT does not deceive

you, the FFT algorithms are only equivalent procedwf calculation of the DFT, and they
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are not new transformations. Currently, FFT is weitly applicable in most digital signal

processing.

4. 6. 1. Cooley-Tukey’s decomposition algorithm
The Cooley-Tukey algorithm for calculating DFT iased on the factorization of,
the size of DFT as the product of numbers belawPuttingN = PQ where both factors are

greater than 1.

N-1

~ X(NMW.™  0<k<N-1

X (k) = zo (MW (4.22)
0 otherwise

.2m

with W, =e N

Starting by dividing the domain of integer valuesnfi O toN-1 in two different ways. For the
time indexn, the division is for Q dimension intervals P. Rbe frequency indexk, the
division is for P dimension intervals Q. We canrntHermulate the variables n arkdas

follows:

(4.23)

n=Pg+p, 0£g<Q-10<p<sP-1
k=Qs+r, 0<ss<P-1,0<sr<Q-1

The product hiappears in the WN exhibitor whose TFD formula banwritten according to

p, g, r and s as follows
nk =(Qs+r)(Pq+ p) = Nsq+Qsp+Prg+rp (4.24)
For this
W™ = W, MW, AW P (4.25)
We have W' =1, W =W, et Wy =W, thus
W™ =W AW, W, P .28)

Replacing (4.26) into (4.22), (4.22) will be

P-1Q-1

X(Qs+r)=> Y X(Pqg+ pW, PW, W™
=0 q=0
T s (4.27)
= > Wi D X(Pa + p)Wo™ W™
p=0 q=0
We define the followind® sequences @ dimension
X,(@) =x(Pg+p), 0sg<Q-1,0<spsP-1 (4.28)

11



Each x,(qg)is called a decimated sequence because it is eotdip choosing ‘one’ from P

elements of x(n). For this, the selected elememt®eenly spaced. The DFT &f{q) is

-1

X, (r) =D X (W, (4.29)

O

o)
]
o

Substitution of (4.29) into (4.27) gives
—_—~ P_l —_—~
X, (Qs+r) =3 WX, (rWw,® @3
p=0

We define for eacld <r < Q- ,lthe sequence of dimensiBn
Y. (p) =W,"X,(r), 0s psP-1 (431

En remplagant (4.31) dans (30), on obtient
- Pl B
X, (Qs+r) =2V, (pPW:™ 4.32)
p=0

Equation (4.32) with auxiliary definitions given §%.28), (4.29) and (4.31) represents the
Cooley-Tukey decomposition algorithm of the DFT.isTlalgorithm can be implemented
easily by the following procedure:

1. Form the decimated P-dimension sequenggéy and calculate the DFT
associated with the Q-point for each

2. Multiply each output of each TFD by the cor@sging complex numbew,"”,
these numbers are called the rotated factors (teviddtors).

3. For each r, determine the FDR associated WélPtpoint of the sequengg(p).

As an example, the following figure representsdbeomposition of Cooley-Tukey fdt = 6,

P =3 and Q = 2. The three decimated sequence[s<@)ex(3)}, {x(l),x(4)} and{x(2),x(5)}

. Each of these sequences is transformed usinDRfie operation. The outputs of the three
DFTs are multiplied by the six factors (twiddle tias). After, the order of the numbers is
changed to two sequences of the three numbers {g@(@), Yo @D, Y, (2)}
and{yl O,y,@®,y, (2)}. Finally, each of these two sequences is trangdrosing the TFP

operation to find the DFT in question of the prigngequence of the signal to be processed

x(n). Figure 2 shows the decomposition operationadl€y and Tukey DFT.

12



WG0 Yo(0)

L, X(0)
X(0) —” (TpF:[())g) Tlilgg L X(2)
X3 L VN
X(1) —> TFD,
(p=0)
X(4) —»
— X(1)
X(2) —{ TFD; TFDs |, x(3)
- 2 =0
)((5)_> (p—O) WG yl(z): (r ) L X(5)

Figure. 5. 2Cooley-Tukey's DFT algorithm illustrated for P =aBd Q = 2.



4. 7 Recitation

Exercise #1.:

Given a periodic sequengén) with a period\.

a- Show that the DFT of this delayed signahvis given bwa-”mi(k)

b- Is there an ambiguity based wrvalues?

Exercise #2:

The periodic sequence(n is)represented by the following figure:

A X(0)

————0—
0123456 7 8 9 n

a- Determine the ZT ok(n )

b- Calculate)?(k) using the ZT and the definition of the DFT.
Exercise #3:

If X(n)=a"rect, (n) is real signal with finite duration wheeg1 is real.

a- Determine its DFT and discrete amplitude and plspsetrum,
wherea = 0.75 andN = 8

Exercise #4:

If X(n) is signal with finite duratio = 8 where its DFT is given by the following figure

RO

—e—o o
0123456 7 8 9 n

We form a new signa¥/(n) with periodN = 16.

x(n/2)  for n even

y(n) = {O for n odd

a- Sketch the form o¥ (k and justify your response.
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