

MANIPULATION N°02

The Latent Heat of Fusion of the ice

1 - Introduction :

A given pure substance can exist in 4 states: **solid**, **liquid**, **gas** and **plasma**. The change of physical state requires an exchange of heat (energy) with the external environment.

A physical change is produced when there is no transformation of matter, for example, liquid water that evaporates always remains water, H₂O.

But this physical change is accompanied by the release or absorption of heat, depending on the case. Melting ice, for example, is a physical phenomenon that absorbs heat.

 $H_2O(s) + 6,03 \text{ kj} -----> H_2O(1)$

All chemical reactions release or absorb heat. For example, burning paraffin is a chemical phenomenon that releases (give off) heat.

 $C_{25}H_{52}(s) + 38 O_2(g) = 25 CO_2(g) + 26 H_2O(g) + 15200 kJ$

The energy involved in a chemical reaction is much greater than that found in physical transformations.

2- Objective of the work :

- 1 Study of change of state phenomenon.
- 2- Determination of the calorific capacity of the calorimeter (C_{cal}).
- 3- Determination of the latent heat of fusion of the ice (L_f) .

age

3- <u>Theoretical part</u> :

3-1 . Definition of latent heat : :

At constant pressure, once a pure substance (such as water) has reached its change-of-state temperature, it needs an additional quantity of energy to change state: this is the **mass energy of** change of state, also called the « latent heat of change of state », noted L. It is measured by the variation in thermal energy Q, such as :

 $Q = m \cdot L$ m: the mass in Kg.

3-2. Principle of measuring L ::

A piece of ice at $T_2 = 0$ °C (taken from a melting water-ice mixture), of known mass m_2 is plunged into a calorimeter containing a mass of water m_1 of temperature T_1 . The mixture is stirred until the ice cube has completely melted. The equilibrium temperature T_f is recorded.

We then have :

 $\sum Q = 0$ (Isolated calorimeter) \Rightarrow $Q_{Eau} + Q_{cal} + Q_{Glace} + Q_{fus} = 0.$

$$m_1 \cdot c_e \cdot (T_f - T_1) + C_{cal} \cdot (T_f - T_1) + m_2 \cdot c_e \cdot (T_f - T_2) + m_2 L_f = 0.$$

 C_{cal} : the calorific capacity of the calorimeter in Joule per Kelvin ($J.K^{1}$).

m₁ : mass of water in kilograms (kg).

m₂ : mass of ice in kilograms (kg).

 c_e : the specific heat or heat mass of liquid water, equal to 4180 J. K^{-1} . Kg^{-1} .

 L_f : latent heat of fusion in Joule per Kilogram (J.Kg⁻¹).

The purpose here is to determine the value of the latent heat of fusion of water L_{f} .

4- Experimental part :

- 1 Determining the calorific capacity of the calorimeter (C_{Cal}) :
 - a) Introduce a mass $m_1=50 \ g$ of distilled water at room temperature into the calorimeter. Note the equilibrium temperature T_1 (Water + Calorimeter).
 - **b)** Add $m_2=50 g$ of warm water at temperature T_2 (25°C < T_2 < 40°C). Note T_2
 - c) Record the new temperature ($T_f = T_{eq}$) (minimum temperature reached in the calorimeter) (Water at Temperature $T_1 + Cal$ orimeter + Water at Temperature T_2).

d) Determine (C) the Calorific Capacity of a Calorimeter knowing that :

- the quantity of heat Q_2 ceded by the hot water is $Q_2 = m_2 c_{eau} (T_f T_2)$.
- the quantity of heat Q_{cal} received by the calorimeter + Q_1 received by the cold water.

$$Q_{cal} + Q_1 = \mu c_{al} (T_f - T_1) + m_1 c_{eau} (T_f - T_1) = (\mu + m_1) c_{eau} (T_f - T_1).$$

• And the isolated system can be written as: ($\Sigma Qi = 0$) \Rightarrow $Q_1 + Q_{cal} + Q_2 = 0$

 C_{cal} the calorific capacity of the calorimeter in Joule per Kelvin (J.K⁻¹). c_e : the specific or mass heat of liquid water, equal to **4180** J. K⁻¹.Kg⁻¹. μ : the water equivalent mass of the calorimeter in **kilograms** (kg).

1 - Determining the latent heat of fusion of the ice (L_f) .

a) Place a mass $m_1 = 50g$ of hot water ($T = 70^{\circ}C$) in the calorimeter. Note T_1 .

- b) Prepare 3 or 4 ice cubes of precise mass m_2 ($T_2 = 0^{\circ}C$), then immerse them quickly in the water in the calorimeter.
- c) Read the temperature T_f at thermal equilibrium: the ice should be completely melted and the temperature should not vary much.
- d) Determine the latent heat of fusion of the ice L_f given that :
 - La quantité de chaleur **Q**_{Eau} cédée par l'eau chaude.
 - La quantité de chaleur Q_{cal} cédée par le calorimètre.
 - La quantité de chaleur Q_{fus} nécessaire pour faire fondre la glace.
 - La quantité de chaleur Q_{liq} reçue par l'eau a (T₂ = 0 °C), nécessaire pour l'élever à la température T_f.
 - The quantity of heat *Q*_{water} ceded by the hot water.
 - The quantity of heat Q_{Cal} ceded by the calorimeter.
 - The quantity of heat Q_{fus} required to **melt** the ice.
 - The quantity of heat Q_{liq} received by water a ($T_2 = 0^{\circ}C$), needed to raise it to temperature T_f .

ce : la chaleur spécifique ou massique de l'eau liquide, soit **4180** J. K⁻¹.Kg⁻¹.

TP 02 Report (Latent heat)

Dage 3