

TP Chemistry II 1st Year LMD (ST)

TP N°03 : Enthalpy of Reaction

MANIPULATION N°03

Determining Enthalpies of Reaction

1- Introduction :

In any chemical reaction, heat is either **absorbed** or **liberated**. This exchange of heat between a chemical reaction and its immediate environment is known as the **enthalpy** of reaction or "**H**". This enthalpy cannot be measured directly, so scientists use the "**variation**" in **temperature** between the **start** and **end** of the reaction, which can then be used to calculate the "**variation**" in **enthalpy** over the same lapse of time (variation noted as ΔH). Using the ΔH , scientists are able to tell whether a reaction has been "**exothermic**" (**losing** or **liberating** heat during the reaction) or "**endothermic**" (**absorbing** heat). In general, a **Constant Pressure** ($\Delta H = Q = m.c.\Delta T$), with **m** representing the mass of the components, c the specific heat of the product and ΔT being the temperature variation during the reaction.

2- Objective of the work:

- **1-** Determine the **calorific capacity** of the calorimeter.
- *2-* Measuring the enthalpy of dissolving *KCl* salt in water.
- 3- Measuring the enthalpy of diluting an HCl solution.

3- Theoretical part :

3-1 . Enthalpy:

According to the first principle of thermodynamics, the elementary variation in internal energy dU of a system is equal to the sum of the quantities of heat and work that this system has exchanged with the external environment. We can therefore write dU = dW + dQ.

In the particular case of a fluid at uniform pressure **P**, the elementary work **dW** is expressed by the relation: **dW** = -**P**dV. So we can write: **dU** = -**P**dV + dQ.

- If the transformation takes place at constant volume (**isochore**), then **dV** = **0** and therefore **dU** = **dQ**.
- If the transformation is at constant pressure (isobaric transformation), then dP = 0.

In this case, we introduce the greatness **H**, which is the enthalpy of the system.

Enthalpy is a **state function** used in the first principle of thermodynamics. It is defined by the expression: H = U + PV. The expression of enthalpy is also frequently used in its differential form: dH = dU + PdV + VdP. The result is: dH = dQ + VdP.

so, if we change the volume of the system while imposing a constant pressure (isobaric transformation, dP = 0), the difference in enthalpy between the final state of the system and the initial state is equal to the heat exchanged, i.e. $\Delta H = Q$.

It is found that this principle gives a precise definition of heat. When a hot element comes into contact with a colder one, the temperatures of the two elements are equalized. For an isolated system (the case in a calorimeter), we deduce the following relationship: $\sum Qi = 0$.

✤ We have: Q = m.c. (T_f - T_i)

Knowing that:

*

c : specific heat of the element in J.Kg⁻¹. $^{\circ}K^{-1}$. **(T**_f - **T**_i) : temperature difference between initial and final state.

Or: $\mathbf{Q} = \mathbf{C}.(\mathbf{T}_f - \mathbf{T}_i)$ Knowing that : \mathbf{C} : calorific capacity of the element in J.°K⁻¹.

m: the mass of the element in Kg,

3-2 . Enthalpy of dissolution :

The dissolution of one mole of substance in a given quantity of solvent is accompanied by a quantity of heat (either absorbed or ceded). This heat is called the Enthalpy of dissolution.

$$\Delta H_d = \frac{Q}{n} , n = m / M$$

This Enthalpy is the sum of two Enthalpies :

- One corresponds to the decomposition of the cell network accompanied by the **Endothermic** effect.
- The other corresponds to the interaction between free solute ions and solvent molecules accompanied by the Exothermic effect.

4- Experimental part :

- 1- Determining the calorific capacity of the calorimeter (C_{Cal}) :
- **a.** Introduce a mass m_1 =50 g of distilled water at room temperature into the calorimeter. Note the equilibrium temperature T_1 (Water + Calorimeter).
- **b.** Add m_2 =50 g of warm water at temperature T_2 (25°C < T_2 < 40°C). Note T_2
- **c.** Record the new temperature ($T_f = T_{eq}$) (minimum temperature reached in the calorimeter) (Water at Temperature $T_1 + Cal$ orimeter + Water at Temperature T_2).
- d. Determine (C) the Calorific Capacity of a Calorimeter knowing that :
 - the quantity of heat Q_2 ceded by the hot water is $Q_2 = m_2 c_{eau} (T_f T_2)$.
 - the quantity of heat Q_{cal} received by the calorimeter + Q_1 received by the cold water.

 $Q_{cal} + Q_1 = \mu c_{al} (T_f - T_1) + m_1 c_{eau} (T_f - T_1) = (\mu + m_1) c_{eau} (T_f - T_1).$

• And the isolated system can be written as: ($\Sigma Qi = 0$) \Rightarrow $Q_1 + Q_{cal} + Q_2 = 0$

 C_{cal} the calorific capacity of the calorimeter in Joule per Kelvin (J.K⁻¹). c_e : the specific or mass heat of liquid water, equal to **4180** J. K⁻¹.Kg⁻¹. μ : the water equivalent mass of the calorimeter in *kilograms* (kg).

2- Determination of the enthalpy of dissolution of KCl salt in water

- **a.** Introduce *m*₁=50*g* of water at room temperature into the calorimeter.
- **b.** Using thermometer, note equilibrium temperature **T**₁.
- **c.** Place a mass $m_2 = 4g$ of salt (KCI) in the calorimeter.
- d. After dissolving the salt, note the temperature T_f.
- **e.** Determine Q_{KCI} the quantity of heat dissolved by the KCI salt, given that :
 - the quantity of heat **Q**_{Eau} ceded by the water.
 - the quantity of heat **Q**_{cal} ceded by the calorimeter.
 - the quantity of heat **Q**_{KCl} received by the KCl.
- **f.** Determine (ΔH_{KCI}) the Enthalpy of dissolution of **KCI** knowing that :
 - $\Delta H_{KCI} = Q_{KCI} / n_{KCI}$

Μ_{KCl}: molar mass of KCl = **74,55** g.mole⁻¹.

3- Determination of the enthalpy of dilution of an HCl solution :

- **a.** Introduce *m*₁=50*g* of water at room temperature into the previous calorimeter.
- **b.** Using the thermometer, note the temperature (**T**₁), which will be the initial temperature of the water and the calorimeter.
- **c.** We have added **10 mL** of HCl solution **(C% or P = 37.5%)** into the calorimeter.
- **d.** Note the new temperature of the mixture at thermal equilibrium ($T_f = T_{eq}$).
- e. Determine **Q**_{HCI} the heat quantity of **HCI**, given that :
 - the quantity of heat **Q**_{Eau} received by the water.
 - the quantity of heat **Q**_{cal} received by the calorimeter.
 - the quantity of heat **Q**_{κcl} ceded by the HCl.
- **f.** Calculate the mass m_2 of **HCl** contained in **10 ml** of the solution, knowing that :
 - $m_2 = m_{HCl} = C\%$. $m_{solution}$ et $m_{solution} = \rho$. $V_{solution}$
- **g.** Determine (ΔH_{HCI}) the Enthalpy of the HCl dilution knowing that :

Molar mass **М**на = 36.5 g. mole⁻¹. The density **d** = 1.19. Degree of purity **P** ou **C%** = 37.5 %.

