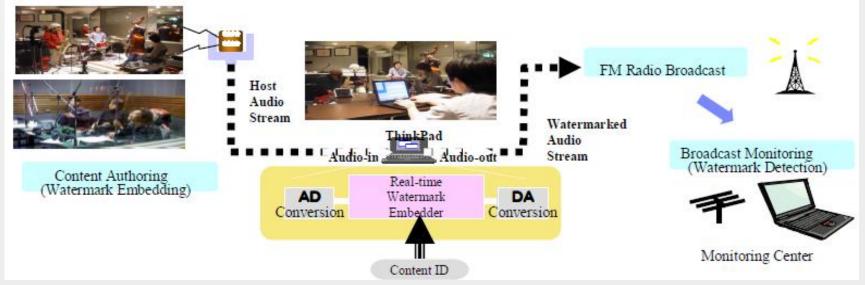
Département Informatique Année Universitaire 2022-2023

Chapitre 4

SECURITY ATTACKS

Outline


- Major Issues in Watermarking
- Security Requirements
- Categories of Attack
- Some Significant Known Attacks

Major Issues in Watermarking

- Invisibility: •
 - Least-Significant Bits
 - Spatial Domain
 - Compression-Compliant Block-Frequency Domain
 - Global Frequency Domain
 - Human Perceptual Models ٠
 - Domain-Specific Models
 - Generic Models
- Robustness:
 - Lossy Compression
 - Format Transformation
 - Scaling, Translation, Cropping
- Rotation, Scan-and-Print Embedding Information Payload: •
 - Information Theory
 - Writing on Dirty Paper
 - Zero-Error Embedding Capacity
- Security: •
 - Attacks

Security Requirements Depend on Applications – Example (1)

- Scenario 1: Alice is an advertiser who embeds a watermark in each of her radio commercials before distribute them to 600 radio stations.
 - Alice monitors radio station broadcasts with a watermarking detector.
 - She matches her logs with the 600 invoices.
 - [Attack]:
 - Bob secretly embed Alice's watermark into his own advertisement and airs it in place of Alice's commercial.

Unauthorized Embedding / Forgery Attack

Security Requirements Depend on Applications – Example (2)

- Scenario 2: Alice owns a watermarking service that, for a nominal fee, adds an owner identification watermark to images that will be accessed through the Internet.
 - Alice provides an expensive reporting service to inform her customers of all instances of their watermarked images found on the Web.
 - [Attack]: Bob builds his own web crawler that detects watermarks embedded by Alice and offers a cheaper reporting service.

Unauthorized Detection / Passive Attack

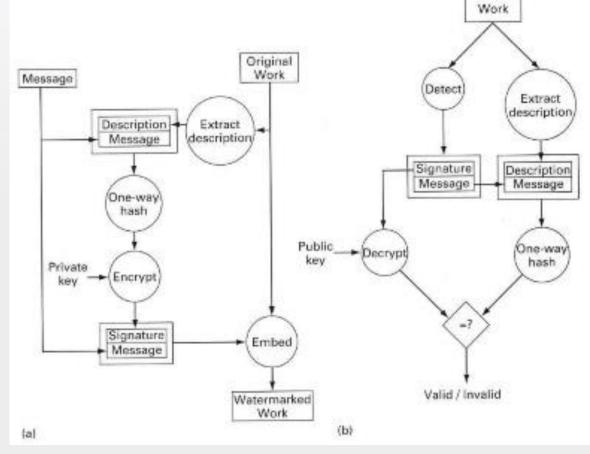
Security Requirements Depend on Applications – Example (3)

- Scenario 3: Alice owns a movie studio, and she embeds a copycontrol watermark in her movies before they are distributed.
 - She trusts that digital recorders capable of copying these movies contain watermark detectors and will refuse to copy her movie.
 - [Attack] Bob is a video pirate who has a device designed to remove the copy protection watermark.

Unauthorized Removal

Operational Table of the Three Scenarios

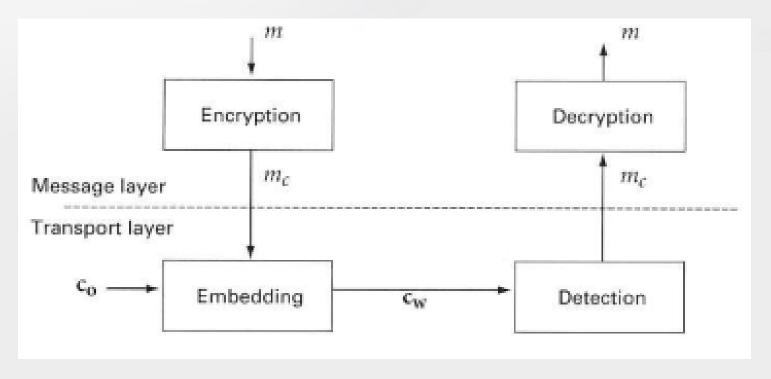
	Embed	Detect	Remove
Scenario1:			
Broadcast Monitoring			
Advertiser	Y	Y	-
Broadcaster	N	N	-
Public	N	N	
Scenario2:			
Web Reporting			
Marking Service	Y	Y	-
Reporting Service	-	Y	-
Public	N	N	N
Scenario3:			
Copy Control			
Content Provider	Y	Y	-
Public	-	Y	Ν


Y: must be allowed, N: must not be allowed, - : don't care

Categories of Attack (1)

- Unauthorized Embedding:
 - Being able to composing and embedding an original message..
 - Another example, in Scenario 2, Alice charges for embedding and gives away the monitoring tool..
 - Possible Solution: using standard cryptographic techniques.
 - Being able to obtain a pre-composed legitimate message and embeds this message in a Work.
 - E.g., in Scenario 1, Bob extracts the reference pattern and then uses it to his work called copy attack.
 - Possible Solution: using content-related watermarks.

Methods to Prevent Unauthorized Embedding


- Make the embedding codes:
 - Content dependent
 - Signer dependent

Categories of Attack (2)

• Unauthorized Detection:

- A hospital might embed the names of patients into their X-rays.
- Knowing whether or not a watermark is present Steganography.
- Intervention on the transmission process.

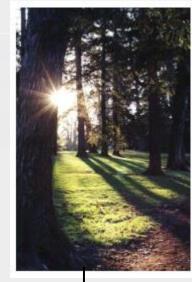
Categories of Attack (3)

- Unauthorized Removal:
 - Attackers try to modify the watermarked Work such that it resembles the original and yet does not trigger the detector.
 - Two types of attacks:
 - Elimination attacks ->The watermark is truly gone.
 - Masking attacks -> The watermark is still present but is weakened.

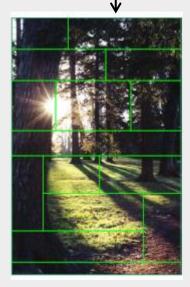
Methods to Prevent Unauthorized Removal

- Spread Spectrum Techniques are suggested.
- One-line of researching is based on the belief that watermarking can be made secure by creating something analogous to asymmetric-key encryption -> The detection key is not sufficient to remove a watermark -> May not survive sensitivity analysis.
- There are some fundamental differences between watermarking and cryptography that make the standard asymmetric-key encryption systems unsuitable.
 - In watermarking, the mapping between Works and messages must be many-to-one, so that a given message may be
 - embédded in any given Work.
 - In asymmetric-key cryptography, the mapping between cleartext and ciphertext is always one-to-one.
 - In watermarking, small changes in the Works should map to similar messages.
 - In assymmetric-key cryptography, a small change in cleartext results in large change in the ciphertext.

Categories of Attack (4)


- System-level Attacks:
 - Attackers exploit the weakness in how the watermarks are used.
 - For instance, in a copy-control application, an attaker might open the recorder and just remove the chip.
 - Forge identification.

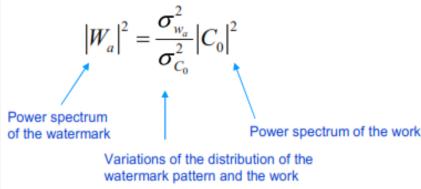
Some Significant Known Attacks


- Scrambling attacks
- Pathological distortions:
 - Synchronization attacks
 - Linear filtering and Noise Removal Attacks
- Copy attacks
- Ambiguity attacks
 - Ambiguity attacks with informed detection
 - Ambiguity attacks with blind detection
- Sensitivity analysis attacks
- Gradient descent attacks

Scrambling Attack

- System-level attack
 - An additional device is applied to scramble watermarked multimedia work to make the watermark undetectable by the detector.
 - Using a descramble device to invert the work.
- Example:
 - Mosaic Attack: partition the watermarked image into several individual smaller images that are organized with table when displayed.
- Effectiveness: avoid on-line image crawling

Mosaic Attack


Pathological Distortions (I)

Synchronization Attacks:

- Most watermarking techniques are sensitive to synchronization
- Audio and Video: delay and time scaling
 - Pitch-preserving scaling
 - Sample removing
- Image and Video: rotation, scaling and translation
 - Shearing
 - Horizontal reflection
 - Column or line removal
 - Nonlinear warping
- Some of these attacks are applied by the StirMark a watermark benchmarking system.

Pathological Distortion (II)

- Linear Filtering and Noise Removal Attacks:
 - May be effective while many watermarking system embed significant energy in the high frequencies.
 - Wiener filtering is an optimal linear-filtering/noise-removal attack. It is effective when:
 - The added pattern is independent of the work.
 - Both the work and the watermark are drawn from zeromean Gaussian distribution.
 - Linear correlation is used as the detection statistic.
 - The security of a watermark against Wiener filtering can be maximized by selecting the power spectrum of the added pattern to be a scaled version of the power spectrum of the original work, as: $\sigma_{w}^{2} = \sigma_{w}^{2}$

Copy Attack

- An adversary copies a watermark from one work to another. It is a form of unauthorized embedding.
- Example: (Kutter et al., 2000) given a legitimately watermarked work, c1w, and an unwatermarked target work, c2, this method begins by
 - Applying a watermark removal attack to c1w to obtain an approximation of the original, c1', by using a nonlinear noise-reduction filter.
 - Estimate the added watermark pattern by subtracting the estimated original from the watermarked work:

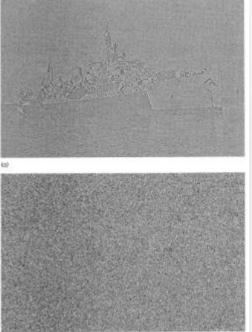
$$w_a' = c_{1w} - c_1'$$

• The estimated watermark pattern is added to the unwatermarked work:

$$c_{2w} = c_2 + w_a'$$

Ambiguity Attacks

- Ambiguity attacks (or called the Cover attack, Craver et al., 1998): create the appearance that a watermark has been embedded in a work when in fact no such embedding has taken place.
- **Objectives:** claiming false ownership.
- Two situations:
 - ambiguity attacks with informed detection
 - ambiguity attacks with blind detection


Ambiguity Attacks with Blind Detection

• Examples of Ambiguity Attack: (a) True original Image, (b) Distributed Watermarked Image.

Ambiguity Attacks with Blind Detection

Ambiguity Attack (a): Adding some random noise into the Fourier phase; (b) Add noise to the image and then scale Fourier coefficients with random magnitude changes Faked original image constructed by subtracting 99.5% of the fake reference pattern

Defending Ambiguity Attacks

- The true owner of the Work uses a watermarking technique that can ensure that his original could not have been forged.
- Invertibility: a watermarking scheme is invertible if the inverse of the embedding is computationally feasible.
- Ambiguity attacks cannot be performed with noninvertible embedding techniques. For instance, the reference pattern should be dependent on the content of the original work.