Université de M'sila L 2 Mathématiques Module Analyse 4 Barème Correction d'examen de rattrapage Correction d'exercice : 1 Soit f la fonction définie par : $f(x,y) = \sqrt{x^2 - y - 1}$ 1 1 1 1 1 2 1 2 1 2 2 2 1 2 2
Barème Correction d'exercice : 1 Soit f la fonction définie par : $f(x,y) = \sqrt{x^2 - y - 1}$ 1 (a) $D_f = \{(x,y): x^2 - y - 1 \ge 0\} = \{(x,y): y \le x^2 - 1\}.$ 1 (b) Présentation de \mathcal{D}_f .
Soit f la fonction définie par : $f(x,y)=\sqrt{x^2-y-1}$ 1 (a) $D_f=\{(x,y):x^2-y-1\geq 0\}=\{(x,y):y\leq x^2-1\}.$ 1 (b) Présentation de \mathcal{D}_f .
1 Description de \mathcal{D}_f . 1 Présentation de \mathcal{D}_f . 1 Pour $c>0$, on a $f(x,y)=c\Leftrightarrow x^2-y-1=c^2\Leftrightarrow y=x^2-1-c^2$
1 Q a Pour $c>0$, on a $f(x,y)=c\Leftrightarrow x^2-y-1=c^2\Leftrightarrow y=x^2-1-c^2$
1 ② (a) Pour $c>0$, on a $f(x,y)=c\Leftrightarrow x^2-y-1=c^2\Leftrightarrow y=x^2-1-c^2$
Donc les courbes de niveau $c > 0$ sont des paraboles de sommets $(0, -1, -c^2)$ et d'ave $c = -c^2$
Done les courses de mitode et y bone des paraboles de bonnines (0, 1 e) et d'axe à =
1 (b) Présentation \mathcal{P}_c les courbes de niveau $c>0$.
0.5 Pour tout $(x,y) \in \mathbb{R}^2$, la fonction $(x,y) \mapsto x^2 - y - 1$ est dérivable (polynôme).
Donc, la fonction $(x,y)\mapsto \sqrt{x^2-y-1}$ est dérivable dans le domaine ouvert \mathring{D}_f .
Car pour tout $(x,y) \in \mathring{D}_f: x^2-y-1>0$, en particulier en point $a(2,0) \in \mathring{D}_f$.
0.5 et ainsi, $\partial_x f(x,y) = \frac{x}{\sqrt{x^2-y-1}}, ext{ et } \partial_y f(x,y) = \frac{-1}{2\sqrt{x^2-y-1}}.$
$0.5 + 0.5 \text{ Alors, } D_v f(a) = \partial_x f(2,0) v_1 + \partial_y f(2,0) v_2 \Rightarrow D_v f(a) = \frac{6}{\sqrt{3}} - \frac{1}{2\sqrt{3}} = 2\sqrt{3} - \frac{1}{2\sqrt{3}}$
Barème Correction d'exercice : 2
Soit la fonction f définie sur \mathbb{R}^2 par : $f(x,y)=xe^{xy}$

Université de M'sila		and offendant vice	Faculté : Maths-informatique	
L 2 Mathématiques		Correction d'examen	Année : 2022/2023	
Module Analyse 4		de rattrapage	Durée: 1h - 30m	
0.5	a Il est claire que f est dérivable dans \mathbb{R}^2 , car composition de fonctions dérivables.			
0.5 imes 2	$\boxed{ \text{ b Pour } (x,y) \in \mathbb{R}^2, \text{ on a : } \nabla f(x,y) = \left(\begin{array}{c} \frac{\partial f}{\partial x}(x,y) \\ \frac{\partial f}{\partial y}(x,y) \end{array} \right) = \left(\begin{array}{c} e^{xy} + xye^{xy} \\ x^2e^{xy} \end{array} \right).}$			
	\bigcirc La fonction f est différentiable en $(1,0)$ si et seulement si :			
	$\lim_{\substack{(x,y)\to(1,0)}} \frac{f(x,y)-f(1,0)-(x-1)\partial_x f(1,0)-y\partial_y f(1,0)}{\sqrt{(x-1)^2+y^2}} = 0. \text{ Notons que,}$ $\frac{f(x,y)-f(1,0)-(x-1)\partial_x f(1,0)-y\partial_y f(1,0)}{\sqrt{(x-1)^2+y^2}} = \frac{xe^{xy}-x-y}{\sqrt{(x-1)^2+y^2}}.$			
	$\left egin{array}{c} (x,y) ightarrow (1,0) & \sqrt{(x-1)^2 + y^2} \ f(x,y) - f(1,0) - (x-1) \partial_x f(1,0) - y \partial_y f(1,0) & x e^{xy} - x - y \end{array} ight $			
0.5	$\sqrt{(x-1)^2+y^2} = rac{\sqrt{(x-1)^2+y^2}}{\sqrt{(x-1)^2+y^2}}.$			
	Si on pose, $x = 1 + r \cos \theta$, $y = r \sin \theta$, alors, on aura :			
0.5	$\lim_{(x,y)\to(1,0)} \frac{xe^{xy} - x - y}{\sqrt{(x-1)^2 + y^2}} = \lim_{r\to 0} \frac{(1 + r\cos\theta)e^{(r\sin\theta)(1 + r\cos\theta)} - 1 - r(\cos\theta + \sin\theta)}{r}$			
	$=\frac{0}{0}$, (forme indéterminée). En utilisant la règle de L'Hôpital, on trouve			
	$\lim_{t \to 0} \frac{(1+r\cos heta)e^{(r\sin heta)(1+r\cos heta)}-1-r(\cos heta+\sin heta)}{(1+r\cos heta)e^{(r\sin heta)(1+r\cos heta)}}$			
	$\begin{vmatrix} \lim_{r \to 0} \frac{(1 + r\cos\theta)e^{(r\sin\theta)(1 + r\cos\theta)} - 1 - r(\cos\theta + \sin\theta)}{r} \\ = \lim_{r \to 0} \left[(\cos\theta + \sin\theta(1 + 2r\cos\theta)(1 + r\cos\theta))e^{(r\sin\theta)(1 + r\cos\theta)} - (\cos\theta + \sin\theta) \right] = 0.$			
0.5	$oxed{ extbf{d}}$ Donc $oldsymbol{f}$ est différentiable au point $oxed{(1,0)},$ et sa différentielle est donner par :			
	$df_{(1,0)}(x,y) = (x-1)\partial_x f(1,0) + y\partial_y f(1,0) = x+y-1, \ orall (x,y) \in \mathbb{R}^2.$			
1	(2) Comme f est différentiable au point $(1,0)$, alors elle admet un developpement limité à l'ordre			
	1 au point (1,0). On a, donc,			
	$f(x,y) = f(1,0) + (x-1)\partial_x f(1,0) + y\partial_y f(1,0) + o(\ (x-1,y)\).$			
1	D'où, $f(x,y) = x + y + o(\ (x-1,y)\)$.			
	3 La valeur approchée de f en $(1.1,0.1)$:			
1	Comme, $f(x,y)\simeq f(1,0)+(x-1)\partial_x f(1,0)+y\partial_y f(1,0), ext{ si } (x,y)\simeq (1,0).$			
1	Alors, on obtient, $f(1.1,0.1) \simeq 1 + 0.1 \times 1 - 0.1 \times 1 = 1$.			
Barème	Correction d'exercice : 3			
	f définie sur \mathbb{R}^2 par : $f(x,y)=\sin(x)+y^2-2y+1.$			
1	$oxed{oxed{1}}$ (a) Les points critiques de $f.$ On a : $ abla f(x,y) = egin{pmatrix} \cos x \ 2y-2 \end{pmatrix}.$ Alors,			
1				
	2 Nature des points cri	tiques :		

Université de M'sila		State of the state	Faculté : Maths-informatique		
L 2 Mathématiques		Correction d'examen	Année : 2022/2023		
Module Analyse 4		de rattrapage	Durée : 1h −30m		
0.5	$ (a) \ \ \mathrm{H}_f(x,y) = \left(\begin{array}{ccc} \frac{\partial^2 f}{\partial x^2}(x,y) & \frac{\partial^2 f}{\partial x \partial y}(x,y) \\ \frac{\partial^2 f}{\partial x \partial y}(x,y) & \frac{\partial^2 f}{\partial y^2}(x,y) \end{array} \right) = \left(\begin{array}{ccc} -\sin x & 0 \\ 0 & 2 \end{array} \right) $ $ (b) \ \mathrm{Le} \ \mathrm{d\acute{e}terminant} \ \mathrm{de} \ \mathrm{la} \ \mathrm{matrice} \ \mathrm{H\acute{e}ssienne} \ \mathrm{au} \ \mathrm{point} \ (\frac{\pi}{2} + k\pi, 1) \ \mathrm{est} $				
0.5	$\left H_f(rac{\pi}{2}+k\pi,1) = ight ^{-1}$	$\begin{vmatrix} -(-1)^k & 0 \ 0 & 2 \end{vmatrix} = -2(-1)^k$. Par conséc	quent,		
0.5	(\star) Si k est impaire, les points $\left(\frac{\pi}{2}+k\pi,1\right)$ présentent des minimums locaux.				
0.5	$(\star\star)$ Si k est paire, alors $(\frac{\pi}{2}+k\pi,1)$ sont des points selles.				
1		$f(x,y) - f(\frac{\pi}{2} + k\pi, 1) = \sin x +$	$1 \ge 0$.		
1	Donc, les points $\left(\frac{\pi}{2} + k\pi, 1\right)$ sont des minimums globaux de f . 4 On cherche les extremums liés de f avec le contrainte $y = 1$. Par substiation $y = 1$ dans l'expression de $f(x, y)$ on trouve, $F(x) = f(x, y(x)) = \sin x$. Alors, $F'(x) = \cos x = 0 \Rightarrow x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. On remarque que $f(x, y) = 1$, si et seulement si k est pair. Donc, les points $\left(\frac{\pi}{2} + 2k\pi, 1\right)$ sont maximums liés de f .				