

University of Msila

9.
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y = x^2.$$

10.
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x = y^2$$

11. $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y = x^2$.

Exercise 03

Let *P* be "For every real number *x*, there exists at least one natural number *n* greater than or equal to *x*."

- 1. Write the proposition *P* using quantifiers.
- 2. Write the negation of *P*.

Exercise 04

Let's consider the implication $(a = b) \implies a^2 = b^2$ where $(a, b) \in \mathbb{R}^2$.

• Determine if the contrapositive, the converse, and the biconditional(the equivalent) statements

are true. If not, determine a subset of \mathbb{R} on which the statements are true.

🇞 Exercise 05

- 1. Give the contrapositive of the following statement: $-1 \le x \le 1 \implies |x| \le 1$
- 2. Give the converse of the following statement: $-1 \le x \le 1 \implies |x| \le 1$
- 3. Give the negation of the following statement: $-1 \le x \le 1 \implies |x| \le 1$

Exercise 06

"Consider the following four statements:

- (a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : x + y > 0$
- (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : x + y > 0$
- (c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} : x + y > 0$
- (d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} : y^2 > x$
- 1. Are statements the a, b, c, and d true or false?

University of Msila

2. Provide their negation."

Exercise 07 (Direct proof)

- 1. Show that if $a, b \in \mathbb{Q}$, then $a + b \in \mathbb{Q}$.
- 2. Let $a, b \in \mathbb{R}$. Prove that if $a \le b$, then $a \le \frac{a+b}{2} \le b$.

3. Let $n \in \mathbb{N}$. Prove that if *n* is a multiple of 3, then n^2 is divisible by 9".

🇞 Exercise 08 (Proof by Contrapositive)

- 1. Let $n \in \mathbb{N}$. Show that if n^2 is even then n is even
- 2. Let $x \in \mathbb{R}$. Show that if $x^5 + x < 2$ then, x < 1.
- 3. Let $x, y \in \mathbb{R}$. Show that

$$x+y>1 \implies y>\frac{4}{5}$$
 or $x>\frac{1}{5}$.

Exercise 09 (Proof by induction)

1. Prove by induction that, $\forall n \in \mathbb{N}^*$

$$P(n):$$
 $\sum_{k=1}^{n} 3k^2 + k = n(n+1)^2.$

2. Prove by induction that, $\forall n \in \mathbb{N}^*$

$$P(n):$$
 $\sum_{k=1}^{n} k^2 + k = \frac{n(n+1)(n+2)}{3}.$

3. Prove by induction that, $\forall n \in \mathbb{N}$, n(n+1) est pair.

4. Prove by induction that, $\forall n \in \mathbb{N}^*$

$$P(n):$$
 $\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$

Exercise 10 (Proof by contradiction)

- 1. Prove by contradiction that, $\sqrt{2} \notin \mathbb{Q}$.
- 2. Let $a, b \ge 0$. Prove by contradiction that, $\left(\frac{a}{1+b} = \frac{b}{1+a}\right) \implies a = b$.

- 1. Show that, $\forall n \in \mathbb{N}$, n(n+1) is even.
- 2. Show that, $\forall x \in \mathbb{R}$, $g(x) = x^2 x + 1 |x 1| \ge 0$.
- 3. Show that, $\forall x \in \mathbb{R}$, $\sqrt{x^2 + 1} x \ge 0$.

🏶 Exercise 12 (Proof by counterexample)

1. Give a counterexample to disprove that following statement $\forall x, y \in \mathbb{R}_+, \sqrt{x+y} \neq \sqrt{x} + \sqrt{y}$ is false.