; University of Mohamed Boudiaf-Msila
Faculty of Sciences and Technologies
Academic Year 2023-2024.
Module :Mathematics 01 Renewable energy+License ST $1^{\text {st }}$ year

Exercise 01

Complete the ellipses with the appropriate logical connector $\Leftrightarrow ; \Rightarrow \Rightarrow$.

1. $x \in \mathbb{R}, \quad x^{2}=4 \ldots \ldots \ldots x=2$.
2. $z \in \mathbb{C}, \quad \bar{z}=z$. \qquad $z \in \mathbb{R}$.
3. $x \in \mathbb{R}, \quad x=\pi$. \qquad $e^{2 i x}=1$

Exercise 02

Among the following statements, which ones are true, which ones are false? Provide their negation."

1. $(2+2=4) \wedge(1+1=3)$
2. $(2+2=4) \vee(1+1=3)$
3. $(2+2=4) \Longrightarrow(1+1=3)$
4. $(1+1=3) \Longrightarrow(2+2=4)$
5. $\forall x \in\left[1 ;+\infty\left[; x^{2} \geq 1\right.\right.$
6. $\forall x \in \mathbb{R} ; x^{2} \geq 1$
7. $\forall x \in \mathbb{R}, x^{2}=1$.
8. $\exists x \in \mathbb{R}, x^{2}=1$.
9. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, y=x^{2}$.
10. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x=y^{2}$.
11. $\exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y=x^{2}$.

Exercise 03

Let P be "For every real number x, there exists at least one natural number n greater than or equal to x."

1. Write the proposition P using quantifiers.
2. Write the negation of P.

Exercise 04

Let's consider the implication $(a=b) \Longrightarrow a^{2}=b^{2}$ where $(a, b) \in \mathbb{R}^{2}$.

- Determine if the contrapositive, the converse, and the biconditional(the equivalent) statements are true. If not, determine a subset of \mathbb{R} on which the statements are true.

Exercise 05

1. Give the contrapositive of the following statement: $-1 \leq x \leq 1 \Longrightarrow|x| \leq 1$
2. Give the converse of the following statement: $-1 \leq x \leq 1 \Longrightarrow|x| \leq 1$
3. Give the negation of the following statement: $-1 \leq x \leq 1 \Longrightarrow|x| \leq 1$

Exercise 06

"Consider the following four statements:
(a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y>0$
(b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}: x+y>0$
(c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}: x+y>0$
(d) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}: y^{2}>x$

1. Are statements the a, b, c, and d true or false?
, 2. Provide their negation."

Exercise 07 (Direct proof)

1. Show that if $a, b \in \mathbb{Q}$, then $a+b \in \mathbb{Q}$.
2. Let $a, b \in \mathbb{R}$. Prove that if $a \leq b$, then $a \leq \frac{a+b}{2} \leq b$.
3. Let $n \in \mathbb{N}$. Prove that if n is a multiple of 3 , then n^{2} is divisible by 9 ".

Exercise 08 (Proof by Contrapositive)

1. Let $n \in \mathbb{N}$. Show that if n^{2} is even then n is even
2. Let $x \in \mathbb{R}$. Show that if $x^{5}+x<2$ then, $x<1$.
3. Let $x, y \in \mathbb{R}$. Show that

$$
x+y>1 \Longrightarrow y>\frac{4}{5} \quad \text { or } \quad x>\frac{1}{5} .
$$

Exercise 09 (Proof by induction)

1. Prove by induction that, $\forall n \in \mathbb{N}^{*}$

$$
P(n): \quad \sum_{k=1}^{n} 3 k^{2}+k=n(n+1)^{2} .
$$

2. Prove by induction that, $\forall n \in \mathbb{N}^{*}$

$$
P(n): \quad \sum_{k=1}^{n} k^{2}+k=\frac{n(n+1)(n+2)}{3} .
$$

3. Prove by induction that, $\forall n \in \mathbb{N}, \quad n(n+1)$ est pair.
4. Prove by induction that, $\forall n \in \mathbb{N}^{*}$

$$
P(n): \quad \sum_{k=1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4} .
$$

Exercise 10 (Proof by contradiction)

1. Prove by contradiction that, $\sqrt{2} \notin \mathbb{Q}$.
2. Let $a, b \geq 0$. Prove by contradiction that, $\left(\frac{a}{1+b}=\frac{b}{1+a}\right) \Longrightarrow a=b$.

Exercise 11 (Proof by cases)

1. Show that, $\forall n \in \mathbb{N}, \quad n(n+1)$ is even.
2. Show that, $\forall x \in \mathbb{R}, \quad g(x)=x^{2}-x+1-|x-1| \geq 0$.
3. Show that, $\forall x \in \mathbb{R}, \quad \sqrt{x^{2}+1}-x \geq 0$.

Exercise 12 (Proof by counterexample)

1. Give a counterexample to disprove that following statement $\forall x, y \in \mathbb{R}_{+}, \sqrt{x+y} \neq \sqrt{x}+\sqrt{y}$ is false.
