A- Errors, measurements and representation

1- Unit

- All physical quantities are quantified, these quantities are characterized by units that are suitable for their measurements.
- In the international system (MKSA), we have 7 main units, the rest follows from that.

2-Scientific notation

When quantifying physical quantities, some of them are very large or too small, for this, notation is used to write them. which is called scientific notation

$$
\text { v. } 10^{n}\left\{\begin{array}{l}
* v: \text { real number } \quad 1 \leq v \leq 9 \\
* n: \text { Integer number }
\end{array}\right.
$$

Example:
$>$ The earth mass: " 6 followed by 24 zeros " $\longrightarrow \boldsymbol{m}=\mathbf{6 1 0} \mathbf{1 0}^{\mathbf{2 4}} \mathbf{k g}$
$>$ The electron mass: " 9.11 preceded by 30 zero $" \rightarrow \boldsymbol{m}=\mathbf{9 . 1 1 1 0} \mathbf{1 0}^{\mathbf{- 3 1}} \mathbf{k g}$

3- Measurement, errors and significant figures

3.1 Measurements

There are two types of measures
a- Direct measurements

This is the operation of reading or sampling directly from the measuring instrument (length, time, current, ...).
b- Indirect measurements
The desired quantity is expressed mathematically as a function of other quantities measured directly (area, volume, density, ...)

3.2 Errors

a- Notions of error and uncertainty

- Error:

Is the difference between the real and measured value of the physical quantity. This difference can be positive or negative.

There are two types of errors:

- systematic errors:

Those repeated each time in the same way (error of the instrument, ...)

- Incidental errors:

Those that appear each time but in a random or unpredictable way (reading, temperature change, ...)

- Uncertainty: is the maximum absolute value that the error can take.
b- Determination of uncertainty
- If " x " is the real value of the physical quantity, while the measured value of the same quantity is " $\boldsymbol{x}_{\mathbf{0}}$ ", then the error is:

$$
e=x-x_{0}
$$

Note: The error may be negative or positive ($\boldsymbol{e}<0$ ou $e>0$)

- The absolute value of the error is: the absolute error

$$
\delta x=|e|=\left|x-x_{0}\right|
$$

- The absolute uncertainty is given by:

$$
\Delta x=\max (\delta x)
$$

Note: we always have $\Delta \boldsymbol{x} \geq \boldsymbol{\delta} \boldsymbol{x}$

- If the error is positive $(e>0)$:

$$
\left|x-x_{0}\right|=x-x_{0} \quad \Rightarrow \Delta x \geq \delta x=x-x_{0} \quad \Rightarrow x \leq x_{0}+\Delta x
$$

- If the error is negative $(e<0)$:

$$
\left|x-x_{0}\right|=-\left(x-x_{0}\right) \Rightarrow \Delta x \geq \delta x=x_{0}-x \quad \Rightarrow x \geq x_{0}-\Delta x
$$

- The real value can finally be written:

$$
x=x_{0} \pm \Delta x
$$

- Determination of uncertainty
- If the quantity is measured directly, the error made is on the smallest digit of the instrument. (Graduated rule in millimeters: the error made is in the mm).
- If the quantity is given by indirect measurement, the error is expressed as a function of the errors of the quantities measured directly $(x=F(a, b, c .)$.
* Sum:

$$
\begin{gathered}
x=a+b+c+\cdots \\
\Delta x=\Delta a+\Delta b+\Delta c+\cdots
\end{gathered}
$$

* Product:

$$
\begin{gathered}
x_{0}=\boldsymbol{a} . \boldsymbol{b} . c \\
\Delta x=(b . c) \Delta a+(\boldsymbol{a} . \boldsymbol{c}) \Delta b+(\boldsymbol{a} . \boldsymbol{b}) \Delta c
\end{gathered}
$$

$$
\text { And } \frac{\Delta x}{x_{0}}=\frac{\Delta a}{a}+\frac{\Delta b}{b}+\frac{\Delta c}{c} \Rightarrow \Delta x=\left(\frac{\Delta a}{a}+\frac{\Delta b}{b}+\frac{\Delta c}{c}\right) x_{0}
$$

finally: $\quad x=x_{0} \pm \Delta x$

Examples:
1° - Perimeter of a rectangle: \boldsymbol{L} is the length and \boldsymbol{l} is the width

$$
P=2 \cdot(L+l) \Rightarrow \Delta P=2(\Delta L+\Delta l)
$$

2° - Surface of this rectangle:

$$
\begin{aligned}
S=L . l \Rightarrow \Delta S & =\boldsymbol{l} . \Delta L+L \cdot \Delta l \quad \Rightarrow \quad \frac{\Delta S}{S}=\frac{\Delta L}{L}+\frac{\Delta l}{l} \\
& \Rightarrow \Delta S=\left(\frac{\Delta L}{L}+\frac{\Delta l}{l}\right) S
\end{aligned}
$$

4- Signifiant figures

During the measurement, we write the quantified quantity in scientific notation, the figures that express this quantity are said to be significant.

Note: "13" and "13.0" have the same value, but their meanings are different i.e., the error of the second is 10 times less than the first

Generally:

- Non-zero figures are always significant (3.1415 $\longrightarrow 5$ significant digits).
- All zeros that come at the end are significant ($0.4500 \longrightarrow 4$ significant digits).
- The zeros between the significant digits are significant $(0.104 \longrightarrow 3$ significant digits).
- The zeros used to move the comma are not meaningful ($0.00125=1.2510^{-5} \longrightarrow 3$ significant digits).

Some rules on significant numbers

5- Data and graphs

5.1- Data

These are the values that a physical quantity can take in different states

5.2- Graphs

The dependence that exists between two or more physical quantities is expressed by a function that can be represented by a curve or a graph.

There are several types of functions:

- Linear functions:
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b}$, express the dependence between y et x.
- Quadratic functions:
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ (Parabola of the 2nd order as well as that of the 3rd order and so on) - Inverse functions:

$$
y=\frac{k}{x}
$$

- Exponential and logarithmic functions:
$\boldsymbol{y}=\boldsymbol{a} \boldsymbol{e}^{\boldsymbol{u}(x)}, \boldsymbol{y}=\ln (\boldsymbol{v}(\boldsymbol{x}))$ où $\boldsymbol{u}(\boldsymbol{x})$ et $\boldsymbol{v}(\boldsymbol{x})$ are any numeric functions
- Circular or trigonometric functions:

$$
y=a \cdot \sin [u(x)], y=b \cdot \cos [u(x)], y=\operatorname{tg}[u(x)] \ldots
$$

- Hyperbolic functions: $y=a \cdot \sinh [u(x)], y=b \cdot \cosh [u(x)], y=\operatorname{tgh}[u(x)] \ldots$
- Special functions.

B- Vectors

1- Notion of vector

1.1-Definition:

A vector is a mathematical entity that represents an element of a vector space \mathbb{E}^{3} associated with an affine space (point), \mathbb{R}^{3} where a direction, modulus, and point of application are defined.

- "O" point of application

- " Δ " line of action
- In the orthonormal basis $(\overrightarrow{\boldsymbol{i}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$,) and in Euclidean geometry:

The modulus of the vector \vec{V} is:

$$
\overrightarrow{\boldsymbol{V}}=\overrightarrow{|\boldsymbol{O} \boldsymbol{A}|}=\sqrt{x^{2}+y^{2}+z^{2}}
$$

- From O to A is the direction

1.2-Types of vectors

1.2.1- Free vector

It is a vector where the application point can be transferred to any point in space.

1.2.2-Sliding vector

It is a vector where the application point can move along its line of action

1.2.3-Bound vector

It is a vector where the point of application is fixed and defined by the coordinates of its origin

Free vector

Sliding vector
(4

Bound vector

2-Operation on vectors

2.1-Sum of vectors (resultant):

Relative to an orthonormal $(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{J}}, \overrightarrow{\boldsymbol{k}})$ basis, the sum of two vectors is a vector, where the components are added two to two respectively

$$
\begin{aligned}
& \vec{V}_{1}=x_{1} \vec{\imath}+y_{1} \vec{\jmath}+z_{1} \vec{k} \quad \text { and } \quad \vec{V}_{2}=x_{2} \vec{\imath}+y_{2} \vec{\jmath}+z_{2} \vec{k} \\
\Rightarrow \quad & \vec{V}=\vec{V}_{1}+\vec{V}_{2}=\left(x_{1}+x_{2}\right) \vec{\imath}+\left(y_{1}+y_{2}\right) \vec{\jmath}+\left(z_{1}+z_{2}\right) \vec{k}
\end{aligned}
$$

Note:

For multiple vectors, the sum of the respective components added together represents the components of the resultant vector.
$\vec{V}=\vec{V}_{1}+\vec{V}_{2}+\cdots+\vec{V}_{n}=\left(x_{1}+x_{2}+\cdots+x_{n}\right) \vec{\imath}+\left(y_{1}+y_{2}+\cdots+y_{n}\right) \vec{\jmath}+\left(z_{1}+z_{2}+\cdots+z_{n}\right) \vec{k}$

$$
\vec{V}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}
$$

$$
\left\{\begin{array}{l}
x=\sum_{l=1}^{n} x_{l} \\
y=\sum_{l=1}^{n} y_{l} \\
z=\sum_{l=1}^{n} z_{l}
\end{array}\right.
$$

2.2- Product of vectors:

a- Scalar product and projection:
The scalar product of two vectors $\overrightarrow{\boldsymbol{V}}_{1}$ and $\overrightarrow{\boldsymbol{V}}_{2}$, is a scalar denoted $\overrightarrow{\boldsymbol{V}}_{1} \circ \overrightarrow{\boldsymbol{V}}_{2}$, which is equal to the sum of the products of the corresponding components taken pairwise.

$$
\begin{aligned}
& \vec{V}_{1}=x_{1} \vec{\imath}+y_{1} \vec{\jmath}+z_{1} \vec{k} \text { and } \vec{V}_{2}=x_{2} \vec{\imath}+y_{2} \vec{\jmath}+z_{2} \vec{k} \\
& \Rightarrow \quad V=\vec{V}_{1} \circ \vec{V}_{2}=\left(x_{1} \cdot x_{2}\right)+\left(y_{1} \cdot y_{2}\right)+\left(z_{1} \cdot z_{2}\right)
\end{aligned}
$$

Note:

- For the unit vectors of the orthonormal basis, we have:

$$
\left\{\begin{array}{l}
\vec{\imath} \circ \overrightarrow{\boldsymbol{\imath}}=\overrightarrow{\boldsymbol{\jmath}} \circ \overrightarrow{\boldsymbol{\jmath}}=\overrightarrow{\boldsymbol{k}} \circ \overrightarrow{\boldsymbol{k}}=\mathbf{1} \\
\overrightarrow{\boldsymbol{\imath}} \circ \overrightarrow{\boldsymbol{\jmath}}=\overrightarrow{\boldsymbol{\imath}} \circ \vec{k}=\overrightarrow{\boldsymbol{J}} \circ \overrightarrow{\boldsymbol{k}}=\mathbf{0}
\end{array}\right.
$$

- The square of the modulus of the vector is:

$$
\begin{gathered}
\vec{V} \circ \vec{V}=(x \cdot x)+(y \cdot y)+(z \cdot z)=x^{2}+y^{2}+z^{2}=V^{2} \\
\Rightarrow|\vec{V}|=V=\sqrt{x^{2}+y^{2}+z^{2}}
\end{gathered}
$$

- The scalar product can also be defined as follows:

$$
\vec{V}_{1} \circ \vec{V}_{2}=\left|\vec{V}_{1}\right| \cdot\left|\vec{V}_{2}\right| \cos \left(\vec{V}_{1}, \vec{V}_{2}\right)=\left|\vec{V}_{1}\right| \cdot\left|\vec{V}_{2}\right| \cos (\theta)
$$

- The square of the modulus of a vector can be given by:

$$
\vec{V}_{1} \circ \vec{V}_{1}=\left|\vec{V}_{1}\right| \cdot\left|\vec{V}_{2}\right| \cos \left(\vec{V}_{1}, \vec{V}_{1}\right)=V_{1}^{2}
$$

Properties:

- The scalar product is commutative

$$
\vec{V}_{1} \circ \vec{V}_{2}=\vec{V}_{2} \circ \vec{V}_{1}
$$

- The scalar product is distributive with respect to addition

$$
\vec{V}_{1} \circ\left(\vec{V}_{2}+\vec{V}_{3}\right)=\vec{V}_{1} \circ \vec{V}_{2}+\vec{V}_{1} \circ \vec{V}_{3}
$$

- The scalar product geometrically represents the projection of one vector onto the direction of another

$$
\left\{\begin{array}{l}
\vec{V} \circ \vec{\imath}=(x \vec{\imath}+y \vec{\jmath}+z \vec{k}) \circ \vec{\imath}=x \\
\vec{V} \circ \vec{\jmath}=(x \vec{\imath}+y \vec{\jmath}+z \vec{k}) \circ \vec{\jmath}=y \\
\vec{V} \circ \vec{k}=(x \vec{\imath}+y \vec{\jmath}+z \vec{k}) \circ \vec{k}=z
\end{array}\right.
$$

- The scalar product is zero if:

$$
\left|\overrightarrow{\boldsymbol{V}}_{\mathbf{1}}\right|=\mathbf{0},\left|\vec{V}_{\mathbf{2}}\right|=0 \text { or } \overrightarrow{\boldsymbol{V}}_{\mathbf{1}} \perp \overrightarrow{\boldsymbol{V}}_{\mathbf{2}}
$$

b- Vector product and oriented surface:

The cross product of two vectors, $\overrightarrow{\boldsymbol{V}}_{\mathbf{1}}$ and $\overrightarrow{\boldsymbol{V}}_{\mathbf{2}}$, is a vector denoted $\overrightarrow{\boldsymbol{V}}_{\mathbf{1}} \wedge \overrightarrow{\boldsymbol{V}}_{\mathbf{2}}$ and given by:

$$
\vec{V}_{1} \wedge \vec{V}_{2}=\left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & k \\
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2}
\end{array}\right|=\left(y_{1} \cdot z_{2}-y_{2} \cdot z_{1}\right) \vec{\imath}-\left(x_{1} \cdot z_{2}-x_{2} \cdot z_{1}\right) \vec{\jmath}+\left(x_{1} \cdot y_{2}-x_{2} \cdot y_{1}\right) \vec{k}
$$

Also defined as follows:
$\vec{V}_{1} \wedge \vec{V}_{2}=\left|\vec{V}_{1}\right| \cdot\left|\vec{V}_{2}\right| \sin \left(\vec{V}_{1}, \vec{V}_{2}\right) \vec{u}=\left|\vec{V}_{1}\right| \cdot\left|\vec{V}_{2}\right| \sin (\theta) \vec{u}$
$\overrightarrow{\boldsymbol{u}}$: is a unit vector
$\overrightarrow{\boldsymbol{u}} \perp\left(\vec{V}_{1}\right.$ et $\left.\vec{V}_{2}\right)$

Properties:

- The vector product is noncommutative (anticommutative)

$$
\vec{V}_{1} \wedge \vec{V}_{2}=-\vec{V}_{2} \wedge \vec{V}_{1}
$$

- The vector product is distributive with respect to the addition

$$
\vec{V}_{1} \wedge\left(\vec{V}_{2}+\vec{V}_{3}\right)=\vec{V}_{1} \wedge \vec{V}_{2}+\vec{V}_{1} \wedge \vec{V}_{3}
$$

- The resulting vector of the cross product is always perpendicular to the operand vectors.
- The vector product obeys the rule of circular permutation

$$
\left\{\begin{array}{l}
\vec{\imath} \wedge \overrightarrow{\boldsymbol{\jmath}}=\overrightarrow{\boldsymbol{k}} \\
\overrightarrow{\boldsymbol{\jmath}} \wedge \overrightarrow{\boldsymbol{k}}=\overrightarrow{\boldsymbol{\imath}} \\
\overrightarrow{\boldsymbol{k}} \wedge \overrightarrow{\boldsymbol{\imath}}=\overrightarrow{\boldsymbol{\jmath}}
\end{array} \quad \text { and } \overrightarrow{\boldsymbol{\imath}} \wedge \overrightarrow{\boldsymbol{\imath}}=\overrightarrow{\boldsymbol{\jmath}} \wedge \overrightarrow{\boldsymbol{\jmath}}=\overrightarrow{\boldsymbol{k}} \wedge \overrightarrow{\boldsymbol{k}}=\mathbf{0}\right.
$$

- The vector product is zero if:

$$
\left|\vec{V}_{\mathbf{1}}\right|=\mathbf{0},\left|\vec{V}_{\mathbf{2}}\right|=0 \text { or } \vec{V}_{\mathbf{1}} \| \overrightarrow{\boldsymbol{V}}_{\mathbf{2}}
$$

- The cross product geometrically represents the area of the oriented surface formed by operand vectors.
c- Triple product:
* The scalar triple product

The scalar triple product, is a scalar defined as:

$$
\vec{V}_{1} \circ\left(\vec{V}_{2} \wedge \vec{V}_{3}\right)=W
$$

Properties:

- The scalar triple product is invariant by cyclic permutation

$$
\vec{V}_{1} \circ\left(\vec{V}_{2} \wedge \vec{V}_{3}\right)=\vec{V}_{3} \circ\left(\vec{V}_{1} \wedge \vec{V}_{2}\right)=\vec{V}_{2} \circ\left(\vec{V}_{3} \wedge \vec{V}_{1}\right)
$$

- The scalar triple product is zero if:

$$
\left|\vec{V}_{1}\right|=\mathbf{0}\left|\vec{V}_{2}\right|=\mathbf{0}\left|\vec{V}_{3}\right|=\mathbf{0}, \quad \text { or } \vec{V}_{\mathbf{1}}, \overrightarrow{\boldsymbol{V}}_{2} \text { and } \overrightarrow{\boldsymbol{V}}_{\mathbf{3}} \text { are coplanar }
$$

- Geometrically, the scalar triple product represents the volume formed by the operand vectors.
* The vector triple product

The vector triple product is a vector defined by the following relation:

$$
\vec{V}_{1} \wedge\left(\vec{V}_{2} \wedge \vec{V}_{3}\right)=\left(\vec{V}_{1} \circ \vec{V}_{3}\right) \vec{V}_{2}-\left(\vec{V}_{1} \circ \vec{V}_{2}\right) \vec{V}_{3}=\alpha \vec{V}_{2}+\beta \vec{V}_{3}=\vec{W}
$$

Remark:
The multiplication of a vector by a scalar is a vector (it is a homothety)

$$
\lambda \vec{V}=\vec{W}
$$

3- Rule of sines

$$
\begin{aligned}
& \vec{V}=\vec{V}_{1}+\vec{V}_{2} \\
& |\vec{V}|=\sqrt{\left(\vec{V}_{1}+\vec{V}_{2}\right) \circ\left(\vec{V}_{1}+\vec{V}_{2}\right)}=\sqrt{\left|V_{1}\right|+\left|V_{2}\right|+2\left|V_{1}\right| \circ\left|V_{2}\right|}
\end{aligned}
$$

- The triangles $\boldsymbol{A B C}$ and $\boldsymbol{O B C}$ give:

$$
\left\{\begin{array}{l}
\sin (\alpha)=\frac{B C}{O C} \\
\sin (\pi-\beta)=\frac{B C}{A C}
\end{array} \quad \Rightarrow \quad o C \cdot \sin (\alpha)=A C \cdot \sin (\beta) \quad \Rightarrow \frac{|\vec{V}|}{\sin (\beta)}=\frac{\left|\vec{V}_{2}\right|}{\sin (\alpha)}\right.
$$

- The triangles $\boldsymbol{O A D}$ and give: $\boldsymbol{A C D}$

$$
\left\{\begin{array}{l}
\sin (\alpha)=\frac{A D}{O A} \\
\sin (\gamma)=\frac{A D}{A C}
\end{array} \quad \Rightarrow O A \cdot \sin (\alpha)=A C \cdot \sin (\gamma) \Rightarrow \frac{\left|\vec{V}_{1}\right|}{\sin (\gamma)}=\frac{\left|\vec{V}_{2}\right|}{\sin (\alpha)}\right.
$$

4- Derived from a vector

In a Cartesian orthonormal basis, the vector is expressed $\overrightarrow{\boldsymbol{a}}$ by:

$$
\vec{a}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}
$$

If it is variable, its derivative comes down to differentiating these components.

$$
\frac{d \vec{a}}{d t}=\frac{d x}{d t} \vec{\imath}+\frac{d y}{d t} \vec{\jmath}+\frac{d z}{d t} \vec{k}
$$

- The derivative of the sum of the vectors is equal to the sum of the derivatives of these vectors

$$
\frac{d(\vec{a}+\vec{b})}{d t}=\frac{d \vec{a}}{d t}+\frac{d \vec{b}}{d t}
$$

- The derivative of the product of the vectors is equal to

$$
\begin{array}{ll}
\frac{d(\vec{a} \circ \vec{b})}{d \boldsymbol{t}}=\overrightarrow{\boldsymbol{b}} \circ \frac{\boldsymbol{d} \overrightarrow{\boldsymbol{a}}}{\boldsymbol{d t}}+\overrightarrow{\boldsymbol{a}} \circ \frac{\boldsymbol{d} \overrightarrow{\boldsymbol{b}}}{\boldsymbol{d t}} & \text { for the scalar product } \\
\frac{\boldsymbol{d}(\overrightarrow{\boldsymbol{a}} \wedge \vec{b})}{\boldsymbol{d t}}=\overrightarrow{\boldsymbol{a}} \wedge \frac{\boldsymbol{d} \vec{b}}{\boldsymbol{d t}}+\frac{\boldsymbol{d} \overrightarrow{\boldsymbol{a}}}{\boldsymbol{d} \boldsymbol{t}} \wedge \overrightarrow{\boldsymbol{b}} & \text { for the cross product }
\end{array}
$$

I-Coordinate systems

1- Introduction

- Two vectors are linearly dependent if one vector can be expressed in terms of the other.

$$
\overrightarrow{\boldsymbol{b}}=\lambda \overrightarrow{\boldsymbol{a}}
$$

vectors linearly dependant

- Two vectors are linearly independent if any of the vectors cannot be expressed in terms of the other.

Remarks:

- In a plane, a vector can be expressed as a linear combination of two linearly independent vectors.

$$
\vec{c}=\alpha \vec{a}+\beta \vec{b}
$$

- The case can be generalized to three dimensions and more

$$
\vec{v}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}+\cdots
$$

vectors lineairly independant

- The three vectors $\overrightarrow{\boldsymbol{a}}, \overrightarrow{\boldsymbol{b}}, \overrightarrow{\boldsymbol{c}}$ form a basis if they are linearly independent.
- If they are pairwise orthogonal, they form an orthogonal basis.
- If they are normalized, the basis is called orthonormal.

2- Representation in the plan

2.1- Cartesian (Rectangular)coordinates $[(x, y) \rightarrow(\vec{\imath}, \vec{\jmath})]$

In the plane we choose an orthonormal basis $(\vec{\imath}, \vec{\jmath})$ where the coordinates of the point " \boldsymbol{M} " are $(\boldsymbol{x}, \boldsymbol{y})$

Location of " \boldsymbol{M}^{\prime} :

The point \boldsymbol{M} position is given by the vector $\overrightarrow{\boldsymbol{O M}}$ such that:

$$
\overrightarrow{O M}=\vec{r}=x \vec{\imath}+y \vec{\jmath}
$$

The module is:

$$
|\overrightarrow{O M}|=|\vec{r}|=\sqrt{x^{2}+y^{2}}
$$

2.2-Polar coordinates $\left[(\rho, \theta) \rightarrow\left(\vec{u}_{\rho}, \vec{u}_{\theta}\right)\right]$

If we choose a local base $\left(\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}, \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}\right)$. "O" taken arbitrarily as the pole. The unit vector $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}$ is oriented along the vector $\overrightarrow{\boldsymbol{O M}}$. The direction passing through the pole " \boldsymbol{O} " is the polar axis, taken as a reference to define the angle (coordinate) " $\boldsymbol{\theta}$ ". The other coordinate " $\boldsymbol{\rho}$ " is the magnitude of the vector $\overrightarrow{\boldsymbol{O M}}$.

$$
\overrightarrow{O M}=\rho \vec{u}_{\rho}
$$

The module is:

$$
|\overrightarrow{O M}|=\rho
$$

2.3- Intrinsic coordinates $\left[\left(\vec{u}_{N}, \overrightarrow{\boldsymbol{u}}_{T}\right)\right]$

We cannot represent the point in the intrinsic coordinate system unless we know the curve " \mathcal{C} " of the trajectory, which is taken as the axis. Equipped with an origin, the distance $\widehat{\boldsymbol{O} \boldsymbol{M}}$ is denoted as " \boldsymbol{s} ".

$$
\widehat{\boldsymbol{O M}}=\boldsymbol{s} \text { and } \overrightarrow{\boldsymbol{O M}}=\overrightarrow{\boldsymbol{r}}
$$

2.4- Relationship between the coordinates of the different systems

- In Cartesian coordinates: $\overrightarrow{\boldsymbol{O M}}=\overrightarrow{\boldsymbol{r}}=\boldsymbol{x} \overrightarrow{\boldsymbol{\imath}}+\boldsymbol{y} \overrightarrow{\boldsymbol{\jmath}}$
- In Polar coordinates: $\overrightarrow{\boldsymbol{O M}}=\boldsymbol{\rho} \overrightarrow{\boldsymbol{u}}_{\boldsymbol{\rho}}$
- If we make a choice such that the polar axis is
 superimposed with the $\overrightarrow{\boldsymbol{o x}}$ axis

We will have:

$$
\left\{\begin{array}{l}
\vec{u}_{\rho}=\cos (\theta) \vec{\imath}+\sin (\theta) \vec{\jmath} \\
\vec{u}_{\theta}=-\sin (\theta) \vec{\imath}+\cos (\theta) \vec{\jmath}
\end{array}\right.
$$

Then:

$$
\overrightarrow{O M}=\vec{r}=x \vec{\imath}+y \vec{\jmath}=\rho \vec{u}_{\rho}=\rho \cos (\theta) \vec{\imath}+\rho \sin (\theta) \vec{\jmath}
$$

By comparison we will get:

$$
\left\{\begin{array} { l }
{ x = \rho \operatorname { c o s } \theta } \\
{ y = \rho \operatorname { s i n } \theta }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\rho=\sqrt{x^{2}+y^{2}} \\
\theta=\operatorname{arctg}(y / x)
\end{array}\right.\right.
$$

Note:

Polar coordinates and intrinsic coordinates should not be merge (confused).

3- Representation in space

3.1- Cartesian (Rectangular)coordinates $[(x, y, z) \rightarrow(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})]$

In space, the location of the point " \boldsymbol{M} " is expressed by the ($\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$) coordinates in an orthonormal basis $(\overrightarrow{\boldsymbol{\imath}}, \overrightarrow{\boldsymbol{\jmath}}, \overrightarrow{\boldsymbol{k}})$. in such a way that:

$$
\overrightarrow{O M}=\vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}
$$

$\overrightarrow{\boldsymbol{O M}}$: is the position vector of the point \boldsymbol{M}

The module is:

$$
|\overrightarrow{O M}|=|\vec{r}|=\sqrt{x^{2}+y^{2}+z^{2}}
$$

\boldsymbol{x} : is the projection of $\overrightarrow{\boldsymbol{O M}}$ on the direction $\overrightarrow{\boldsymbol{\imath}}$
\boldsymbol{y} : is the projection of $\overrightarrow{\boldsymbol{O M}}$ on the direction $\overrightarrow{\boldsymbol{J}}$
$z:$ is the projection of $\overrightarrow{\boldsymbol{O M}}$ on the direction $\overrightarrow{\boldsymbol{k}}$

3.2-Coordinates cylindrical $\left[(\rho, \theta, z) \rightarrow\left(\vec{u}_{\rho}, \vec{u}_{\theta}, \overrightarrow{\boldsymbol{k}}\right)\right]$

To locate a point " \boldsymbol{M} " in space, instead of using a Cartesian system, other systems can be used. Among these, the cylindrical system. In this system, we imagine that point " \boldsymbol{M} " is on the surface of a cylinder with axis $\overrightarrow{\boldsymbol{O Z}}$, radius $\boldsymbol{\rho}$, and "some" base.

The projection of $\overrightarrow{\boldsymbol{O M}}$, on the base of the cylinder is located by $(\boldsymbol{\rho}, \boldsymbol{\theta})$.

So

$$
\overrightarrow{O M}=\vec{r}=\rho \vec{u}_{\rho}+z \vec{k}
$$

$$
\text { And } \quad|\overrightarrow{O M}|=|\vec{r}|=\sqrt{\rho^{2}+z^{2}}
$$

3.3-Spherical coordinates $\left[(r, \theta, \varphi) \rightarrow\left(\overrightarrow{\boldsymbol{u}}_{r}, \overrightarrow{\boldsymbol{u}}_{\theta}, \overrightarrow{\boldsymbol{u}}_{\varphi}\right)\right]$

Another system allows us to locate a point " \boldsymbol{M} " in space. In this system, it is imagined that point " \boldsymbol{M} " is on the surface of a sphere with radius " \boldsymbol{r} " and center " \boldsymbol{O} ". This center is taken as the origin, and called pole. It is located in the equatorial plane.

In spherical coordinates, a point " \boldsymbol{M} " is characterized by the linear variable " \boldsymbol{r} ", and the angular variables " $\boldsymbol{\varphi}, \boldsymbol{\theta}$ ".

- " $\boldsymbol{\theta}$ " polar angle: Angle between the polar axis taken arbitrarily and the direction $\overrightarrow{\boldsymbol{O M}}$. " 0 " is the center of this sphere.
- The projection of " \boldsymbol{M} " on the Equatorial plane is " \boldsymbol{M}^{\prime} ". It is located by the azimuthal angle " $\boldsymbol{\varphi}$ " with respect to an arbitrary direction axis (azimuthal direction) in that plane.

$$
\overrightarrow{O M}=\vec{r}=|\vec{r}| \vec{u}_{r}
$$

* $\overrightarrow{\boldsymbol{u}}_{r}$: radial unit vector (in the direction of the radius $\overrightarrow{\boldsymbol{O M}}$)
* $\overrightarrow{\boldsymbol{u}}_{\boldsymbol{\theta}}$: unit vector tangent to the great circle (all circles of radius $\overrightarrow{\boldsymbol{O M}}$).
* $\overrightarrow{\boldsymbol{u}}_{\varphi}$: unit vector tangent to parallels (circles parallel to the equator).

3.4- Relationship between the coordinates of the different systems

3.4-1 Relationship between Cartesian coordinates and cylindrical coordinates

- In Cartesian coordinates: $\quad \overrightarrow{\boldsymbol{O M}}=\overrightarrow{\boldsymbol{r}}=\boldsymbol{x} \overrightarrow{\boldsymbol{\imath}}+\boldsymbol{y} \overrightarrow{\boldsymbol{\jmath}}+\boldsymbol{z} \overrightarrow{\boldsymbol{k}}$
- In cylindrical coordinates: $\quad \overrightarrow{\boldsymbol{O M}}=\rho \overrightarrow{\boldsymbol{u}}_{\rho}+z \overrightarrow{\boldsymbol{k}}$

With $\quad \vec{u}_{\rho}=\cos \theta \vec{\imath}+\sin \theta \overrightarrow{\boldsymbol{\jmath}}$

$$
\begin{aligned}
\overrightarrow{O M}= & \vec{r}=x \vec{\imath}+y \vec{\jmath}+z \vec{k}=\rho \cos \theta \vec{\imath}+\rho \sin \theta \vec{\jmath}+z \vec{k} \\
& \left\{\begin{array} { l }
{ x = \rho \operatorname { c o s } \theta } \\
{ y = \rho \operatorname { s i n } \theta } \\
{ z = z }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\rho=\sqrt{x^{2}+y^{2}} \\
\theta=\operatorname{arctg}(y / x)
\end{array}\right.\right.
\end{aligned}
$$

3.4-2 Relationship between Cartesian and spherical coordinates

- In Cartesian coordinates: $\quad \overrightarrow{\boldsymbol{O M}}=\overrightarrow{\boldsymbol{r}}=\boldsymbol{x} \overrightarrow{\boldsymbol{\imath}}+\boldsymbol{y} \overrightarrow{\boldsymbol{\jmath}}+\boldsymbol{z} \overrightarrow{\boldsymbol{k}}$
- In spherical coordinates: $\quad \overrightarrow{\mathbf{O M}}=|\overrightarrow{\boldsymbol{r}}| \overrightarrow{\boldsymbol{u}}_{\boldsymbol{r}}=\boldsymbol{r} \overrightarrow{\boldsymbol{u}}_{r}$

With

$$
\vec{u}_{r}=\sin \theta \cos \varphi \vec{\imath}+\sin \theta \sin \varphi \vec{\jmath}+\cos \theta \vec{k}
$$

So:

$$
\left\{\begin{array} { l }
{ x = r \operatorname { s i n } \theta \operatorname { c o s } \varphi } \\
{ y = r \operatorname { s i n } \theta \operatorname { s i n } \varphi } \\
{ z = r \operatorname { c o s } \theta }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
r=\sqrt{x^{2}+y^{2}+z^{2}} \\
\varphi=\operatorname{arctg}(y / x) \\
\theta=\operatorname{arcos}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)
\end{array}\right.\right.
$$

