A- Errors, measurements and representation

1- Unit

- All physical quantities are quantified, these quantities are characterized by units that are suitable for their measurements.
- In the international system (MKSA), we have 7 main units, the rest follows from that.

2- Scientific notation

When quantifying physical quantities, some of them are very large or too small, for this, notation is used to write them. which is called scientific notation

$$v. 10^n \begin{cases} * v: real number \quad 1 \le v \le 9 \\ * n: Integer number \end{cases}$$

Example:

- > The earth mass: "6 followed by 24 zeros " $\longrightarrow m = 6 \ 10^{24} kg$
- > The electron mass: "9.11 preceded by 30 zero " $\rightarrow m = 9.11 \ 10^{-31} kg$

3- Measurement, errors and significant figures

3.1 Measurements

There are two types of measures

a- Direct measurements

This is the operation of reading or sampling directly from the measuring instrument (length, time, current, ...).

b- Indirect measurements

The desired quantity is expressed mathematically as a function of other quantities measured directly (area, volume, density, ...)

3.2 Errors

a- Notions of error and uncertainty

- Error:

Is the difference between the real and measured value of the physical quantity. This difference can be positive or negative.

There are two types of errors:

- <u>systematic errors</u>:

Those repeated each time in the same way (error of the instrument, ...)

- <u>Incidental errors</u>:

Those that appear each time but in a random or unpredictable way (reading, temperature change, ...)

- **Uncertainty:** is the maximum absolute value that the error can take.

b- Determination of uncertainty

- If "x" is the real value of the physical quantity, while the measured value of the same quantity is " x_0 ", then the error is:

$e = x - x_0$

Note: The error may be negative or positive (e < 0 ou e > 0)

- The absolute value of the error is: the absolute error

$$\delta x = |e| = |x - x_0|$$

- The absolute uncertainty is given by:

 $\Delta x = max(\delta x)$

Note: we always have $\Delta x \ge \delta x$

- If the error is positive (e > 0): $|x - x_0| = x - x_0 \implies \Delta x \ge \delta x = x - x_0 \implies x \le x_0 + \Delta x$
- If the error is negative (e < 0):

$$|x - x_0| = -(x - x_0) \implies \Delta x \ge \delta x = x_0 - x \implies x \ge x_0 - \Delta x$$

• The real value can finally be written:

$$x = x_0 \pm \Delta x$$

- Determination of uncertainty
 - If the quantity is measured directly, the error made is on the smallest digit of the instrument. (Graduated rule in millimeters: the error made is in the mm).
 - If the quantity is given by indirect measurement, the error is expressed as a function of the errors of the quantities measured directly (x = F(a, b, c..))

* <u>Sum</u>:

$$x = a + b + c + \cdots$$
$$\Delta x = \Delta a + \Delta b + \Delta c + \cdots$$

* <u>Product</u>:

 $\Delta x = (b.c)\Delta a + (a.c)\Delta b + (a.b)\Delta c$

 $x_0 = a. b. c$

And
$$\frac{\Delta x}{x_0} = \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c} \Rightarrow \Delta x = \left(\frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c}\right) x_0$$

finally: $x = x_0 \pm \Delta x$

Examples:

1°- Perimeter of a rectangle: \boldsymbol{L} is the length and \boldsymbol{l} is the width

$$\boldsymbol{P} = \boldsymbol{2}.\,(\boldsymbol{L} + \boldsymbol{l}) \Longrightarrow \Delta \boldsymbol{P} = \boldsymbol{2}(\Delta \boldsymbol{L} + \Delta \boldsymbol{l})$$

2°- Surface of this rectangle:

$$S = L.l \implies \Delta S = l.\Delta L + L.\Delta l \implies \frac{\Delta S}{S} = \frac{\Delta L}{L} + \frac{\Delta l}{l}$$

 $\implies \Delta S = \left(\frac{\Delta L}{L} + \frac{\Delta l}{l}\right)S$

4- Signifiant figures

During the measurement, we write the quantified quantity in scientific notation, the figures that express this quantity are said to be *significant*.

Note: "13" and "13.0" have the same value, but their meanings are different i.e., the error of the second is 10 times less than the first

Generally:

- Non-zero figures are always significant (3.1415 \longrightarrow 5 significant digits).
- All zeros that come at the end are significant (0.4500 \longrightarrow 4 significant digits).
- The zeros between the significant digits are significant (0.104 → 3 significant digits).
- The zeros used to move the comma are not meaningful (0.00125=1.25 10⁻⁵ → 3 significant digits).

Some rules on significant numbers

5- Data and graphs

5.1- Data

These are the values that a physical quantity can take in different states

5.2- Graphs

The dependence that exists between two or more physical quantities is expressed by a function that can be represented by a curve or a graph.

There are several types of functions:

- Linear functions:

y = ax + b, express the dependence between y et x.

- Quadratic functions:

 $y = ax^2 + bx + c$ (Parabola of the 2nd order as well as that of the 3rd order and so on) - Inverse functions:

$$y = \frac{k}{x}$$

- Exponential and logarithmic functions:

$$y = ae^{u(x)}$$
, $y = \ln(v(x))$ où $u(x)$ et $v(x)$ are any numeric functions

- Circular or trigonometric functions:

y = a.sin[u(x)], y = b.cos[u(x)], y = tg[u(x)]...

- Hyperbolic functions:

$$y = a.sinh[u(x)], y = b.cosh[u(x)], y = tgh[u(x)]...$$

- Special functions.

B- Vectors

1-Notion of vector

1.1- Definition:

A vector is a mathematical entity that represents an element of a vector space \mathbb{E}^3 associated with an affine space (point), \mathbb{R}^3 where a direction, modulus, and point of (Δ) application are defined.

- "**0**" point of application

- " Δ " line of action

- In the orthonormal basis($\vec{i}, \vec{j}, \vec{k}$), and in Euclidean geometry:

The modulus of the vector \vec{V} is:

$$\vec{V} = |\vec{OA}| = \sqrt{x^2 + y^2 + z^2}$$

- From <u>O to A</u> is the direction

1.2-Types of vectors

1.2.1- Free vector

It is a vector where the application point can be transferred to any point in space.

1.2.2- Sliding vector

It is a vector where the application point can move along its line of action

1.2.3- Bound vector

It is a vector where the point of application is fixed and defined by the coordinates of its origin

Free vector

2- Operation on vectors

2.1- Sum of vectors (resultant):

Relative to an orthonormal($\vec{i}, \vec{j}, \vec{k}$) basis, the sum of two vectors is a vector, where the components are added two to two respectively

Note:

For multiple vectors, the sum of the respective components added together represents the components of the resultant vector.

$$\vec{V} = \vec{V}_1 + \vec{V}_2 + \dots + \vec{V}_n = (x_1 + x_2 + \dots + x_n)\vec{i} + (y_1 + y_2 + \dots + y_n)\vec{j} + (z_1 + z_2 + \dots + z_n)\vec{k}$$
$$\vec{V} = x\vec{i} + y\vec{j} + z\vec{k}$$

2.2- Product of vectors:

a- Scalar product and projection:

The scalar product of two vectors \vec{V}_1 and \vec{V}_2 , is a scalar denoted $\vec{V}_1 \circ \vec{V}_2$, which is equal to the sum of the products of the corresponding components taken pairwise.

$$\vec{V}_1 = x_1 \vec{i} + y_1 \vec{j} + z_1 \vec{k} \quad \text{and} \quad \vec{V}_2 = x_2 \vec{i} + y_2 \vec{j} + z_2 \vec{k}$$
$$\implies \qquad V = \vec{V}_1 \circ \vec{V}_2 = (x_1 \cdot x_2) + (y_1 \cdot y_2) + (z_1 \cdot z_2)$$

Note:

- For the unit vectors of the orthonormal basis, we have:

$$\begin{cases} \vec{\iota} \circ \vec{\iota} = \vec{j} \circ \vec{j} = \vec{k} \circ \vec{k} = 1\\ \vec{\iota} \circ \vec{j} = \vec{\iota} \circ \vec{k} = \vec{j} \circ \vec{k} = 0 \end{cases}$$

- The square of the modulus of the vector is:

$$\vec{V} \circ \vec{V} = (x, x) + (y, y) + (z, z) = x^2 + y^2 + z^2 = V^2$$
$$\Rightarrow |\vec{V}| = V = \sqrt{x^2 + y^2 + z^2}$$

- The scalar product can also be defined as follows:

$$\vec{V}_1 \circ \vec{V}_2 = \left| \vec{V}_1 \right| \cdot \left| \vec{V}_2 \right| \cos\left(\vec{V}_1, \vec{V}_2 \right) = \left| \vec{V}_1 \right| \cdot \left| \vec{V}_2 \right| \cos\left(\theta \right)$$

- The square of the modulus of a vector can be given by:

$$\vec{V}_1 \circ \vec{V}_1 = \left| \vec{V}_1 \right| \cdot \left| \vec{V}_2 \right| \cos\left(\vec{V}_1, \vec{V}_1 \right) = V_1^2$$

Properties:

- The scalar product is commutative

$$\vec{V}_1 \circ \vec{V}_2 = \vec{V}_2 \circ \vec{V}_1$$

- The scalar product is distributive with respect to addition

$$\vec{V}_1 \circ \left(\vec{V}_2 + \vec{V}_3 \right) = \vec{V}_1 \circ \vec{V}_2 + \vec{V}_1 \circ \vec{V}_3$$

- The scalar product geometrically represents the projection of one vector onto the direction of another

$$\begin{cases} \vec{V} \circ \vec{i} = (x\vec{i} + y\vec{j} + z\vec{k}) \circ \vec{i} = x\\ \vec{V} \circ \vec{j} = (x\vec{i} + y\vec{j} + z\vec{k}) \circ \vec{j} = y\\ \vec{V} \circ \vec{k} = (x\vec{i} + y\vec{j} + z\vec{k}) \circ \vec{k} = z \end{cases}$$

- The scalar product is zero if:

$$\left| \vec{V}_1 \right| = \mathbf{0}, \left| \vec{V}_2 \right| = 0 \text{ or } \vec{V}_1 \perp \vec{V}_2$$

b- Vector product and oriented surface:

The cross product of two vectors, \vec{V}_1 and \vec{V}_2 , is a vector denoted $\vec{V}_1 \wedge \vec{V}_2$ and given by:

$$\vec{V}_1 \wedge \vec{V}_2 = \begin{vmatrix} \vec{i} & \vec{j} & k \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = (y_1 \cdot z_2 - y_2 \cdot z_1)\vec{i} - (x_1 \cdot z_2 - x_2 \cdot z_1)\vec{j} + (x_1 \cdot y_2 - x_2 \cdot y_1)\vec{k}$$

Also defined as follows:

$$\vec{V}_1 \wedge \vec{V}_2 = \left| \vec{V}_1 \right| \cdot \left| \vec{V}_2 \right| \sin\left(\vec{V}_1, \vec{V}_2 \right) \vec{u} = \left| \vec{V}_1 \right| \cdot \left| \vec{V}_2 \right| \sin(\theta) \vec{u}$$

 \vec{u} : is a unit vector

 $\vec{u} \perp (\vec{V}_1 et \vec{V}_2)$

Properties:

- The vector product is noncommutative (anticommutative)

$$\vec{V}_1 \wedge \vec{V}_2 = -\vec{V}_2 \wedge \vec{V}_1$$

- The vector product is distributive with respect to the addition

$$\vec{V}_1 \wedge \left(\vec{V}_2 + \vec{V}_3 \right) = \vec{V}_1 \wedge \vec{V}_2 + \vec{V}_1 \wedge \vec{V}_3$$

- The resulting vector of the cross product is always perpendicular to the operand vectors.
- The vector product obeys the rule of circular permutation

$$\begin{cases} \vec{\imath} \wedge \vec{j} = \vec{k} \\ \vec{j} \wedge \vec{k} = \vec{\imath} \\ \vec{k} \wedge \vec{\imath} = \vec{j} \end{cases} \text{ and } \vec{\imath} \wedge \vec{\imath} = \vec{j} \wedge \vec{j} = \vec{k} \wedge \vec{k} = \mathbf{0}$$

- The vector product is zero if:

$$\left| ec{V}_1
ight| = \mathbf{0}$$
 , $\left| ec{V}_2
ight| = 0$ or $ec{V}_1 \parallel ec{V}_2$

- The cross product geometrically represents the area of the oriented surface formed by operand vectors.

c- Triple product:

✤ <u>The scalar triple product</u>

The scalar triple product, is a scalar defined as:

$$\vec{V}_1 \circ \left(\vec{V}_2 \wedge \vec{V}_3 \right) = W$$

Properties:

- The scalar triple product is invariant by cyclic permutation

$$\vec{V}_1 \circ \left(\vec{V}_2 \wedge \vec{V}_3 \right) = \vec{V}_3 \circ \left(\vec{V}_1 \wedge \vec{V}_2 \right) = \vec{V}_2 \circ \left(\vec{V}_3 \wedge \vec{V}_1 \right)$$

- The scalar triple product is zero if:

$$|\vec{V}_1| = \mathbf{0} |\vec{V}_2| = \mathbf{0} |\vec{V}_3| = \mathbf{0}, \text{ or } \vec{V}_1, \vec{V}_2 \text{ and } \vec{V}_3 \text{ are coplanar}$$

- Geometrically, the scalar triple product represents the volume formed by the operand vectors.
- ✤ <u>The vector triple product</u>

The vector triple product is a vector defined by the following relation:

$$\vec{V}_1 \wedge \left(\vec{V}_2 \wedge \vec{V}_3\right) = (\vec{V}_1 \circ \vec{V}_3)\vec{V}_2 - (\vec{V}_1 \circ \vec{V}_2)\vec{V}_3 = \alpha \vec{V}_2 + \beta \vec{V}_3 = \vec{W}$$

<u>Remark:</u>

The multiplication of a vector by a scalar is a vector (it is a homothety)

$$\lambda \vec{V} = \vec{W}$$

3- Rule of sines

$$\vec{V} = \vec{V}_1 + \vec{V}_2$$
$$|\vec{V}| = \sqrt{(\vec{V}_1 + \vec{V}_2) \circ (\vec{V}_1 + \vec{V}_2)} = \sqrt{|V_1| + |V_2| + 2|V_1| \circ |V_2|}$$

$$\begin{cases} \sin(\alpha) = \frac{BC}{OC} \\ \sin(\pi - \beta) = \frac{BC}{AC} \end{cases} \Rightarrow OC. \sin(\alpha) = AC. \sin(\beta) \Rightarrow \frac{|\vec{V}|}{\sin(\beta)} = \frac{|\vec{V}_2|}{\sin(\alpha)} \\ - \text{ The triangles } OAD \text{ and give:} ACD \end{cases} \Rightarrow \frac{|\vec{V}|}{\sin(\beta)} = \frac{|\vec{V}_2|}{\sin(\beta)} = \frac{|\vec{V}_2|}{\sin(\beta)} = \frac{|\vec{V}_2|}{\sin(\beta)} = \frac{|\vec{V}_1|}{\sin(\gamma)} \end{cases}$$

The triangles **OAD** and give:**ACD** -

$$\begin{cases} \sin(\alpha) = \frac{AD}{OA} \\ \sin(\gamma) = \frac{AD}{AC} \end{cases} \implies OA. \sin(\alpha) = AC. \sin(\gamma) \implies \frac{|\vec{V}_1|}{\sin(\gamma)} = \frac{|\vec{V}_2|}{\sin(\alpha)}$$

4- Derived from a vector

In a Cartesian orthonormal basis, the vector is expressed \vec{a} by:

$$\vec{a} = x\vec{\iota} + y\vec{j} + z\vec{k}$$

If it is variable, its derivative comes down to differentiating these components.

$$\frac{d\vec{a}}{dt} = \frac{dx}{dt}\vec{i} + \frac{dy}{dt}\vec{j} + \frac{dz}{dt}\vec{k}$$

The derivative of the sum of the vectors is equal to the sum of the derivatives of these vectors

$$\frac{d(\vec{a}+\vec{b})}{dt} = \frac{d\vec{a}}{dt} + \frac{d\vec{b}}{dt}$$

- The derivative of the product of the vectors is equal to

$$\frac{d(\vec{a} \circ \vec{b})}{dt} = \vec{b} \circ \frac{d\vec{a}}{dt} + \vec{a} \circ \frac{d\vec{b}}{dt}$$
$$\frac{d(\vec{a} \wedge \vec{b})}{dt} = \vec{a} \wedge \frac{d\vec{b}}{dt} + \frac{d\vec{a}}{dt} \wedge \vec{b}$$

for the scalar product

for the cross product

I - Coordinate systems

1-Introduction

Two vectors are linearly dependent if one vector can be expressed in terms of the other.

$$\vec{b} = \lambda \vec{a}$$
 where " λ " is a real

vectors linearly dependant

- Two vectors are linearly independent if any of the vectors cannot be expressed in terms of the other.

<u>Remarks</u>:

- In a plane, a vector can be expressed as a linear combination of two linearly independent vectors.

$$\vec{c} = \alpha \vec{a} + \beta \vec{b}$$

- The case can be generalized to three dimensions and more

$$\vec{v} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c} + \cdots$$

vectors lineairly independant

- The three vectors \vec{a} , \vec{b} , \vec{c} form a basis if they are linearly independent.
 - If they are pairwise orthogonal, they form an orthogonal basis.
 - If they are normalized, the basis is called orthonormal.

2- Representation in the plan

2.1- Cartesian (Rectangular)coordinates $[(x, y) \rightarrow (\vec{\iota}, \vec{J})]$

In the plane we choose an orthonormal basis (\vec{i}, \vec{j}) where the coordinates of the point "*M*" are (x, y)

Location of "**M**" :

The point **M** position is given by the vector \overrightarrow{OM} such that:

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{\iota} + y\overrightarrow{j}$$

$$\left|\overrightarrow{OM}\right| = \left|\overrightarrow{r}\right| = \sqrt{x^2 + y^2}$$

2.2- Polar coordinates[
$$(\rho, \theta) \rightarrow (\vec{u}_{\rho}, \vec{u}_{\theta})$$
]

If we choose a local base $(\vec{u}_{\rho}, \vec{u}_{\theta})$. "0" taken arbitrarily as the pole. The unit vector \vec{u}_{ρ} is oriented along the vector \vec{OM} . The direction passing through the pole "0" is the polar axis, taken as a reference to define the angle (coordinate) " θ ". The other coordinate " ρ " is the magnitude of the vector \vec{OM} .

$$\overrightarrow{OM} = \rho$$

 $\overline{OM} = \rho \overline{u}_0$

2.3- Intrinsic coordinates $[(\vec{u}_N, \vec{u}_T)]$

We cannot represent the point in the intrinsic coordinate system unless we know the curve "C" of the trajectory, which is taken as the axis. Equipped with an origin, the distance \widehat{oM} is denoted as "s".

$$\widehat{oM} = s$$
 and $\overline{OM} = \overline{r}$

2.4- Relationship between the coordinates of the different systems

- In Cartesian coordinates: $\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j}$
- In Polar coordinates: $\overrightarrow{OM} = \rho \overrightarrow{u}_{\rho}$

- If we make a choice such that the polar axis is

superimposed with the \overline{ox} axis

We will have:

$$\begin{cases} \vec{u}_{\rho} = \cos(\theta) \, \vec{\iota} + \sin(\theta) \vec{j} \\ \vec{u}_{\theta} = -\sin(\theta) \, \vec{\iota} + \cos(\theta) \vec{j} \end{cases}$$

Then:

 $\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} = \rho\overrightarrow{u}_{\rho} = \rho\cos(\theta)\overrightarrow{i} + \rho\sin(\theta)\overrightarrow{j}$

By comparison we will get:

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \end{cases} \iff \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \theta = \operatorname{arctg}(y/x) \end{cases}$$

Note:

Polar coordinates and intrinsic coordinates should not be merge (confused).

3- Representation in space

3.1- Cartesian (Rectangular)coordinates $[(x, y, z) \rightarrow (\vec{i}, \vec{j}, \vec{k})]$

In space, the location of the point "*M*" is expressed by the (x, y, z) coordinates in an orthonormal basis $(\vec{i}, \vec{j}, \vec{k})$. in such a way that:

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{\iota} + y\overrightarrow{j} + z\overrightarrow{k}$$

 \overrightarrow{OM} : is the position vector of the point M

The module is:

$$\overrightarrow{OM} = |\overrightarrow{r}| = \sqrt{x^2 + y^2 + z^2}$$

x: is the projection of \overline{OM} on the direction \vec{i}

y : is the projection of \overrightarrow{OM} on the direction \vec{j}

 $m{z}$: is the projection of $\overrightarrow{\textit{OM}}$ on the direction $ec{k}$

3.2- Coordinates cylindrical $[(\rho, \theta, z) \rightarrow (\vec{u}_{\rho}, \vec{u}_{\theta}, \vec{k})]$

To locate a point "M" in space, instead of using a Cartesian system, other systems can be used. Among these, the cylindrical system. In this system, we imagine that point "M" is on the surface of a cylinder with axis \overrightarrow{OZ} , radius ρ , and "some" base.

The projection of \overrightarrow{OM} , on the base of the cylinder is located by (ρ, θ) .

So
$$\overrightarrow{OM} = \overrightarrow{r} = \rho \overrightarrow{u}_{\rho} + z \overrightarrow{k}$$

And $|\overrightarrow{OM}| = |\overrightarrow{r}| = \sqrt{\rho^2 + z^2}$

3.3- Spherical coordinates
$$[(r, \theta, \varphi) \rightarrow (\vec{u}_r, \vec{u}_{\theta}, \vec{u}_{\varphi})]$$

Another system allows us to locate a point "M" in space. In this system, it is imagined that point "M" is on the surface of a sphere with radius "r" and center "0". This center is taken as the origin, and called pole. It is located in the equatorial plane.

In spherical coordinates, a point "M" is characterized by the linear variable "r", and the angular variables " φ , θ ".

- "θ" polar angle: Angle between the polar axis taken arbitrarily and the direction *OM*.
 "0" is the center of this sphere.
- The projection of "M" on the Equatorial plane is "M'". It is located by the azimuthal angle "φ" with respect to an arbitrary direction axis (azimuthal direction) in that plane.

$$\overrightarrow{OM} = \overrightarrow{r} = |\overrightarrow{r}| \overrightarrow{u}$$

- * \vec{u}_r : radial unit vector (in the direction of the radius \vec{OM})
- ♦ \vec{u}_{θ} : unit vector tangent to the great circle (all circles of radius \overrightarrow{OM}).
- * \vec{u}_{φ} : unit vector tangent to parallels (circles parallel to the equator).

3.4- Relationship between the coordinates of the different systems

- 3.4-1 Relationship between Cartesian coordinates and cylindrical coordinates
 - In Cartesian coordinates: $\vec{OM} = \vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$
 - In cylindrical coordinates: $\overrightarrow{OM} = \rho \vec{u}_{\rho} + z \vec{k}$

With
$$\vec{u}_{\rho} = \cos\theta \, \vec{\iota} + \sin\theta \, \vec{j}$$

$$\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{\iota} + y\overrightarrow{j} + z\overrightarrow{k} = \rho\cos\theta\overrightarrow{\iota} + \rho\sin\theta\overrightarrow{j} + z\overrightarrow{k}$$

$$\begin{cases} x = \rho \cos \theta \\ y = \rho \sin \theta \\ z = z \end{cases} \iff \begin{cases} \rho = \sqrt{x^2 + y^2} \\ \theta = \operatorname{arctg}(y/x) \end{cases}$$

3.4-2 Relationship between Cartesian and spherical coordinates

- In Cartesian coordinates: $\overrightarrow{OM} = \overrightarrow{r} = x\overrightarrow{i} + y\overrightarrow{j} + z\overrightarrow{k}$
- In spherical coordinates: $\vec{OM} = |\vec{r}|\vec{u}_r = r\vec{u}_r$

With
$$\vec{u}_r = \sin\theta \cos\varphi \,\vec{i} + \sin\theta \sin\varphi \,\vec{j} + \cos\theta \,\vec{k}$$

So:

$$\begin{cases} x = r\sin\theta\cos\varphi \\ y = r\sin\theta\sin\varphi \\ z = r\cos\theta \end{cases} \iff \begin{cases} r = \sqrt{x^2 + y^2 + z^2} \\ \varphi = arctg(y/x) \\ \theta = arcos(\frac{z}{\sqrt{x^2 + y^2 + z^2}}) \end{cases}$$