
A‐ Errors, measurements and representation	

1‐	Unit	

 All physical quantities are quantified, these quantities are characterized by units 

that are suitable for their measurements.  

 In the international system (MKSA), we have 7 main units, the rest follows 

from that.  

‐  M               meter (length).                       - N            mole (number of particles) 

- K                kilogram (mass).                    - K            Kelvin (temperature) 

- S                second (time).                        - Cd           Candela (luminous Intensity)     

- A              Ampère (electrical intensity). 

                                                                                   

2‐	Scientific	notation	

When quantifying physical quantities, some of them are very large or too small, for 

this, notation is used to write them. which is called scientific notation 

𝒗.𝟏𝟎𝒏   
∗  𝒗: 𝒓𝒆𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓      𝟏  𝒗 𝟗

∗  𝒏: 𝑰𝒏𝒕𝒆𝒈𝒆𝒓 𝒏𝒖𝒎𝒃𝒆𝒓                     
	

 Example:  

 The earth mass: " 6 followed by 24 zeros "                     𝒎 𝟔  𝟏𝟎𝟐𝟒𝒌𝒈 

 The electron mass: " 9.11 preceded by 30 zero "        𝒎 𝟗.𝟏𝟏  𝟏𝟎 𝟑𝟏𝒌𝒈 

3‐	Measurement,	errors	and	significant	figures	

3.1	Measurements	

There are two types of measures 



a‐	Direct	measurements	

This is the operation of reading or sampling directly from the measuring instrument 

(length, time, current, ...). 

b‐	Indirect	measurements	

The desired quantity is expressed mathematically as a function of other quantities 

measured directly (area, volume, density, …) 

3.2	Errors	

a‐	Notions	of	error	and	uncertainty	

- Error:  

Is the difference between the real and measured value of the physical quantity.            

This difference can be positive or negative. 

There are two types of errors: 

- systematic errors:  

Those repeated each time in the same way (error of the instrument, ...)  

- Incidental errors:  

Those that appear each time but in a random or unpredictable way (reading, 

temperature change, ...) 

 - Uncertainty: is the maximum absolute value that the error can take. 

b‐	Determination	of	uncertainty	

- If "𝒙" is the real value of the physical quantity, while the measured value of the same 

quantity is "𝒙𝟎", then the error is:   

𝒆  𝒙 𝒙𝟎	

Note: The error may be negative or positive  𝒆 0 𝑜𝑢 𝑒 0  

- The absolute value of the error is: the absolute error 

𝜹𝒙 |𝒆|  |𝒙 𝒙𝟎|	

- The absolute uncertainty is given by: 



∆𝒙 𝒎𝒂𝒙 𝜹𝒙  

Note: we always have     ∆𝒙 𝜹𝒙 

 If the error is positive ( 𝒆 0  : 

|𝒙 𝒙𝟎| 𝒙 𝒙𝟎    ⟹  ∆𝒙 𝜹𝒙  𝒙 𝒙𝟎     ⟹ 𝒙 𝒙𝟎 ∆𝒙 	

 If the error is negative ( 𝒆 0  : 

|𝒙 𝒙𝟎| 𝒙 𝒙𝟎   ⟹  ∆𝒙 𝜹𝒙  𝒙𝟎 𝒙    ⟹ 𝒙 𝒙𝟎 ∆𝒙 	

 The real value can finally be written: 

																																																																																					𝒙 𝒙𝟎 ∆𝒙	

 Determination of uncertainty 

- If the quantity is measured directly, the error made is on the smallest digit of 

the instrument. (Graduated rule in millimeters: the error made is in the mm). 

- If the quantity is given by indirect measurement, the error is expressed as a     

  function of the errors of the quantities measured directly (𝑥 𝐹 𝑎, 𝑏, 𝑐. .  

 * Sum: 

𝒙 𝒂 𝒃 𝒄 ⋯	

∆𝒙 ∆𝒂 ∆𝒃 ∆𝒄 ⋯	

* Product: 

𝒙𝟎 𝒂.𝒃. 𝒄	

∆𝒙 𝒃. 𝒄 ∆𝒂 𝒂. 𝒄 ∆𝒃 𝒂.𝒃 ∆𝒄	

              And    
∆𝒙

𝒙𝟎

∆𝒂

𝒂

∆𝒃

𝒃

∆𝒄

𝒄
⟹ ∆𝒙

∆𝒂

𝒂

∆𝒃

𝒃

∆𝒄

𝒄
𝒙𝟎              

            finally:         𝒙 𝒙𝟎 ∆𝒙 

	

 

Examples: 

1°- Perimeter of a rectangle: 𝑳 is the length and 𝒍 is the width 

𝑷 𝟐. 𝑳 𝒍 ⟹ ∆𝑷 𝟐 ∆𝑳 ∆𝒍 	

2°- Surface of this rectangle:  



𝑺 𝑳. 𝒍     ⟹       ∆𝑺 𝒍.∆𝑳 𝑳.∆𝒍      ⟹           
∆𝑺
𝑺

∆𝑳
𝑳

∆𝒍
𝒍
	

⟹			∆𝑺 ∆𝑳
𝑳

∆𝒍
𝒍
𝑺 

4‐	Signifiant	figures	

During the measurement, we write the quantified quantity in scientific notation, the 

figures that express this quantity are said to be significant. 

Note: "13" and "13.0" have the same value, but their meanings are different i.e., the 

error of the second is 10 times less than the first  

Generally: 

 Non-zero figures are always significant (3.1415        5 significant digits).  

 All zeros that come at the end are significant (0.4500         4 significant digits). 

 The zeros between the significant digits are significant (0.104       3 significant 

digits).  

 The zeros used to move the comma are not meaningful 

(0.00125=1.25 10-5            3 significant digits).  

Some rules on significant numbers	

5‐	Data	and	graphs	

5.1‐	Data	

These are the values that a physical quantity can take in different states 

5.2‐	Graphs	

The dependence that exists between two or more physical quantities is expressed by 

a function that can be represented by a curve or a graph.  

There are several types of functions: 

- Linear functions: 

   𝒚 𝒂𝒙 𝒃 , express the dependence between 𝑦 𝑒𝑡 𝑥. 

‐ Quadratic functions: 



 𝒚 𝒂𝒙𝟐 𝒃𝒙 𝒄 (Parabola of the 2nd order as well as that of the 3rd order and so on) 

‐ Inverse functions: 

      𝒚 𝒌

𝒙
	

‐ Exponential and logarithmic functions: 

   𝒚 𝒂𝒆𝒖 𝒙 , 𝒚 𝐥𝐧 𝒗 𝒙     𝑜ù 𝒖 𝒙  𝑒𝑡 𝒗 𝒙  are any numeric functions 

‐ Circular or trigonometric functions: 

   𝒚 𝒂. 𝒔𝒊𝒏 𝒖 𝒙 , 𝒚 𝒃. 𝒄𝒐𝒔 𝒖 𝒙 , 𝒚 𝒕𝒈 𝒖 𝒙 … 

‐ Hyperbolic functions: 

   𝒚 𝒂. 𝒔𝒊𝒏𝒉 𝒖 𝒙 , 𝒚 𝒃. 𝒄𝒐𝒔𝒉 𝒖 𝒙 , 𝒚 𝒕𝒈𝒉 𝒖 𝒙 … 

‐ Special functions. 

   



B‐ Vectors	

1‐	Notion	of	vector	

1.1‐	Definition:	

A vector is a mathematical entity that represents an element of a vector space 𝔼  

associated with an affine space (point), ℝ  where a direction, modulus, and point of 

application are defined. 

‐ "𝑶" point of application 

‐ "∆"  line of action 

‐ In the orthonormal basis ,⃗ ,⃗𝒌  ,) and in Euclidean geometry: 

   The modulus of the vector �⃗�  is: 

�⃗� |𝑶𝑨|⃗ 𝑥 𝑦 𝑧  

‐ From O to A is the direction 

1.2‐Types	of	vectors	

1.2.1‐	Free	vector	

It is a vector where the application point can be transferred to any point in space. 

1.2.2‐	Sliding	vector	

It is a vector where the application point can move along its line of action 

1.2.3‐	Bound	vector	

It is a vector where the point of application is fixed and defined by the coordinates of 

its origin 

 

 

      Free vector                           Sliding vector                                Bound vector  

𝐴 
𝑉 

∆  

𝑂 

𝑉   𝑉  

𝑉  

𝑉  𝑂 

𝑉  

�⃗�  

∆   



2‐	Operation	on	vectors	

2.1‐	Sum	of	vectors	(resultant):		

Relative to an orthonormal ,⃗ ,⃗𝒌  basis, the sum of two vectors is a vector, where the 

components are added two to two respectively 

�⃗�𝟏 𝒙𝟏⃗ 𝒚𝟏 ⃗ 𝒛𝟏𝒌           and      �⃗�𝟐 𝒙𝟐⃗ 𝒚𝟐 ⃗ 𝒛𝟐𝒌	

																																			⟹							�⃗� �⃗�𝟏 �⃗�𝟐 𝒙𝟏 𝒙𝟐 ⃗ 𝒚𝟏 𝒚𝟐 ⃗ 𝒛𝟏 𝒛𝟐 𝒌	

	

 

 

 

Note:  

For multiple vectors, the sum of the respective components added together represents the 

components of the resultant vector. 

�⃗� �⃗�𝟏 �⃗�𝟐 ⋯ �⃗�𝒏 𝒙𝟏 𝒙𝟐 ⋯ 𝒙𝒏 ⃗ 𝒚𝟏 𝒚𝟐 ⋯ 𝒚𝒏 ⃗ 𝒛𝟏 𝒛𝟐 ⋯ 𝒛𝒏 𝒌	

�⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

	

	

	

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝒙 𝒙𝒍

𝒏

𝒍 𝟏

𝒚 𝒚𝒍

𝒏

𝒍 𝟏

𝒛 𝒛𝒍

𝒏

𝒍 𝟏

	

𝑉  

𝑉  

𝑉  

𝑉⃗ 

𝑽𝟐 
�⃗�𝟐 

�⃗� 

�⃗�𝟏 



2.2‐	Product	of	vectors:	

								a- Scalar product and projection: 

The scalar product of two vectors �⃗�  and �⃗�𝟐  , is a scalar denoted �⃗�𝟏 ∘ �⃗�𝟐 , which is 

equal to the sum of the products of the corresponding components taken pairwise. 

�⃗�𝟏 𝒙𝟏⃗ 𝒚𝟏 ⃗ 𝒛𝟏𝒌       and        �⃗�𝟐 𝒙𝟐⃗ 𝒚𝟐 ⃗ 𝒛𝟐𝒌 

                                     ⟹                𝑽  �⃗�𝟏 ∘ �⃗�𝟐 𝒙𝟏.𝒙𝟐 𝒚𝟏.𝒚𝟐 𝒛𝟏. 𝒛𝟐  

Note: 

- For the unit vectors of the orthonormal basis, we have: 

⃗ ∘ ⃗ ⃗ ∘ ⃗ 𝒌 ∘ 𝒌 𝟏

⃗ ∘ ⃗ ⃗ ∘ 𝒌 ⃗ ∘ 𝒌 𝟎
 

- The square of the modulus of the vector is:  

�⃗� ∘ �⃗� 𝒙.𝒙 𝒚.𝒚 𝒛. 𝒛 𝒙𝟐 𝒚𝟐 𝒛𝟐 𝑽𝟐 

⟹ �⃗� 𝑽 𝒙𝟐 𝒚𝟐 𝒛𝟐	

- The scalar product can also be defined as follows: 

�⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟏 . �⃗�𝟐 𝒄𝒐𝒔 �⃗�𝟏, �⃗�𝟐 �⃗�𝟏 . �⃗�𝟐 𝒄𝒐𝒔 𝜽 	

- The square of the modulus of a vector can be given by:  

�⃗�𝟏 ∘ �⃗�𝟏 �⃗�𝟏 . �⃗�𝟐 𝒄𝒐𝒔 �⃗�𝟏, �⃗�𝟏 𝑽𝟏
𝟐	

Properties: 

- The scalar product is commutative 

�⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟐 ∘ �⃗�𝟏	

 

- The scalar product is distributive with respect to addition 

�⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟑 �⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟏 ∘ �⃗�𝟑	

- The scalar product geometrically represents the projection of one vector onto 

the direction of another 

𝑉  

�⃗�  
𝜃 



    
�⃗� ∘ ⃗ 𝒙⃗ 𝒚⃗ 𝒛𝒌 ∘ ⃗ 𝒙

�⃗� ∘ ⃗ 𝒙⃗ 𝒚⃗ 𝒛𝒌 ∘ ⃗ 𝒚

�⃗� ∘ 𝒌 𝒙⃗ 𝒚⃗ 𝒛𝒌 ∘ 𝒌 𝒛

	

- The scalar product is zero if: 

�⃗�𝟏 𝟎,  �⃗�𝟐 0 or �⃗�𝟏 ⊥ �⃗�𝟐 

												b‐	Vector	product	and	oriented	surface:	

The cross product of two vectors, �⃗�𝟏 and �⃗�𝟐, is a vector denoted  �⃗�𝟏 ∧ �⃗�𝟐 and given by:  

�⃗�𝟏 ∧ �⃗�𝟐

⃗ ⃗ 𝒌

𝒙𝟏 𝒚𝟏 𝒛𝟏

𝒙𝟐 𝒚𝟐 𝒛𝟐

𝒚𝟏. 𝒛𝟐 𝒚𝟐. 𝒛𝟏 ⃗ 𝒙𝟏. 𝒛𝟐 𝒙𝟐. 𝒛𝟏 ⃗ 𝒙𝟏.𝒚𝟐 𝒙𝟐.𝒚𝟏 𝒌 

Also defined as follows: 

�⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟏 . �⃗�𝟐 𝐬𝐢𝐧 �⃗�𝟏, �⃗�𝟐 �⃗� �⃗�𝟏 . �⃗�𝟐 𝐬𝐢𝐧 𝜽 �⃗�	

�⃗�  : is a unit vector 

�⃗� ⊥ �⃗�𝟏𝒆𝒕 �⃗�𝟐  

 

Properties: 

- The vector product is noncommutative (anticommutative) 

�⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟐 ∧ �⃗�𝟏	

- The vector product is distributive with respect to the addition 

�⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟑 �⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟏 ∧ �⃗�𝟑 

- The resulting vector of the cross product is always perpendicular to the operand 

vectors. 

- The vector product obeys the rule of circular permutation 

⃗ ∧ ⃗ 𝒌

⃗ ∧ 𝒌 ⃗

𝒌 ∧ ⃗ ⃗

                  and  ⃗ ∧ ⃗ ⃗ ∧ ⃗ 𝒌 ∧ 𝒌 𝟎	

𝑢 

𝑉 ∧ 𝑉  

𝜽  𝑉  

𝑉  



- The vector product is zero if: 

                                                     �⃗�𝟏 𝟎 , �⃗�𝟐 0 or �⃗�𝟏 ∥ �⃗�𝟐 

- The cross product geometrically represents the area of the oriented surface 

formed by operand vectors.  

								c‐	Triple	product:	

 The scalar triple product 

  The scalar triple product, is a scalar defined as: 

                                �⃗�𝟏 ∘ �⃗�𝟐 ∧ �⃗�𝟑 𝑾	

 

Properties:  

- The scalar triple product is invariant by cyclic permutation 

�⃗�𝟏 ∘ �⃗�𝟐 ∧ �⃗�𝟑 �⃗�𝟑 ∘ �⃗�𝟏 ∧ �⃗�𝟐 �⃗�𝟐 ∘ �⃗�𝟑 ∧ �⃗�𝟏 	

- The scalar triple product is zero if:  

                �⃗�𝟏 𝟎  �⃗�𝟐 𝟎 𝑽𝟑 𝟎,       or �⃗�𝟏, �⃗�𝟐 and �⃗�𝟑 are coplanar 

- Geometrically, the scalar triple product represents the volume formed by the 

operand vectors.  

 The vector triple product 

 The vector triple product is a vector defined by the following relation: 

�⃗�𝟏 ∧ �⃗�𝟐 ∧ �⃗�𝟑 �⃗�𝟏 ∘ �⃗�𝟑 �⃗�𝟐 �⃗�𝟏 ∘ �⃗�𝟐 �⃗�𝟑 𝜶�⃗�𝟐 𝜷�⃗�𝟑 𝑾	

Remark:  

             The multiplication of a vector by a scalar is a vector (it is a homothety) 

𝝀�⃗� 𝑾	

	

�⃗�𝟐 ∧ �⃗�𝟑 

�⃗�𝟏 

�⃗�𝟐 

�⃗�𝟑 𝒉 



3‐	Rule	of	sines	

							�⃗�   �⃗�𝟏 �⃗�𝟐	

					 �⃗� �⃗�𝟏 �⃗�𝟐 ∘ �⃗�𝟏 �⃗�𝟐 |𝑽𝟏| |𝑽𝟐| 𝟐|𝑽𝟏| ∘ |𝑽𝟐|	

	

	

	

	

	

‐ The triangles 𝑨𝑩𝑪 and 𝑶𝑩𝑪 give: 

𝒔𝒊𝒏 𝜶
𝑩𝑪
𝑶𝑪

          

𝒔𝒊𝒏 𝝅 𝜷
𝑩𝑪
𝑨𝑪

         ⟹       𝑶𝑪. 𝒔𝒊𝒏 𝜶 𝑨𝑪. 𝒔𝒊𝒏 𝜷    ⟹   
�⃗�

𝒔𝒊𝒏 𝜷
�⃗�𝟐

𝒔𝒊𝒏 𝜶
  	

‐ The triangles 𝑶𝑨𝑫 and give:𝑨𝑪𝑫 

𝐬𝐢𝐧 𝜶
𝑨𝑫
𝑶𝑨

𝐬𝐢𝐧 𝜸
𝑨𝑫
𝑨𝑪

             ⟹    𝑶𝑨. 𝐬𝐢𝐧 𝜶 𝐀𝐂. 𝐬𝐢𝐧 𝜸    ⟹   
�⃗�𝟏

𝒔𝒊𝒏 𝜸
�⃗�𝟐

𝒔𝒊𝒏 𝜶
	

4‐	Derived	from	a	vector	

In a Cartesian orthonormal basis, the vector is expressed �⃗� by: 

�⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

If it is variable, its derivative comes down to differentiating these components. 

𝒅�⃗�
𝒅𝒕

𝒅𝒙
𝒅𝒕

⃗
𝒅𝒚
𝒅𝒕

⃗
𝒅𝒛
𝒅𝒕

𝒌	

 

‐ The derivative of the sum of the vectors is equal to the sum of the derivatives of 

these vectors 

𝐷 

𝐶 

𝑂 
𝐵 𝐴 𝑉  

𝑉  

𝛾 

𝛼 
𝛽 �⃗� 

⟹  
𝑽

𝒔𝒊𝒏 𝜷

𝑽𝟐
𝒔𝒊𝒏 𝜶

𝑽𝟏
𝒔𝒊𝒏 𝜸



𝒅 �⃗� 𝒃
𝒅𝒕

𝒅�⃗�
𝒅𝒕

𝒅�⃗�
𝒅𝒕
	

‐ The derivative of the product of the vectors is equal to 

𝒅 �⃗� ∘ �⃗�
𝒅𝒕

�⃗� ∘
𝒅�⃗�
𝒅𝒕

�⃗� ∘
𝒅�⃗�
𝒅𝒕

                      𝑓𝑜𝑟 𝑡ℎ𝑒 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡	

𝒅 �⃗� ∧ �⃗�
𝒅𝒕

�⃗� ∧
𝒅�⃗�
𝒅𝒕

𝒅�⃗�
𝒅𝒕

  ∧  �⃗�                  𝑓𝑜𝑟 𝑡ℎ𝑒 𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

  



I ‐ Coordinate systems	

1‐	Introduction	

‐ Two vectors are linearly dependent if one vector can be expressed in terms of 

the other. 

�⃗� 𝝀�⃗�                                                 where"𝝀"  is a real 

 

‐ Two vectors are linearly independent if any of the vectors cannot be expressed 

in terms of the other. 

Remarks:  

‐ In a plane, a vector can be expressed as a linear combination of two linearly 

independent vectors.                            

�⃗� 𝜶�⃗� 𝜷�⃗� 

‐ The case can be generalized to three 

dimensions and more 

�⃗� 𝜶�⃗� 𝜷�⃗� 𝜸�⃗� ⋯	

‐ The three vectors �⃗�, �⃗�, �⃗� form a basis if they are linearly independent. 

 If they are pairwise orthogonal, they form an orthogonal basis. 

 If they are normalized, the basis is called orthonormal. 

  

𝝅 

�⃗� 

𝒂 

𝒃 

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑙𝑖𝑛𝑒𝑎𝑖𝑟𝑙𝑦 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 

𝒂 

𝑣𝑒𝑐𝑡𝑜𝑟𝑠 𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝑑𝑒𝑝𝑒𝑛𝑑𝑎𝑛𝑡 



2‐	Representation	in	the	plan	

					2.1‐	Cartesian	(Rectangular)coordinates	 𝒙,𝒚 → ,⃗ ⃗ 	

In the plane we choose an orthonormal basis  ,⃗ ⃗  where the coordinates of the point 

"𝑴" are  𝒙,𝒚  

Location of "𝑴" : 

The point 𝑴 position is given by the vector 𝑶𝑴 such that: 

𝑶𝑴 �⃗� 𝒙⃗ 𝒚  ⃗

The module is: 

                                                         𝑶𝑴 |𝒓| 𝒙𝟐 𝒚𝟐 

2.2‐	Polar	coordinates 𝝆,𝜽 → �⃗�𝝆, �⃗�𝜽 	

If we choose a local base  �⃗�𝝆, �⃗�𝜽 . "𝑶"  taken arbitrarily as the pole. The unit vector  �⃗�𝝆  

is oriented along the vector 𝑶𝑴. The direction passing through the pole "𝑶" is the polar 

axis, taken as a reference to define the angle (coordinate) "𝜽".  The other coordinate "𝝆" 

is the magnitude of the vector 𝑶𝑴. 

𝑶𝑴 𝝆�⃗�𝝆 

The module is: 

𝑶𝑴 𝝆 

      

							2.3‐	Intrinsic	coordinates		 �⃗�𝑵, �⃗�𝑻 	

We cannot represent the point in the intrinsic coordinate system 

unless we know the curve "𝓒" of the trajectory, which is taken as the 

axis. Equipped with an origin, the distance 𝒐𝑴 is denoted as "𝒔". 

𝒐𝑴 𝒔   and   𝑶𝑴 �⃗�	

𝑴 

 ⃗

 ⃗

𝒚 

𝒙 
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𝒖𝑵 𝒖𝑻
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𝒔 

𝓒 𝑴 

𝑶 

𝒐 

�⃗� 

𝒚 

𝒙 

𝜽 

𝒖𝝆 

𝒖𝜽 

Polar axis 
𝑶 

𝝆 𝑶𝑴   𝑴 



2.4‐	Relationship	between	the	coordinates	of	the	different	systems	

            ‐ In Cartesian coordinates:   𝑶𝑴 �⃗� 𝒙⃗ 𝒚 	⃗

            ‐ In Polar coordinates:   𝑶𝑴 𝝆�⃗�𝝆  	

            ‐ If we make a choice such that the polar axis is  

           superimposed with the 𝒐𝒙 axis 	

               We will have:    

�⃗�𝝆 𝒄𝒐𝒔 𝜽 ⃗ 𝒔𝒊𝒏 𝜽  ⃗ 

 �⃗�𝜽 𝒔𝒊𝒏 𝜽 ⃗ 𝒄𝒐𝒔 𝜽 ⃗
	

															Then:																				𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝝆�⃗�𝝆 𝝆 𝒄𝒐𝒔 𝜽 ⃗ 𝝆 𝒔𝒊𝒏 𝜽 	⃗

              By comparison we will get: 

𝒙 𝝆 𝒄𝒐𝒔𝜽
𝒚 𝝆𝒔𝒊𝒏𝜽     ⟺     

𝝆 𝒙𝟐 𝒚𝟐     
𝜽 𝒂𝒓𝒄𝒕𝒈 𝒚 𝒙⁄

 

Note:  

Polar coordinates and intrinsic coordinates should not be merge (confused). 

3‐	Representation	in	space	

					3.1‐	Cartesian	(Rectangular)coordinates	 𝒙,𝒚, 𝒛 → ,⃗ ,⃗𝒌 	

In space, the location of the point "𝑴" is expressed 

by the 𝒙,𝒚, 𝒛  coordinates in an orthonormal basis 

,⃗ ,⃗𝒌 .  in such a way that: 

𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌 

𝑶𝑴 : is the position vector of the point 𝑴 

 The module is: 

𝑶𝑴 |�⃗�| 𝒙𝟐 𝒚𝟐 𝒛𝟐	
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𝒙 : is the projection of 𝑶𝑴 on the direction   ⃗	

𝒚 : is the projection of 𝑶𝑴 on the direction   ⃗

𝒛 : is the projection of 𝑶𝑴 on the direction 𝒌 

				3.2‐	Coordinates	cylindrical	 𝝆,𝜽, 𝒛 → �⃗�𝝆, �⃗�𝜽,𝒌 							

To locate a point "𝑴"  in space, instead of using a Cartesian 

system, other systems can be used. Among these, the cylindrical 

system. In this system, we imagine that point  "𝑴"  is on the 

surface of a cylinder with axis 𝑶𝒁, radius 𝝆, and "some" base.    

The projection of 𝑶𝑴 , on the base of the cylinder is located by 

𝝆,𝜽 .	

                                  So          		𝑶𝑴 �⃗� 𝝆�⃗�𝝆 𝒛𝒌 

                                And         𝑶𝑴 |�⃗�| 𝝆𝟐 𝒛𝟐	

				

					3.3‐	Spherical	coordinates		 𝒓,𝜽,𝝋 → �⃗�𝒓, �⃗�𝜽, �⃗�𝝋 	

Another system allows us to locate a point "𝑴" in space. In this system, it is imagined 

that point "𝑴" is on the surface of a sphere with radius "𝒓"  and center "𝑶" . This center 

is taken as the origin, and called pole. It is located in the equatorial plane.  

In spherical coordinates, a point "𝑴" is characterized by 

the linear variable "𝒓", and the angular variables "𝝋,𝜽". 

 "𝜽" polar angle: Angle between the polar axis taken 

arbitrarily and the direction 𝑶𝑴.  

"𝑶" is the center of this sphere. 

 The projection of  "𝑴"  on the Equatorial plane is 

"𝑴′  ". It is located by the azimuthal angle "𝝋" with 

respect to an arbitrary direction axis (azimuthal 

direction) in that plane. 
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𝑶𝑴 �⃗� |�⃗�|�⃗�𝒓 

 �⃗�𝒓 : radial unit vector (in the direction of the radius 𝑶𝑴) 

 �⃗�𝜽 : unit vector tangent to the great circle (all circles of  radius 𝑶𝑴 ). 

 �⃗�𝝋 : unit vector tangent to parallels (circles parallel to the equator). 

3.4‐	Relationship	between	the	coordinates	of	the	different	systems	

3.4‐	1	Relationship	between	Cartesian	coordinates	and	cylindrical	coordinates 

‐ In Cartesian coordinates:         𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

‐ In cylindrical coordinates:         𝑶𝑴 𝝆�⃗�𝝆 𝒛𝒌 	

                                      With         		�⃗�𝝆 𝒄𝒐𝒔𝜽 ⃗ 𝒔𝒊𝒏𝜽 	⃗

𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌  𝝆𝒄𝒐𝒔𝜽 ⃗ 𝝆 𝒔𝒊𝒏𝜽 ⃗ 𝒛𝒌	

⎩
⎪
⎨

⎪
⎧
𝒙 𝝆𝒄𝒐𝒔𝜽

𝒚 𝝆 𝒔𝒊𝒏𝜽

𝒛 𝒛            

						⟺								
𝝆 𝒙𝟐 𝒚𝟐     

𝜽 𝒂𝒓𝒄𝒕𝒈 𝒚 𝒙⁄
 

  

3.4‐	2	Relationship	between	Cartesian	and	spherical	coordinates	 

‐ In Cartesian coordinates:      𝑶𝑴 �⃗� 𝒙⃗ 𝒚⃗ 𝒛𝒌	

‐ In spherical coordinates:       𝑶𝑴 |�⃗�|�⃗�𝒓 𝒓�⃗�𝒓	

                                                 With         �⃗�𝒓 𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋 ⃗ 𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋 ⃗ 𝒄𝒐𝒔𝜽𝒌 

                              So: 

⎩
⎪
⎨

⎪
⎧
𝒙 𝒓𝒔𝒊𝒏𝜽 𝒄𝒐𝒔𝝋

𝒚 𝒓𝒔𝒊𝒏𝜽 𝒔𝒊𝒏𝝋

𝒛 𝒓 𝒄𝒐𝒔𝜽            

								⟺					

⎩
⎪
⎨

⎪
⎧ 𝒓 𝒙𝟐 𝒚𝟐 𝒛𝟐                 

𝝋 𝒂𝒓𝒄𝒕𝒈 𝒚 𝒙⁄                        

𝜽 𝒂𝒓𝒄𝒐𝒔 𝒛

𝒙𝟐 𝒚𝟐 𝒛𝟐
            

	

 

𝜽 


