Manipulation

a- Elastic Collision

•Assemble the setup as shown in Figure -3-.

•Adjust the distance between the optical barriers so that the collision occurs between them.

•Before the collision, one of the carts, with a fixed mass of $m_1 = 765$ grams, is in motion while the other cart, with additional "m_s" masses, has a variable mass of $m_2 = m_{cart} + m_s = 265 + m_s$ grams and is at rest.

•When they pass through, the chronometer records the corresponding time " δt_1 ."

• After the collision, both carts in motion move in opposite directions, each passing through an optical barrier. The chronometer records two more passage times, " $\delta t'_1$ " and " $\delta t'_2$."

•	Repeat	the	previous	steps	while	varying	the	mass	of	m_2	of	the	cart	by	adding
ad	ditional	mass	ses.												

m_2 (grs)	265	515	765	1015	1265
δt_1 (s)					
$\delta t'_1$ (s)					
δt_2 (s)					
$v = \delta x / \delta t_1$ (m/s)					
$v'_{1} = \delta x / \delta t'_{1} (m/s)$					
$v'_2 = \delta x / \delta t'_2 (m/s)$					
$E_{c1} = m_1 . v_1^2 / 2 (J)$					
$E'_{cl} = m_l . v'^2_l / 2 (J)$					
$E'_{c2} = m_2 . v'^2_2 / 2 (J)$					
$P_1 = m_1 \cdot v_1$					
$P'_{1} = m_{1} \cdot v'_{1}$					
$P'_2 = m_2 . v'_2$					
$(P_1 + P_2)/(P'_1 + P'_2)$					
$(E_{c1}+E_{c2})/(E'_{c1}+E'_{c2})$					

Notes:

• δ_t represents the time it takes for the tab, with a width of $\delta_x = 5$ mm, to pass through the optical barrier.

•After the collision, the first cart moves in the negative direction. 1- Complete the table.

2- Based on the table results, is there conservation of momentum and kinetic energy?

.....

Figure-3-

a- Inelastic Collision

•Set up the experiment as shown in Figure 3.

•Adjust the distance between the optical barriers so that the collision occurs between them.

•Before the collision, one of the carts with a fixed mass of 205 grams is in motion, while the other cart, with additional " m_s " mass, has a variable mass of

 $m_2 = m_{cart} + m_s = 265 + m_s$ grams and is at rest.

•When they pass through, the chronometer records the corresponding time " δ_t ".

•After the collision, both carts in motion stick together and move in the same direction, passing through another optical barrier. Record the passage time on the table.

• Repeat the previous steps while varying the mass of m_2 of the cart by adding different masses of " m_s ".

m_2 (grs)	265	515	765	1015	1265
δt_1 (s)					
δt_2 (s)					
$v = \delta x / \delta t_1 (m/s)$					
$v'_1 = \delta x / \delta t_2 = v'_2 (m/s)$					
$E_{c1} = m_1 . v_1^2 / 2$ (J)					
$E'_{cl} = m_l . v'^2_l / 2 $ (J)					
$E'_{c2} = m_2 . v'^2_2 / 2 $ (J)					
$P_1 = m_1 \cdot v_1$					
$P'_{l}=m_{l}.v'_{l}$					
$P'_2 = m_2 \cdot v'_2$					
$P_1 + P_2 / P'_1 + P'_2$					
$E_{c1} + E_{c2} / E'_{c1} + E'_{c2}$					

1- Fill in the table.

2-Based on the table's results, is there conservation of momentum and kinetic energy?

.....

Conclusion

	-		
•••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
•••••			••••••••••••••••