<u>3-Practice</u>

I - To determine the torsion constant, certain conditions are established to facilitate the measurement and calculation of (C).

 $\theta = 180^{\circ}$, which can be determined when the indicator LED of the optical barrier lights up. F is directly measured using the dynamometer, and $\varphi = 90^{\circ}$.

Consider a steel rod with a mass m = 132.2 g and a length l = 60 cm. The point of force application is adjusted until it balances with the restoring force."

1- Complete the following table:

r (cm)	17	19	21	23	25	27	29
F(N)							
\overline{F} (N)							
$\overline{F}.r$							
$\overline{\theta}$							

- 2- Calculate the average value of the torsion constant (\overline{C})
- 3- Calculate the average absolute error $(\overline{\Delta C})$
- 4- Calculate the relative and absolute uncertainty (ΔC , $\Delta C/C$).....
- 5- Provide the value of (C) in the form $(C = \overline{C} \mp \Delta C)$

II-

a- Take the rod alone, adjust it so that the axis of rotation passes through its center of mass. Measureitsperiod five times.

Order of	1	2	3	4	5
measurement					
T/2 (s)					

1- Record the result in the table.

- 2- Provide the value of (T) in the form $(T = \overline{T} \mp \Delta T)$
- 3- Calculate (I₀) with respect to an axis passing through the center of mass of the rod
- 4- Compare the measured value of (I₀) with the calculated one. Comment.....

b- Take the rod alone, measure the oscillation period by sliding the rod in steps of (4 cm). Repeat each measurement twice.

1- Complete the following table.

r (cm)	4	8	12	16	20
T/2 (s)					
$\overline{T}(s)$					
$I = C.\overline{T}/4\pi^2$					
$(I - I_0)/r^2$					

2- What do you observe about the value of the expression $(I-I_0)/r^2$? Whatdoesitrepresent?

.....

c- Take a solid sphere, mount it on the rotation axis, and measure its period (take 5measurements).

- 1- Calculate the average period: \overline{T} =.....
- 2- Calculate its moment of inertia: $I_{s/0} = \dots$
- Compare this value with the one calculated in the theoretical preparation (part 4).
 Comment on the results

d-Repeat the same procedure with a solid cylinder.

4-Conclusion

