3-Practice

I - To determine the torsion constant, certain conditions are established to facilitate the measurement and calculation of (C).
$\theta=180^{\circ}$, which can be determined when the indicator LED of the optical barrier lights up. F is directly measured using the dynamometer, and $\varphi=90^{\circ}$.

Consider a steel rod with a mass $\mathrm{m}=132.2 \mathrm{~g}$ and a length $\mathrm{l}=60 \mathrm{~cm}$. The point of force application is adjusted until it balances with the restoring force."

1- Complete the following table:

$\mathrm{r}(\mathrm{cm})$	17	19	21	23	25	27	29
$\mathrm{~F}(\mathrm{~N})$							
$\bar{F}(\mathrm{~N})$							
$\overline{\bar{F}} \cdot r$							

2- Calculate the average value of the torsion constant $(\overline{\mathrm{C}})$
3- Calculate the average absolute error $(\overline{\Delta C})$
4- Calculate the relative and absolute uncertainty $(\Delta C, \Delta C / C)$
5- Provide the value of (C) in the form $(C=\bar{C} \mp \Delta C)$.
II-
a- Take the rod alone, adjust it so that the axis of rotation passes through its center of mass.
Measureitsperiod five times.

Order of measurement	1	2	3	4	5
$T / 2(s)$					

1- Record the result in the table.
2- Provide the value of (T) in the form $(T=\bar{T} \mp \Delta T)$
3- Calculate $\left(\mathrm{I}_{0}\right)$ with respect to an axis passing through the center of mass of the rod
4- Compare the measured value of $\left(\mathrm{I}_{0}\right)$ with the calculated one. Comment.
\qquad
\qquad
b- Take the rod alone, measure the oscillation period by sliding the rod in steps of (4 cm). Repeat each measurement twice.

Torsion pendulum

1- Complete the following table.

$\mathrm{r}(\mathrm{cm})$	4	8	12	16	20
$T / 2(s)$					
$\bar{T}(s)$					
$I=C . \bar{T} / 4 \pi^{2}$					
$\left(I-I_{0}\right) / r^{2}$					

2- What do you observe about the value of the expression $\left(I-I_{0}\right) / r^{2}$? Whatdoesitrepresent?
c- Take a solid sphere, mount it on the rotation axis, and measure its period (take 5measurements).

1- Calculate the average period: $\bar{T}=$
2- Calculate its moment of inertia: $I_{s / 0}=$
3- Compare this value with the one calculated in the theoretical preparation (part 4).
Comment on the results
d-Repeat the same procedure with a solid cylinder.
4- Calculate the average period: $\bar{T}=$
5- Calculate its moment of inertia: $I_{s / 0}=$
6- Compare this value with the one calculated in the theoretical preparation (part 5). Comment on the results

4-Conclusion

Torsion pendulum

