University of M'sila

Faculty of: Technology

First Series of exercises

<u>Exercise 01</u>:

Given the vectors \vec{V}_1 and \vec{V}_2 in an orthonormal basis $(\vec{i}, \vec{j}, \vec{k})$ such that:

 $\vec{V}_1 = \vec{\iota} + 2\vec{j}$ and $\vec{V}_2 = 2\vec{\iota} - \vec{j}$

 $\mathbf{1}$ / Find the vector sum $\vec{S} = \vec{V}_1 + \vec{V}_2$, graphically and analytically.

2°/*Find the vector difference* $\vec{D} = \vec{V}_1 - \vec{V}_2$ *graphically and analytically.*

3°/ The vectors \vec{V}_1 and \vec{V}_2 form a parallelogram. What represents graphically, the magnitude of the sum $|\vec{S}|$ and the magnitude of difference $|\vec{D}|$ in this parallelogram?

4°/ Determine the moduli of the vectors: $\vec{V}_1, \vec{V}_2, \vec{S}$ and \vec{D} .

<u>Additional questions</u>: If $\vec{A} + \vec{B} = 5\vec{\iota} - \vec{J}$ and $\vec{B} - \vec{A} = \vec{\iota} + \vec{J}$

5 '*f* Found the moduli of the vectors: $|\vec{A}|$, $|\vec{B}|$, $|\vec{A} + \vec{B}|$ and $|\vec{B} - \vec{A}|$?

6 '/ Found the angles formed between: $(\vec{A} \text{ and } \vec{B})$; $(\vec{A} + \vec{B} \text{ and } \vec{A})$; $(\vec{B} - \vec{A} \text{ and } \vec{B})$;

 $(\vec{A} + \vec{B} \text{ and } \vec{B} - \vec{A})$

7°/ Determine the components of \vec{n} the normal to the plane constituted by the vectors \vec{A} and \vec{B}

8°/ What are the components of \vec{A} and \vec{B} along the directions $\vec{u} = \vec{i} + \vec{j}$ and $\vec{v} = \vec{i} - \vec{j}$?

<u>Exercise 02</u>:

Given the vectors \vec{a} and \vec{b} in an orthonormal basis, $(\vec{l}, \vec{j}, \vec{k})$ such that:

 $\vec{a} = 3\vec{\iota} - 5\vec{j} + \vec{k}$ and $\vec{b} = 2\vec{\iota} + 3\vec{j} - 4\vec{k}$

1 ' Calculate the scalar (dot) product between \vec{a} and \vec{b} .

2 Y What is the angle between \vec{a} and \vec{b} . Determine $|\vec{a} + \vec{b}|$ and $|\vec{a} - \vec{b}|$ in two ways.

3°/ Determine the projection along the direction \vec{a} of the vector \vec{b}

If these vectors whose components are given according to the parameters α and β such that

 $\vec{a} = \alpha \vec{i} - 2\vec{j} + \vec{k}$ and $\vec{b} = \beta \vec{i} + \vec{j} + \vec{k}$

L. Laïssaoui

Common Base

Academic year 2023/2024

4°/ What is the relationship between α and β such that \vec{a} and \vec{b} are always perpendicular?

Exercise 03:

Given the vectors \vec{A} and \vec{B} in an orthonormal basis $(\vec{i}, \vec{j}, \vec{k})$

$$\vec{A} = 2\vec{\iota} - 3\vec{j} + 4\vec{k}$$
 and $\vec{A} = \vec{\iota} + 5\vec{j} + 2\vec{k}$

1 % Calculate the vector (cross) product between \vec{A} and \vec{B} .

2°/ Find the angle between \vec{A} and \vec{B} .

3°/ What is the area constituted by the vectors \vec{A} and \vec{B} .

What is the direction of this surface?

If these vectors whose components are given according to the parameters γ *and* δ *such that:*

 $\vec{A} = \gamma \vec{\iota} - 3\vec{j} + 4\vec{k}$ and $\vec{B} = 5\vec{\iota} + \delta\vec{j} + 2\vec{k}$

4°/ What are the values of γ and δ so that \vec{A} and \vec{B} are always collinear?

<u>Exercise 04</u>:

In an orthonormal basis($\vec{i}, \vec{j}, \vec{k}$), we give the vectors:

$$\vec{A}(t) = 2t\vec{i} + (t+1)\vec{j}$$
 and $\vec{B}(t) = 4t\vec{i} - 3t\vec{j} + 2\vec{k}$

1 γ Calculate the derivatives $\frac{d\vec{A}}{dt}$, $\frac{d\vec{B}}{dt}$ of the vectors \vec{A} and \vec{B} .

2°/Calculate derivatives $\frac{d(\vec{A} \circ \vec{B})}{dt}$ and $\frac{d(\vec{A} \wedge \vec{B})}{dt}$ in two ways.

<u>QCU</u>:

1 °/ Let be the vectors $\vec{A} = 3\vec{i} + 4\vec{j}$ and $\vec{B} = 7\vec{i} - 24\vec{j}$. The vector having the same modulus as \vec{B} and the same direction as \vec{A} is:

 $a/5\vec{i}+20\vec{j}$ $b/20\vec{i}+15\vec{j}$ $c/15\vec{i}+10\vec{j}$ $d/15\vec{i}+20\vec{j}$

2 '/ Let the vector $\vec{A} = 2\vec{i} + 3\vec{j}$. The angle between \vec{A} and the axis \vec{oy} is:

 $a/\arcsin\left[\frac{3}{2}\right]$ $b/\arctan\left[\frac{3}{2}\right]$ $c/\arctan\left[\frac{2}{3}\right]$ $d/\arccos\left[\frac{3}{2}\right]$

3°/5 forces, each equal to '**10N** ' and applied at the same point. These forces are coplanar and angles between each two consecutive forces are same. The resultant is:

a/Zéro b/10N c/20N d/10 $\sqrt{2}N$

L. Laïssaoui

<u>Exercise 05</u>:

In an orthonormal basis(\vec{i}, \vec{j}), we give the vector \vec{A} such that $\vec{A} = \vec{i} + \sqrt{3}\vec{j}$ 1°/Write the unit vector \vec{u}_A of \vec{A} in the base.(\vec{i}, \vec{j})

This unit vector u

_A taken as a vector of the polar basis, u

_A = u

_ρ
2°/ Give the expression (in the Cartesian base) of the second vector of this base u

_θ.
3°/ Write the vector A

in the polar base.

Given a vector \vec{B} in the polar basis $\vec{B} = \rho \vec{u}_{\rho} + sin\theta \vec{u}_{\theta}$ **4**°/ Give the expression of \vec{B} in the Cartesian base

<u>Exercise 06</u>:

Given a vector $\vec{A} = \vec{i} - \sqrt{3}\vec{j} - 2\vec{k}$ **1** °/ Give the spherical coordinates of \vec{A} ? **2** °/ What is the spherical base $(\vec{u}_r, \vec{u}_\theta, \vec{u}_\varphi)$ for \vec{A} , expressed in the Cartesian basis? **3** °/ Do the same thing again for the vector \vec{A} in the cylindrical base $(\vec{u}_\rho, \vec{u}_\theta, \vec{k})$.

Exercise 07:

In an orthonormal basis (\vec{i}, \vec{j}) , we give the point $M\begin{pmatrix}\sqrt{3}\\1\end{pmatrix}$ on the circle of radius R = 2 and center C(0,0): 1°/ Write the unit vectors of the polar basis $(\vec{u}_{\rho}, \vec{u}_{\theta})$ in the Cartesian basis (\vec{i}, \vec{j}) . Given \vec{u}_{ρ} and \vec{u}_{θ} for the point $M\begin{pmatrix}\sqrt{3}\\1\end{pmatrix}$. 2°/ Write the derivatives $\frac{d\vec{u}_{\rho}}{dt}$ and $\frac{d\vec{u}_{\theta}}{dt}$ of the unit vectors $\vec{u}_{\rho}, \vec{u}_{\theta}$ in the same polar basis if $\frac{d\theta}{dt} = \dot{\theta} = t$ 3°/ Write the unit vectors of the intrinsic $(\vec{u}_{T}, \vec{u}_{N})$ basis in the Cartesian basis (\vec{i}, \vec{j}) . Given \vec{u}_{T} and \vec{u}_{N} for the point $M\begin{pmatrix}\sqrt{3}\\1\end{pmatrix}$. 4°/ Write derivatives $\frac{d\vec{u}_{T}}{dt}$ and $\frac{d\vec{u}_{N}}{dt}$ of the unit vectors in the same intrinsic basis \vec{u}_{T}, \vec{u}_{N} . 5°/ Represent the polar and intrinsic basis at the point $M\begin{pmatrix}\sqrt{3}\\1\end{pmatrix}$

Exercise 08: (Additional)

Let a vector $\vec{A} = 3\vec{i} + 2\vec{j} + \vec{k}$ **1**°/ Give the spherical coordinates of \vec{A} ? **2**°/ Write the expressions of the spherical base $(\vec{u}_r, \vec{u}_\theta, \vec{u}_\varphi)$, in the Cartesian base **3**°/ Do the same thing again for the vector \vec{A} in the cylindrical base $(\vec{u}_\rho, \vec{u}_\theta, \vec{k})$.

Exercise 09: (HW)

1°/*Express the Cartesian base* $(\vec{i}, \vec{j}, \vec{k})$ *in the spherical base* $(\vec{u}_r, \vec{u}_{\theta}, \vec{u}_{\varphi})$

2°/ Show that the unit vectors of the spherical basis are written as follows:

 $\frac{d\vec{u}_r}{dt} = \vec{\Omega}_1 \wedge \vec{u}_r \qquad \frac{d\vec{u}_\theta}{dt} = \vec{\Omega}_2 \wedge \vec{u}_\theta \qquad \frac{d\vec{u}_\varphi}{dt} = \vec{\Omega}_3 \wedge \vec{u}_\varphi.$

Give the expression of $\vec{\Omega}_1$, $\vec{\Omega}_2$ and $\vec{\Omega}_3$.