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1 Real numbers

1.1 Preliminaries

Definition 1.1. 1. A set is a well-defined collection of distinct objects, called the
elements or members of the set. Sets may be finite or infinite. They are typically
denoted by curly braces { } and listing the elements separated by commas.

2. The empty set denoted by φ is a set that has no elements.

3. If x is an element of the set A, we write x ∈ A, if not we write x 6∈ A.

4. A set A is subset of B or A is included in B if every element of A belongs to B and
we write A ⊂ B, that is,

x ∈ A =⇒ x ∈ B.

5. Tow sets A and B are equals if its have the same elements and we write A = B. In
other terms A = B if A ⊂ B and B ⊂ A, or

x ∈ A⇐⇒ x ∈ B.

+ Example 1.1. • A = {1, 2, 3} is a set containing the members 1, 2, and 3 (finite
set).

• A = {0, 2, 4, 6, ...} is a set of positive even integers (infinite set).

• A = {n2+1
n+1
| n ∈ N} is a set where the element are given by the expression n2+1

n+1
for

all n ∈ N. We have 0 6∈ A, 1 ∈ A because 1 = 12+1
1+1

, 2 6∈ A because 2 6= n2+1
n+1

for all
n ∈ N.

• A = {x ∈ R : x2 + 3x + 1 ≤ 0} is a set containing the solutions of the inequality
x2 + x + 1 ≤ 0. For example, 0 6∈ A because 02 + 3 × 0 + 1 = 1 6≤ 0, −1/2 ∈ A
because (−1/2)2 + 3(−1/2) + 1 = −1/4 ≤ 0.

Definition 1.2. 1. The set of natural numbers denoted by N is defined by

N := {0, 1, 2, 3, · · · }

2. The set of integers denoted by Z is defined by

Z := {· · · − 2,−1, 0, 1, 2, · · · }

3. Endowed by the operation of addition ” + ”, the set of integers is an Abelien group.
That is is

• Closure: For all x, y ∈ E, x+ y ∈ Z.
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• + is commutative : ∀x, y ∈ Z : x+ y = y + x

• + is associative : ∀x, y, z ∈ Z : (x+ y) + z = x+ (y + z)

• Identity Element: There exists an element 0 ∈ Z such that ∀x ∈ Z : x+0 = x.

• symmetric Element: For every x ∈ E, there exists an element −x ∈ Z such
that x+ (−x) := x− y = 0.

Definition 1.3 (Ordered sets). An ordered set is a set E endowed by a relation ” < ”
such that

• For all x, y ∈ E, exactly one of the following holds

x < y, x = y, or y < x

• For all x, y, z ∈ E : x < y ∧ y < z =⇒ x < z (transitivity)

We write x ≤ y if x < y or x = y.

+ Example 1.2. • The set of natural numbers N := {0, 1, 2, 3, · · · } and the set of
integers Z := {· · · − 2,−1, 0, 1, 2, · · · } are ordered sets with the relation (lower than)
< and we have

· · · − 3 < −2 < −1 < 0 < 1 < 2 < 3 < · · ·

Definition 1.4. Let (E,<) be an ordered set and let A be a subset of E.

• We say a ∈ E is an lower-bound of A if

∀x ∈ A : a ≤ x

and if there exist an lower-bound of A, we say A is bounded below .

• We say b ∈ E is an upper-bound of A if

∀x ∈ A : x ≤ b

and if there exist an upper-bound of A, we say A is bounded above .

• We say a0 ∈ E is the greatest lower-bound or the infimum of A if a0 is an
lower-bound of A and satisfies a ≤ a0 for every lower-bound a ∈ E. We write

a0 := inf A

• We say b0 ∈ E is the least upper-bound or the supremum of A if b0 is an
upper-bound of A and satisfies b0 ≤ b for every upper-bound b ∈ E. We write

b0 := supA
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+ Example 1.3.

Definition 1.5. The set of rational numbers is the set denoted by Q defined as follows

Q = {p
q
| (p, q) ∈ Z× Z∗}

or

Q = {p
q
| (p, q) ∈ Z× N∗}

or

Q = {p
q
| (p, q) ∈ Z× N∗, with p ∧ q = 1}

+ Remark 1.1. The set of rational numbers Q is an ordered set with the relation <
"lower than" defined as follow

x < y ⇐⇒ y − x = p/q where p, q ∈ N

and then we say that y − x is negative, if it is not positive, we say that it is negative.

Definition 1.6. The addition and multiplicative operations on Q are defined as follow

p
q

+ p′

q′
= pq′+qp′

p′q′
, p

q
· p′
q′

= pp′

qq′
, for all p ∈ Z, q ∈ Z∗.

Theorem 1.1. The set of rational numbers Q endowed with the addition and multiplica-
tive operations is an abilean field. That is

1. (Q,+) is an abeliean group

2. Multiplicative Associativity: For all x, y, z ∈ Q, (x · y) · z = x · (y · z).

3. Multiplicative Identity Element: There exists an element 1 ∈ Q such that for
all x ∈ Q, x · 1 = 1 · x = x.

4. Multiplicative Inverse Element (except for 0): For every non-zero x ∈ Q,
there exists an element x−1 ∈ Q such that x · x−1 = x−1 · x = 1.

5. Distributive Property: For all x, y, z ∈ Q, x · (y + z) = x · y + x · z.

Definition 1.7 (least upper bound property). Le E be an ordered set.

1. We say that E satisfies the least upper bound property if every non empty subset A
of E that is bounded from above has the least upper bound (i.e. supA exists in E).

2. We say that E satisfies the greatest lower bound property if every non empty subset
A of E that is bounded from below has the greatest lower bound (i.e. inf A exists in
E)
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+ Remark 1.2. The ordered set Q does not satisfy the least upper bound property.
Indeed consider the following subset of Q :

A = {x ∈ Q : x2 ≤ 2}.

This set is bounded above by 2 because for every x ∈ A we have x ≤ 2 (if not then x2 ≥ 4
and x 6∈ A). Suppose by absurd that A has a least upper bound denoted by b. Assume,
for the sake of contradiction, that the set A = {x ∈ Q : x2 ≤ 2} has a least upper bound
α in Q. We divide the proof in two steps

• We claim that α2 = 2. Indeed, if α2 > 2, then for h := α2−2
2α

, we have α− h < α and

(α− h)2 = α2 − 2αh+ h2 > α2 − 2αh = 2.

Thus, α− h is an upper bound of A, which contradicts the fact that α = supA. If
α2 < 2, then for h := min{1, 2−α2

2α+1
} ∈ Q, we have α < α + h and

(α + h)2 = α2 + 2αh+ h2 ≤ α2 + 2αh+ h ≤ 2.

Thus α + h ∈ A and α < α + h. Then α is not an upper bound. Contradiction.
Hence α2 = 2.

• Let us show that α 6∈ Q. If not then α = p
q
, where p and q are integers with no

common factors other than 1. Hence 2 = α2 = p2

q2
and p2 = 2q2. This implies that

p2 is an even number, and therefore, p is also be even (because the square of an
odd number is odd). So we can write p as p = 2k where k is an integer. Therefore
2q2 = (2k)2. It follows that q2 = 2k2 is even and also is q However, this contradicts
our initial assumption that p and q have no common factors other than 1, as both p
and q are even. Consequently α is not rational number

+ Remark 1.3. The ordered set Z has the least upper bound property and for every
bounded set A of Z, we have

supA ∈ A, inf A ∈ A

1.2 The set of real numbers

We have seen in the previous remark that the set of rational numbers Q haven’t the least
upper bound property. So we need an other set larger than Q, that satisfies this property.
This set is the real number set R given by the following definition

Definition 1.8. The real number set R is an ordered field containing Q and satisfies the
least upper bound property.

The following theorem guaranties the existence of R.
Theorem 1.2. There is a unique ordered field which extends the field of rational numbers
Q and satisfies the least upper bound property.

Proof. is accepted.
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1.3 Absolute value

Definition 1.9. The absolute value denoted by | · | is a function defined from R to R+

as follows

∀x ∈ R : |x| =
{

x if x ≥ 0
−x if x ≤ 0

or

∀x ∈ R : |x| = max{x,−x}

Proposition 1.3. for all x, y ∈ R, we have

1. |x| = | − x| , |xy| = |x||y|

2. |x| ≤ y ⇐⇒ −|y| ≤ x ≤ |y| , |x| ≥ y ≥ 0⇐⇒ x ≤ −y ∨ x ≥ y

3. −|x| ≤ x ≤ |x|

4.
∣∣x+ y

∣∣ ≤ |x|+ |y| (Triangle inequality)

5.
∣∣|x| − |y|∣∣ ≤ |x− y|

1.4 Archimedean property, density and integer part property

Definition 1.10. Let x ∈ R

1. The integer part of x denoted as [x] is the unique integer satisfying

[x] ≤ x < [x] + 1

or equivalently

x− 1 < [x] ≤ x.

2. A set A is said to be dense in R if

∀x, y ∈ R, x < y, ∃z ∈ A : x < z < y.

+ Example 1.4. • [0.5] = 0 because 0 ≤ 0.5 < 1.

• [−1.5] = −2 because −2 ≤ −1.5 < −1.

• If x ∈ Z then [x] = x because x ≤ x < x+ 1.

Theorem 1.4 (Archimedean property). we have
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∀x ∈ R∗+, y ∈ R,∃n ∈ N : nx ≥ y .

Proof. Divide through by x. Then the Archimedean property says that for every real
number a = y

x
, we can find n ∈ N such that n ≥ a. In other words, says that the set of

natural numbers N is not bounded above. Suppose for contradiction that N is bounded
above. Then due to the least upper bound axiom, there is b = supN. Therefore number
b− 1 cannot be an upper bound for N as it is strictly less than b (the least upper bound).
Thus there exists an m ∈ N such that m > b− 1. it follows that n := m+ 1 > b. This is
contradiction since b being an upper bound.

Theorem 1.5. The following properties are equivalent

1. Archimedean property ∀x ∈ R∗+, y ∈ R,∃n ∈ N : nx ≥ y .

2. integer part property: ∀x ∈ R,∃n ∈ Z : n ≤ x < n+ 1

3. Q is dense in R, that is ∀x, y ∈ R, x < y, ∃r ∈ Q : x < r < y.

Proof. • 1) =⇒ 2) Let x ∈ R be given. We want to show that there exists an integer
n ∈ Z such that n ≤ x < n+ 1. Consider the set

S = {n ∈ Z : n ≤ x}.

Due to the Archimedean property, the set S is non empty. Indeed. There is
n ∈ Z : −n ≥ −x then n ≤ x so x ∈ S. Since S is bounded above by x. By the
well-ordering property of integers, there exists a greatest element in S denoted as n.
Since n is the greatest integer less than x, we have n ≤ x < n+1. Therefore, we have
shown that for any real number x, there exists an integer n such that n ≤ x < n+ 1.

• 2) =⇒ 3). Given x, y ∈ R : x < y. Due to 2) there exists q ∈ Z∗ such that

q − 1 ≤ 1
y−x < q.

Which implies that

1 < q(y − x)

Then

qx+ 1 < qy

By 2), there exists p ∈ Z such that p− 1 ≤ qx < p. Hence

qx < p ≤ qx+ 1 < qy
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Consequently, dividing by q, it follows x < p
q
< y .

• 3) =⇒ 1). Given x ∈ R∗+, y ∈ R. If x ≥ y it is enough to take n = 1. If not then
0 < x < y. from 3), there are p, q ∈ N∗ such that p

q
≥ y

x
and then px ≥ qy ≥ y,

(q ≥ 1).

Corollary 1.6. the irrational set R \Q is dense in R.

Proof. Given x, y ∈ R such that x < y. form the density of Q, there are r1, r2 ∈ Q such
that x < r1 < r2 < y. We know that

√
2 is irrational and greater than 1. Then taking

z = r1 + 1√
2
(r2 − r1) 6∈ Q we obtain r1 < z < r2.

1.5 Bounded subset in R
.

Theorem 1.7 (Characterisation of the supremum and infimum). Let A be a
bounded subset of R. Then

α := inf A⇐⇒


∀x ∈ A : x ≥ α (α is a lower bound of A)

∀ε > 0,∃x0 ∈ A : x0 < α + ε (α is greater than any lower bound)

β := supA⇐⇒


∀x ∈ A : x ≤ β (α is an upper bound of A)

∀ε > 0,∃x0 ∈ A : α− ε < x0 (β is less than any upper bound)

Definition 1.11 (Maximum and minimum). Let A be a subset of R.

1. A maximum of A, denoted as maxA, is the greatest element of A. That is

max ∈ A and ∀x ∈ A : x ≤ maxA

2. A minimum of A, denoted as minA, is the least element of A. That is

min ∈ A and ∀x ∈ A : x ≥ minA

+ Remark 1.4. Let A be a bounded subset.

• maxA is an upper bound of A.

• If supA ∈ A, then maxA = supA.
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• If maxA exists then supA = maxA. Indeed, since maxA is an upper bound of A,
it suffices to show that

∀ε > 0,∃x0 ∈ A : maxA− ε < x0.

Given any ε > 0, we can take x0 = maxA. Then we have maxA− ε < maxA = x0.

• If supA /∈ A, then maxA does exists, because if not, supA = maxA ∈ A.

• Analogously for inf A and minA.

+ Example 1.5. Find supA, inf A, maxA, minA if they exist, for the following
cases.

1. Let A := {1, 2, 3}. We observe that minA = 1, maxA = 3, leading to inf A = 1 and
supA = 3.

2. For A =]0, 1], using the interval definition, we note that 0 is a lower bound, and 1
is an upper bound of A. Since 1 ∈ A, we conclude that supA = maxA = 1. We
now prove that inf A = 0. Given ε > 0 (we can assume ε is arbitrarily small), if
we choose x0 := ε

2
∈ A, we have x0 < 0 + ε. This shows that inf A = 0. As 0 /∈ A,

minA doesn’t exist.

3. Let A :=
{

n
n2+1

| n ∈ N
}
. We observe that for all n ∈ N, 0 < n

n2+1
≤ 1

2
(using

ab ≤ 1
2
(a2 + b2)). Thus, 1

2
is an upper bound of A. Since 1

2
= 1

12+1
∈ A, we deduce

maxA = supA = 1
2
. Moreover, we can prove 0 is the infimum of A. For any ε > 0,

we observe that
n

n2 + 1
≤ n

n2
=

1

n
,

1

n
≤ ε⇐⇒ n ≥ 1

ε
.

Due to the Archimedean property, choose n such that n ≥ 1
ε
(e.g., n =

[
1
ε

]
+ 1).

This guarantees n
n2+1

≤ 1
n
≤ ε Thus, 0 is indeed the infimum of A. As 0 /∈ A, minA

doesn’t exist.
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1.6 Exercises

Exercise 1. Show that

1. ∀x, y ∈ R :
∣∣x+ y

∣∣ ≤ |x|+ |y| (Triangle inequality)

2. ∀x, y ∈ R :
∣∣|x| − |y|∣∣ ≤ |x− y|

3. ∀x1, x2, . . . , xn ∈ R : |x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|

4. ∀x, y ∈ R : 2|xy| ≤ x2 + y2 (For which values of x and y is equality achieved)

5. ∀x, y ∈ R : max{x, y} =
x+ y + |x− y|

2
, min{x, y} =

x+ y − |x− y|
2

6. ∀x, y ∈ R : |x|+ |y| ≤ |x+ y|+ |x− y|

Solution:

1. It is enough to show that −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|. By the definition of the
absolute value, we have

−|x| ≤ x ≤ |x| and − |y| ≤ y ≤ |y|.

Summing these inequalities, we obtain −(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|. This implies
|x+ y| ≤ |x|+ |y|.

2. We have from the triangle inequality

|x| = |x− y + y| ≤ |x− y|+ |y|

and then |x| − |y| ≤ |x− y|. By the same way we obtain |y| − |x| ≤ |y − x|, that is
|x| − |y| ≥ −|x− y|. This implies that∣∣|x| − |y|∣∣ ≤ |x− y|.

3. By induction on n ∈ N∗. For n = 1, the inequality is obvious. Let us suppose that
the inequality is satisfied for n ∈ N and show that it is satisfied for n+ 1, that is,

|x1 + x2 + · · ·+ xn + xn+1| ≤ |x1|+ |x2|+ · · ·+ |xn|+ |xn+1|.

From the triangle inequality, we have

|x1+x2+ · · ·+xn+xn+1| = |(x1+x2+ · · ·+xn)+xn+1| ≤ |x1+x2+ · · ·+xn|+ |xn+1|.

By the hypothesis of induction, we have |x1 +x2 + · · ·+xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.
Hence,

|x1 + x2 + · · ·+ xn + xn+1| ≤ |x1|+ |x2|+ · · ·+ |xn|+ |xn+1|.
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4. We have
x2 + y2 − 2|xy| = |x|2 + |y|2 − 2|x||y| = (|x| − |y|)2 ≥ 0.

Then 2|xy| ≤ x2 + y2.

5. We distinguish two cases

• If x ≤ y then

max{x, y} = y =
(x+ y)− (x− y)

2
=
x+ y + |x− y|

2
.

min{x, y} = x =
(x+ y) + (x− y)

2
=
x+ y − |x− y|

2
.

• If x ≥ y then

max{x, y} = x =
(x+ y) + (x− y)

2
=
x+ y − |x− y|

2
.

min{x, y} = y =
(x+ y)− (x− y)

2
=
x+ y + |x− y|

2
.

6. We have
|x| = |(x+ y) + (x− y)|

2
≤ |x+ y|+ |x− y|

2
.

|y| = |(x+ y) + (y − x)|
2

≤ |x+ y|+ |x− y|
2

.

By addition, we get |x|+ |y| ≤ |x+ y|+ |x− y|.

Exercise 2. Let Sn :=
∑n

i=0 3i, Pn :=
∏n

i=2 4i. Calculate:

S0, S3, P2, P4,
∑3

i=2

∏i
j=1 j3

j.

Solution: Sn :=
∑n

i=0 3i, Pn :=
∏n

i=2 4i. We have

S0 = 30 = 1, S3 = 30 + 31 + 32 + 33 =

P2 = 42 = 16, P4 = 42 + 43 + 44 =

3∑
i=2

i∏
j=1

j3j =
2∏
j=1

j3j +
3∏
j=1

j3j

= (1× 31)× (2× 32) + (1× 31)(2× 32)(3× 33) =

Exercise 3. Let [x] be the integer part of x. Show that

1. If n ∈ Z such that n ≤ x, then n ≤ [x]

2. ∀x, y ∈ R : x ≤ y =⇒ [x] ≤ [y] (Does x < y =⇒ [x] < [y]?)
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3. ∀x ∈ R, n ∈ Z : [x+ n] = [x] + n (Does [x+ y] = [x] + [y], ∀x, y ∈ R?)

4. [x] + [−x] =

{
0 if x ∈ Z
−1 if x ∈ R \ Z

Solution: Recall that the integer part of x denoted as [x] is the unique integer
satisfying [x] ≤ x < [x] + 1 (or x− 1 < [x] ≤ x).

1. By contradiction, if n > [x], then n ≥ [x] + 1 (because n and [x] are integers). Hence,
we have

[x] ≤ x < [x] + 1 ≤ n.

This implies that x < n, which contradicts the hypothesis.

2. If x ≤ y then [x] ≤ x ≤ y. Since [x] ∈ Z then according to the previous question
[x] ≤ [y]. The strict inequality does not always hold; for example, take x = 1

4
and

y = 1
2
. We have x < y, but [x] = [y] = 0.

3. It is sufficient to show the following: [x] + n ≤ x+ n < [x] + n+ 1. By definition, we
have [x] ≤ x < [x] + 1. Therefore, [x] + n ≤ x+ n < [x] + n+ 1. Since [x] + n ∈ Z,
then [x+ n] = [x] + n.

4. We have two cases:

• If x ∈ Z, then [x] = x and [−x] = −x. Hence, [x] + [−x] = 0.

• If x /∈ Z, then −x /∈ Z. In this case, we have

x− 1 < [x] < x and − x− 1 < [−x] < −x.

By summing these inequalities, we obtain: −2 < [x] + [−x] < 0. Since
[x] + [−x] ∈ Z, then [x] + [−x] = −1.

Exercise 4. Show that

∀n ∈ N :
[
(
√
n+
√
n+ 1)2

]
= 4n+ 1

Solution: The goal is to demonstrate the following inequality: 4n+1 ≤ (
√
n+
√
n+ 1)2 <

4n+ 2. We have
(
√
n+
√
n+ 1)2 = 2n+ 1 + 2

√
n2 + n.

Furthermore, we can observe that

n =
√
n2 ≤

√
n2 + n <

√
n2 + 2n+ 1 = n+ 1.

Therefore,
4n+ 1 ≤ (

√
n+
√
n+ 1)2 < 4n+ 2.

Exercise 5. 1. Show that if n ∈ N is not the square of a natural number, then
√
n is

irrational.
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2. Deduce that
√

2 +
√

3 is irrational.

Solution:

1. By contradiction: Suppose that
√
n is a rational number. Then there exist integers p

and q such that
√
n = p

q
. It follows that p2 = nq2. It is well-known that any integer

can be expressed as a unique product of prime factors. Therefore, the exponents in
the prime factorization of nq2 must be even because nq2 = p2, which implies that
the exponents in the prime factorization of n are even. This, in turn, means that n
is the square of a natural number, leading to a contradiction.

2. We can observe that
(
√

2 +
√

3)2 = 5 + 2
√

6.

Hence,
√

6 = 1
2

(
(
√

2 +
√

3)2 − 5
)
. It follows that if

√
2 +
√

3 is rational, then
√

6 is
also rational. However, as shown in the previous question,

√
6 is irrational.

Exercise 6. 1. Find n ∈ N such that: 1
n
< 1

2023
, n
n2+1

< 1
2023

2. Find N ∈ N such that: n ≥ N =⇒ 1
n
≤ 1

2023
, n ≥ N =⇒ n

n2+1
≤ 1

2023

3. Show that ∀ε > 0,∃n ∈ N∗ : 1
n
< ε

4. Show that (∀ε > 0 : 0 ≤ x ≤ ε) =⇒ x = 0

5. Show that (∀n ∈ N∗ : 0 ≤ x ≤ 1
n
) =⇒ x = 0

Solution:

1. Let n ∈ N . We have 1
n
< 1

2023
⇐⇒ n > 2023. Therefore, we can choose n = 2024

(or any natural number greater than 2023). We observe that n
n2+1

< n
n2 = 1

n
.

Consequently,
1

n
<

1

2023
⇒ n

n2 + 1
<

1

2023
.

So we can select n = 2024.

2. According to the previous question, we can take N = 2024. Therefore

n ≥ N =⇒


1/n ≤ 1

2023

∧
n

n2+1
< 1/n ≤ 1

2023

3. Given any ε > 0. We have 1/n ≤ ε ⇐⇒ n ≥ 1/ε. Therefore, we can select
n = [1/ε] + 1

4. By contradiction, suppose that x > 0. Then there exists ε = x/2 > 0 such that
0 < ε < x. This contradicts the initial assumption.

13



5. By contradiction, suppose that x > 0. Then there exists n := [ 1
x
] + 1 > 1

x
. Therefore,

1
n
< x. This contradicts the initial assumption.

Exercise 7. Let A and B be two non-empty and bounded sets in R. Prove that:

1. If A ⊆ B, then (supA ≤ supB ∧ inf A ≥ inf B)

2. sup(A ∪B) = max{supA, supB}, inf(A ∪B) = min{inf A, inf B}

3. If A∩B 6= ∅, then: sup(A∩B) ≤ min{supA, supB}, inf(A∩B) ≥ max{inf A, inf B}
(Give an example where strict inequalities hold).

Solution: Note that

inf A ≥ α⇐⇒ α is an lower bound of A

supA ≤ β ⇐⇒ β is an upper bound of A

1. Supose that A ⊂ B.

• Prove that supA ≤ supB. It is enough to show that supB is an upper bound
of A (i.e. ∀x ∈ A : x ≤ supB). Let x ∈ A. Since A ⊂ B thenx ∈ B. Therefore
x ≤ supB.

• Prove that inf A ≥ inf B. It is enough to show that inf B is an lower bound of
A (i.e. ∀x ∈ A : x ≥ inf B). Let x ∈ A. Since A ⊂ B thenx ∈ B. Therefore
x ≥ inf B.

2. Prove that sup(A ∪B) = max{supA, supB}. We set α = max{supA, supB}.

• Prove that α is an upper bound of A ∪ B (i.e. ∀x ∈ A ∪ B : x ≤ α). Let
x ∈ A∪B. hence x ∈ A or x ∈ B. It follows that x ≤ supA or x ≤ supB. This
implies that x ≤ α = max{supA, supB}.
• Prove that α is the least upper bound of A ∪B. Let M be an upper bound of
A∪B. Then M is an upper bound of A and B. It follows that supA ≤M and
supB ≤M . Then α ≤M. In a similar manner, we can establish the equality
of the infimum (inf).

3. We have A ∩B ⊂ A and A ∩B ⊂ B. It follows that{
sup(A ∩B) ≤ supA ∧ sup(A ∩B) ≤ supB
inf(A ∩B) ≥ supA ∧ inf(A ∩B) ≥ supB

It follows that {
sup(A ∩B) ≤ min{supA, supB}
inf(A ∩B) ≥ max{inf A, inf B}

Exercise 8. Let A,B be non-empty and bounded subsets of R. Define:

−A := {−x / x ∈ A}, A+B := {x+ y / x ∈ A, y ∈ B}.

14



Prove that

1. sup(−A) = − inf A, inf(−A) = − supA

2. sup(A+B) = supA+ supB, inf(A+B) = inf A+ inf B

Solution:

1. Prove that sup(−A) = − inf A.

• We prove that − inf A is an upper bound of −A. Let x ∈ −A, then −x ∈ A. it
follows that −x ≥ inf A. Hence x ≤ − inf A.

• Prove that − inf A is the least upper bound of −A. That is

∀ε > 0,∃y0 ∈ −A : y0 > − inf A− ε.

By the definition of inf A, we have

∀ε > 0,∃x0 ∈ A : x0 < inf A+ ε.

Therefore
∀ε > 0, ∃y0 := −x0 ∈ −A : y0 > − inf A− ε.

In a similar manner, we can establish the equality of the infimum (inf).

2. Prove that sup(A+B) = supA+ supB.

• We prove that supA+ supB is an upper bound of A+B. Let z ∈ A+B, then
z = x + y where x ∈ A and y ∈ B. it follows that x ≥ supA and y ≥ supB.
Hence z = x+ y ≤ supA+ supB.

• Prove that supA+ supB is the least upper bound of A+B. That is

∀ε > 0, ∃z0 ∈ −A : z0 > supA+ supB − ε.

By the definition of supA and supB , we have

∀ε > 0,∃x0 ∈ A : x0 < supA− ε/2.

∀ε > 0,∃y0 ∈ B : x0 < supB − ε/2.

Therefore, by addition

∀ε > 0, ∃z0 := x0 + y0 ∈ A+B : z0 > supA+ supB − ε.

In a similar manner, we can establish the equality of the infimum (inf).

Exercise 9. Determine the supremum, infimum, maximum, and minimum (if they exist)
of the following sets:

A = [0, 1] ∪ [2, 3[, B = {x ∈ R : x2 − x− 6 < 0}, C = {x ∈ Z : x2 − x− 6 < 0}

15



Solution:

• supA = max{sup[0, 1], sup[2, 3[} = max{1, 3} = 3., maxA doesn’t exist inf A =
min{inf[0, 1], inf[2, 3[} = min{0, 2} = 0 = minA.

• B = {x ∈ R : x2 − x− 6 < 0} =]− 2, 3[. supB = 3, inf B = −2. maxB and minB
don’t exist.

Exercise 10. Determine the supremum, infimum, maximum, and minimum (if they exist)
of the following sets:

• A1 = {1 + 1
n
/ n ∈ N∗}

• A2 = {1− 1
n
/ n ∈ N∗}

• A3 = {(−1)n + 1
n
/ n ∈ N∗}

• A4 = { 1
n

+ 1
n2 / n ∈ N∗}

• A5 = {cos(nπ) / n ∈ N}

• A6 = {cos(nπ
2

) / n ∈ N}

• A7 = { 1
x
/ 1 < x < 2}

• A8 = {− 1
x
/ 1 < x < 2}.

Solution:

1. A1 = {1 + 1
n
/ n ∈ N∗} . We have ∀n ∈ N∗ : 1 + 1/n ≤ 1 + 1 = 2 ∈ A1. Hence 2 is

an upper bound of A1 and since it belongs to A1, then

supA1 = maxA1 = 2.

For each n ∈ N∗, 1 + 1
n
≥ 1. Thus 1 is a lower bound of A1. We observe that 1 + 1

n

decreases, approaching 1 as n→ +∞. Hence we claim that inf A1 = 1. Indeed, for
any ε > 0, there exists an n such that 1 + 1

n
< 1 + ε (e.g. n = [1/ε] + 1). Finally,

since inf A1 = 1 /∈ A1, then minA1 doesn’t exist.

2. A2 = {1− 1
n
/ n ∈ N∗} . Similarly, we obtain

inf A2 = minA2 = 0, supA2 = 1, maxA2 don’t exist.

3. A3 = {(−1)n + 1
n
/ n ∈ N∗} . We have

A3 = {−1 +
1

2n+ 1
/ n ∈ N}︸ ︷︷ ︸

A

∪ {1 +
1

2n
/ n ∈ N∗}︸ ︷︷ ︸
B

As in the set A1, we have supA = 0, supB = 1 + 1/2 = 3/2, inf A = −1, inf B = 1.
Therefore

supA3 = max{supA, supB} = 3/2, inf A3 = min{inf A, inf B} = −1.

We Observe that supA3 = 3/2 ∈ A3. Thus maxA3 = 3/2. inf A3 = −1 /∈ A3

because −1 < (−1)n + 1/n for all n. Thus minA3 don’t exist.
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4. A4 = { 1
n
− 1

n2 / n ∈ N∗} We have

∀n ∈ N∗ : 0 <
1

n
− 1

n2
≤ 1

n
≤ 1.

Hence A4 is bounded and 0 is a lower bound and 1 is an upper bound of A4.

• For the infimum, we observe 1
n
− 1

n2 −→ 0 as n → +∞. So we claim that
inf A4 = 0. Indeed, given any ε > 0. Observing that 1

n
− 1

n2 <
1
n
, there exists n

such that 1/n ≤ ε and consequently 1
n
− 1

n2 ≤ ε. Thus inf A4 = 0. Since 0 /∈ A4

because 0 < 1
n
− 1

n2 , then minA4 doesn’t exist.

• For supremum, we have

1

n
− 1

n2
=

1

4
−
(

1

n
− 1

2

)2

≤ 1

4

and we observe that for n = 2, 1
n
− 1

n2 = 1/4 ∈ A4. Therefore supA4 =
maxA4 = 1/4.

5. A5 = {cos(nπ) / n ∈ N} . We observe that cos(nπ) = +1 if n is even and cos(nπ) =

−1 if n is odd. Then A5 = {−1,+1}. Therefore supA5 = maxA5 = +1 and
inf A5 = minA5 = −1.

6. A6 = {cos(nπ
2

) / n ∈ N} . We have

cos(
nπ

2
) =


+1 if n = 4k

0 if n = 4k + 1
−1 if n = 4k + 2

0 if n = 4k + 3

Hence A6 = {−1, 0, 1}.Therefore supA6 = maxA6 = +1 and inf A6 = minA6 = −1.

7. A7 = { 1
x
/ 1 < x < 2} . We have 1 < x < 2⇐⇒ 1/2 < 1/x < 1. Then A7 =]1/2, 1[.

Hence supA7 = 1, inf A7 = 1/2. Since supA7 and inf A7 don’t belong to A7, then
maxA7, minA7 don’t exit

8. A8 = {− 1
x
/ 1 < x < 2} . We observe that A8 = −A7. Then

supA8 = − inf A7 = −1/2, inf A8 = − supA7 = −1.

maxA8, minA8 don’t exit

Exercise 11. Let A = {x2 + y2 / x, y ∈ R, xy = 1}

1. Prove that A is bounded below and calculate inf A.

2. Is A bounded above?

17



Solution:

1. We have ∀x, y ∈ R : x2 + y2 ≥ 0. Hence A is bounded below. We observe that if
xy = 1 then x2 + y2 ≥ 2xy = 2. Therefore 2 is a lower bound of A. We have 2 ∈ A
because 2 = 12 + 12 and 1× 1 = 1. Then inf A = 2 = minA.

2. Let M ∈ R. We have for x =
√
|M |+ 1, y = 1/x : z = x2 + y2 ∈ A and z > M .

Therefore A is not bounded above.

Exercise 12. Calculate the supremum and (if it exists, the maximum) of the following
sets:

A = {x ∈ Q : x2 ≤ 2}, B = {x ∈ R \Q : x2 < 2}.

Solution:We observe that
√

2 is an upper bound for sets A and B because if not, there
exists an x ∈ A (or B) such that x >

√
2. This implies that x2 > 2, but x2 ≤ 2. We

claim that
√

2 is the least upper bound of set A. Indeed, if not, there must exist an upper
bound M such that M <

√
2. Due to the density of rational numbers Q in R, there exists

a rational number x ∈ Q such that M < x <
√

2. This means M2 < x2 < 2. Hence, x
belongs to A, and this implies thatM is not an upper bound. This leads to a contradiction.
Since

√
2 is irrational number, then

√
2 /∈ A. Hence maxA doesn’t exist.
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2 Complex numbers
The set of complex numbers is essentially an algebraic representation of the plane. If we
represent the set of points on a line using the set of real numbers, then the set of points in
the plane is represented by the set of complex numbers. In this context, each point in the
plane is represented by the following number: x+ iy, where x represents the abscissa of
the point, and y represents its ordinate. The imaginary unit i is introduced to distinguish
between the abscissa and ordinate of the points represented by complex numbers during
mathematical operations.

Complex numbers are a fundamental concept in mathematics that extends the real
numbers to include the imaginary unit. In this course, we will explore the properties,
operations, and applications of complex numbers.

Definition 2.1. 1. A complex number is an element of the form z = x+ iy, where x
and y are real numbers, and i is the imaginary unit (i2 = −1).

2. x is called the real part of z (Re(z)) and y is the imaginary part of z (Im(z)).

3. The set of complex numbers is denoted by C, that is

C = {x+ iy | x, y ∈ R}.

2.1 Definition of the Field of Complex Numbers

Theorem 2.1. The set of complex numbers C is an Abiliene field with the following two
operations:

1. Addition: For complex numbers z = x + ix′ and z′ = x′ + iy′, the sum z + z′ is
defined as

z + z′ = (x+ x′) + i(y + y′)

2. Multiplication: The product z · z′ is defined as

z · z′ = (xx′ − yy′) + i(xy′ + x′y)

and in particular i2 = −1.

+ Remark 2.1. The field C extends the real numbers R by introducing the imaginary
unit i, which satisfies i2 = −1 .

Proposition 2.2. The set C has the following properties:

• Multiplicative Inverse: Every non-zero complex number z = x+iy has a multiplicative
inverse z−1, given by

z−1 =
1

x+ iy
=

x

x2 + y2
− i y

x2 + y2
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• Identity Elements: The additive identity is x+ iy = 0⇐⇒ x = y = 0, and0× i = 0.

The field of complex numbers C is a fundamental mathematical structure that plays a
significant role in various mathematical, scientific, and engineering applications.

Definition 2.2 (Conjugate and Modulus). The complex conjugate of z = x+ iy is
z̄ = x− iy. The modulus (magnitude) of z is |z| =

√
x2 + y2.

+ Remark 2.2 (Subtraction and Division). Since C is a field, then it follows

z − z′ = (x− x′) + i(y − y′)

z

z′
=

x+ iy

x′ + iy′
=

(x+ iy)(x′ − iy′)
x′2 + y′2

+ Remark 2.3. Both the real part and the imaginary part of the complex number can
represent a specific point in the plane. This representation aims to differentiate between
the points representing real values and their complex counterparts during mathematical
operations.

Proposition 2.3. We have the following useful properties.

• Equality to Zero:
|z| = 0 ⇐⇒ z = 0

• Triangle Inequality:
|z + z′| ≤ |z|+ |z′|

• Multiplicative Property:
|zz′| = |z| · |z′|

• Modulus of the Conjugate:
|z| = |z|

• Modulus of Quotient: ∣∣∣ z
z′

∣∣∣ =
|z|
|z′|

, if z′ 6= 0

• Modulus of a Complex Conjugate Product:

z · z = |z|2
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2.2 Geometric Interpretation of Complex Numbers

In the complex number system, each complex number z = x+ iy can be associated with a
point (x, y) in the complex plane. The complex plane is a two-dimensional plane where
the horizontal axis represents the real part of the complex number (x), and the vertical
axis represents the imaginary part (y).

0
x

y

r

M(x, y) orz = x+ iy
y

x

θ

The complex number z = x + iy corresponds to the point (x, y) on the complex plane.
The distance from the origin to this point is the modulus of the complex number, given by
r =

√
x2 + y2. The angle θ that the line connecting the origin and the point makes with

the positive real axis is the argument of the complex number.
Using this geometric interpretation, addition and subtraction of complex numbers

correspond to vector addition and subtraction in the complex plane. Multiplication by a
complex number corresponds to scaling and rotation, where multiplication by i results in
a counterclockwise rotation by 90 degrees.

The geometric interpretation of complex numbers provides an intuitive way to un-
derstand their behavior and operations in terms of points and vectors on the complex
plane.

2.3 Polar Form

Definition 2.3. A complex number z = x+ iy can also be represented in polar form as

z = r(cos θ + i sin θ),

where:

• r is the modulus (magnitude) of the complex number, given by r = |z| =
√
a2 + b2.

• θ is the argument (angle) of the complex number in the complex plane. It is
characterized by :

cos θ = x
r

= x√
x2+y2

, sin θ = y
r

= y√
x2+y2

.
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The following properties apply to the argument arg(z):

Proposition 2.4. 1. Argument of a Real Positive Number: For a positive real
number x,

arg(x) = 0

.

2. Argument of a Non-Positive Real Number: For a non-positive real number x,

arg(x) = π

.

3. Argument of a Pure Imaginary Number: For a pure imaginary number yi,
where y is a real number, arg(yi) = π

2
if y > 0 and arg(yi) = −π

2
if y < 0.

4. Argument of a Product: For two complex numbers z1 and z2,

arg(z1z2) = arg(z1) + arg(z2)

.

5. Argument of a Quotient: For two complex numbers z1 and z2,

arg

(
z1
z2

)
= arg(z1)− arg(z2)

.

6. Argument of a Complex Conjugate: For a complex number z = a+ bi,

arg(z) = − arg(z)

.

7. Argument of the Reciprocal: For a non-zero complex number z,

arg

(
1

z

)
= − arg(z)

.

8. Argument of Powers: For a non-zero complex number z and a positive integer n,

arg(zn) = n arg(z)

.
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2.4 Euler’s Formula

Consider the function f : R→ C defined by

f(θ) = cos θ + i sin θ.

We observe that f(0) = 1, and its derivative is f ′(θ) = if(θ) . This observation prompts
us to define f(θ) = eiθ, and let us to the following definition.

Definition 2.4 (Euler’s Formula). Euler’s formula for complex numbers is as follows:

eiθ := cos θ + i sin θ.

Consequently, for any complex number z :

z = |z|eiθ = reiθ.

2.5 Exercises

Exercise 13. Express the following complex numbers in algebraic form (a+ ib):

1
5+3i

, 1
(1+i)(1+i

√
3)

Solution:We set z = 1
(1+i)(1+i

√
3)
. First, we’ll multiply both the numerator and

denominator by the complex conjugate of the denominator to rationalize the expression:

z =
1

(1 + i)(1 + i
√

3)
· (1− i)(1− i

√
3)

(1− i)(1− i
√

3)

=
(1− i)(1− i

√
3)

4× 2
=

(1− i)(1− i
√

3)

8
=

1 +
√

3

8
− i1 +

√
3

8
.

Exercise 14. Calculate the cube roots of 1.

Solution: Let z := reiθ ∈ C be a cube root of 1. That is z3 = r3e3iθ = 1. Hence{
r3 = 1
3θ = 2nπ

and then
{
r3 = 1

θ = 2n
3
π

Therefore

• if n = 3k, then θ = 2kπ. Hence z = e2ikπ = 1.

• if n = 3k + 1, then θ = 2π
3

+ 2kπ. Hence z = e2iπ/3+2ikπ = −1/2 + i
√

3/2

• if n = 3k + 2, then θ = 4π
3

+ 2kπ. Hence z = e4iπ/3+2ikπ = −1/2− i
√

3/2.

Exercise 15. 1. Give the exponential form of the complex numbers: 1 + i, 1 + i
√

3.
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2. Calculate the real and imaginary parts of
(

1+i
√
3

1+i

)2022
.

Solution:

1. Let z1 = 1 + i, z2 = 1 + i
√

3 and θ1, θ2 its argument respectively. We have |z1| =
√

2
and |z2| = 2. Therefore{

cos θ1 = 1/
√

2

sin θ1 = 1/
√

2
and

{
cos θ2 = 1/2

sin θ2 =
√

3/2

Then θ1 = π/4 + 2nπ, θ2 = π/3 + 2nπ. Hence

z1 =
√

2eiπ/4, z2 = 2eiπ/3.

2. Let z =
(

1+i
√
3

1+i

)2022
=
(
z2
z1

)2022
. Then

|z| =
∣∣∣∣z2z1
∣∣∣∣2022 =

(√
2
)2022

and arg(z) = 2022(
π

3
− π

4
) =

337π

2
=
π

2
+ 168π.

Hence z = (
√

2)2022i.

Exercise 16. 1. Prove that ∀z ∈ C \ {1} : 1+z
1−z ∈ iR⇐⇒ |z| = 1

2. Solve the equation: z3 = z

Solution:

1. Note that z ∈ iR⇐⇒ z = −z̄. Then

1 + z

1− z
= iR ⇐⇒ 1 + z

1− z
= −1 + z̄

1− z̄
⇐⇒ (1 + z)(1− z̄) = −(1− z)(1 + z̄)

⇐⇒ 1 + z − z̄ − |z|2 = −1 + z − z̄ + |z|2

⇐⇒ |z| = 1.

2. we set z = reiθ. Then z3 = r3e3iθ and z̄ = re−iθ. Hence

z3 = z̄ ⇐⇒
{
r3 = r
3θ = −θ + 2nπ

⇐⇒
{

(r = 0) ∨ (r = +1) ∨ (r = −1 exclusive)
(θ = 2kπ) ∨ (θ = π + 2kπ)

Therefore there are three solutions :

• If r = 0 then z = 0.

• If r = +1 then z = eiπ = 1 or z = e2inπ = −1

Exercise 17. Let θ ∈ R. Calculate:
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A = cos θ + cos(2θ) + · · ·+ cos(nθ)

B = sin θ + sin(2θ) + · · ·+ sin(nθ)

Solution: If θ = 2nπ, then A = n, B = 0. If not we have

A+ iB =
n∑
k=

(eiθ)k = eiθ
einθ − 1

eiθ − 1
= eiθ

einθ/2(einθ/2 − e−inθ/2)
eiθ/2(eiθ/2 − e−iθ/2)

= ei(n+1)θ/22i sin(nθ/2)

2i sin(θ/2)
=

sin(nθ/2)

sin(θ/2)
(cos((n+ 1)θ/2) + i sin((n+ 1)θ/2)) .

therefore

A = Re(A+iB) =
sin(nθ/2)

sin(θ/2)
cos((n+1)θ/2) and B = Im(A+iB) =

sin(nθ/2)

sin(θ/2)
sin((n+1)θ/2)

Exercise 18. Simplify the following expression:

z =
3 + 2i

1− i

Exercise 19. Solve the equation for z:

z2 + 4z + 5 = 0

Exercise 20. Calculate the modulus and argument of the complex number w = 2 + 2i.

Exercise 21. Express z = 3eiπ/4 in the form x+ yi, where x and y are real numbers.

Solution:
z = 3(cos(π/4) + i sin(π/4)) = 3/

√
2 + 3i/

√
2.

Exercise 22. Given two complex numbers u = −1 + 2i and v = 3− i, calculate u · v and
u
v
.

Exercise 23. Prove that for any complex number z, |z + 1| ≥ |z|.

Solution: False
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3 Sequences

3.1 Definitions

Definition 3.1. A real sequence (or sequence) is a mapping

N −→ R
n 7−→ un

It is denoted by (un)n∈N and un is called general term of the sequence.

Definition 3.2. • A sequence (un)n∈N is bounded below if

∃a ∈ R,∀n ∈ N : un ≥ a

• A sequence (un)n∈N is bounded above if

∃b ∈ R,∀n ∈ N : un ≤ b

• A sequence (un)n∈N is bounded if it is bounded below and bounded above . In
other words if

∃C > 0,∀n ∈ N : |un| ≤ C

Definition 3.3. Let (un)n∈N be a sequence.

1. We say (un)n∈N is increasing (resp. decreasing ) if

∀n ∈ N : un ≤ un+1 (resp. un+1 ≤ un)

2. We say (un)n∈N is constant if ∀n ∈ N : un = un+1

3. We say (un)n∈N is monotone if it increasing or decreasing .

+ Example 3.1. • The sequence (un)n∈N defined by un = (−1)n is not monotone.

• The sequence (un)n∈N defined by un = n+1
2n+1

is not monotone. Indeed, for all n ∈ N :

un+1 − un =
n+ 2

2n+ 3
− n+ 1

2n+ 1
=

(n+ 2)(2n+ 1)− (2n+ 3)(n+ 1)

(2n+ 3)(2n+ 1)

=
−1

(2n+ 3)(2n+ 1)
< 0
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• Consider the geometric sequence (un)n∈N defined by un = an is monotone if and only
if a ≥ 0. Indeed, if a > 0, we have for all n ∈ N :

un+1

un
= an+1

an
= a.

Thus, if a < 1, the sequence is decreasing, if a > 1 it is increasing and if a = 1 or
a = 0, it is constant. Now if a < 0, then un+1 − un = an(a− 1) which is positive if n
is even and negative if n is odd.

3.2 Convergence

Definition 3.4. Let (un)n∈N be a real sequence and ` ∈ R.

1. We say ` is a limit of the sequence (un)n∈N and we write limn→+∞ = ` if

∀ε > 0,∃N ∈ N, ∀n ≥ N : |un − `| ≤ ε

( or ∀ε > 0,∃N ∈ N : n ≥ N =⇒ |un − `| ≤ ε)

Definition 3.5. 1. We say the sequence (un)n∈N has +∞ as a limit and we write
limn→+∞ = +∞, if

∀A > 0, ∃n ∈ N, ∀n ≥ N : un ≥ A.

2. We say the sequence (un)n∈N has −∞ as a limit and we write limn→+∞ = −∞, if

∀B < 0, ∃n ∈ N, ∀n ≥ N : un ≤ B.

Definition 3.6. Let (un)n∈N be a real sequence and ` ∈ R. We say the sequence (un)n∈N is
convergent (or converges to `) if it has a limit ` ∈ R. Otherwise, we say it is divergent .

+ Example 3.2. 1. If un = c, ∀n ∈ N, then (un)n∈N is convergent to the limit c.
Indeed, we have

∀ε > 0,∃N = 0, ∀n ≥ N : |un − c| = |c− c| = 0 < ε.

2. If un = 1
n
∀n ∈ N∗, then (un)n∈N∗ converges to 0. Indeed. Let ε > 0 and n ∈ N∗. We

have

|un − 0| ≤ ε⇐⇒ 1
n
≤ ε⇐⇒ n ≥ 1

ε
.

Hence it suffices to choose N ≥ 1
ε
, that is for example N = [1/ε] + 1. Then

n ≥ N =⇒ |un − 0| ≤ ε.
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3. If un = n+1
2n+1

∀n ∈ N∗, then (un)n∈N∗ converges to 1/2. Indeed. Let ε > 0 and n ∈ N∗.
We have

|un − 1
2
| ≤ ε⇐⇒ 1

4n+2
≤ ε⇐⇒ n ≥ 1

4ε
− 1

2
.

Hence it suffices to choose N ≥ 1
4ε
− 1

2
, that is for example N = [1/4ε] + 1. Then

n ≥ N =⇒ |un − 1/2| ≤ ε.

4. un = (−1)n. Then the sequence (un)n∈N is not convergent. Indeed, if not there
exists ` ∈ R such that limn→∞ un = `. Hence taking ε = 1/2. according to the the
definition of the limit,

∃N ∈ N, ∀n ≥ N : |un − `| ≤ 1
2
.

but we have for n = 2N

2 = |un+1 − un| ≤ |un+1 − `|+ |un − `| ≤ 1/2 + 1/2 = 1

which is a contradiction.

5. If un = n2, then lim→+∞ un = +∞. Indeed, given any A > 0. Then

un ≥ A⇐⇒ n ≥
√
A.

Therefore, ∀n ≥ [
√
A] + 1, we have n ≥ A which implies that un = n2 ≥ A.

+ Example 3.3. Calculate the limit of the sequence (un)n∈N in the following cases

1. un = an, a ∈ R+

2. un = n(e
1/n − 1).

3. un =
n∑
k=0

1
2k
.

4. un =

1. For un = an, where a ∈ R+:

lim
n→∞

un = lim
n→∞

an =


+∞, if a > 1

0, if 0 < a < 1

1, if a = 1
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2. For un = n(e1/n − 1):

lim
n→∞

un = lim
n→∞

n(e1/n − 1) = 0

3. For un =
n∑
k=0

1
2k
:

lim
n→∞

un = lim
n→∞

n∑
k=0

1

2k
= 2

Proposition 3.1 (Uniqueness). A convergent sequence has a unique limit.

Proof. Suppose that (un)n∈N has two limits `1, `2 such that `1 6= `2. Take ε = |`1− `2| > 0.
From the definition of the limit, there are N1, N2 ∈ N such that

∀n ≥ N1 : |un − `1| < ε/2, ∀n ≥ N2 : |un − `2| < ε/2.

Hence for n ≥ max{N1, N2}, we have

ε = |`1 − `2| ≤ |un − `1|+ |un − `2| < ε/2 + ε/2 = ε

contradiction.

Proposition 3.2. A convergent sequence is bounded.

Proof. Let (un)n∈N be a convergent sequence to the limit `. Hence taking ε = 1. According
to the the definition of the limit,

∃N ∈ N, ∀n ≥ N : |un − `| ≤ 1.

Then
∀n ≥ N : |un| ≤ |un − `|+ |`| ≤ 1 + ` := M0 (3.1)

and we have
∀n ≤ N : |un| ≤M1 := max{|u0|, |u1|, ..., |uN |} (3.2)

From (3.1) and (3.2), we deduce that ∀n ∈ N : |un| ≤ M := max{M0,M1}. Hence the
sequence (un)n∈N is bounded.

Proposition 3.3. Let (un)n∈N and (vn)n∈N be two sequences converging respectively to
u and v. Then

1. lim
n→+∞

(λun) = λu, ∀λ ∈ R .

2. limn→+∞(un + vn) = u+ v .

3. limn→+∞(unvn) = uv .

4. limn→+∞
1
un

= 1
u
, if u 6= 0 and un 6= 0, ∀n ∈ N.
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Proof. 1. If λ = 0, then λun = 0→ 0, as n→ +∞. If not, let ε > 0. According to the
the definition of the limit, ∃N ∈ N :

∀n ≥ N : |un − u| ≤ ε
|λ| .

Hence

∀n ≥ N : |λun − λu| = |λ||un − u| ≤ ε.

2. Let ε > 0. According to the the definition of the limit, there are N1, N2 ∈ N :

∀n ≥ N1 : |un − u| ≤ ε
2
, ∀n ≥ N2 : |vn − v| ≤ ε

2

Hence, taking N := max{N1, N2}

∀n ≥ N : |(un + vn)− (u+ v)| ≤ |un − u|+ |vn − v| ≤
ε

2
+
ε

2
≤ ε.

3. Let ε > 0.

|unvn − uv| = |un(vn − v) + v(un − u)| ≤ |un||vn − v|+ |v||un − u|

Since (un)n∈N converges, it is bounded (see Proposition 3.2). Therefore, there is
M > 0 such that

∀n ∈ N : |un| ≤M.

|unvn − uv| ≤M |vn − v|+ v|un − u| ≤M ′(|vn − v|+ |un − u|), M ′ = max{M, v}.

Otherwise, according to the the definition of the limit, there are N1, N2 ∈ N :

∀n ≥ N1 : |un − u| ≤ ε
2M ′

, ∀n ≥ N2 : |vn − v| ≤ ε
2M ′

.

Hence, ∀n ≥ N := max{N1, N2}, we have

|unvn − uv| ≤M ′(
ε

2M ′ +
ε

2M ′ ) = ε .

4. The proof is left as an exercise.
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Proposition 3.4. Let (un)n∈N be a real sequence.

1. If (un)n∈N is increasing and bounded above, it is convergent.

2. If (un)n∈N is decreasing and bounded below, it is convergent.

Proof. 1. Let (un)n∈N be an increasing sequence that is bounded above. Consider the
set

A = {un : n ∈ N}.
Since A is a set of real numbers and is bounded above, it has a least upper bound
(supremum) denoted by α. We claim that limn→∞ un = α.

Given ε > 0, since α = supA, there exists an element uN in A such that

α− ε < uN .

Since (un) is increasing,

∀n ≥ N : α− ε < aN ≤ un.

This implies
∀n ≥ N : |un − α| = α− un ≤ ε.

which satisfies the definition of the limit. This proves that the sequence (un)n∈N
converges to α.

2. The proof is left as an exercise.

Proposition 3.5. Let (un)n∈N, (vn)n∈N, (wn)n∈N be three sequences such that

∀n ∈ N : un ≤ vn ≤ wn.

Then

limn→+∞ un = limn→+∞wn = ` =⇒ lim
n→+∞

vn = `.

Proof. Assume that limn→+∞ un = limn→+∞wn = `. We want to show that limn→+∞ vn =
`.

Given any ε > 0, since limn→+∞ un = `, there exists N1 ∈ N such that for all n ≥ N1,
we have |un − `| < ε.

Similarly, since limn→+∞wn = `, there exists N2 ∈ N such that for all n ≥ N2, we have
|wn − `| < ε.

Let N = max{N1, N2}. For all n ≥ N , we have un ≤ vn ≤ wn, which implies

`− ε < un ≤ vn ≤ wn < `+ ε.

Therefore, for all n ≥ N , we have |vn − `| < ε. This shows that limn→+∞ vn = `, as
desired.

Hence, we have proved the proposition.
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Proposition 3.6. Let (un)n∈N, (vn)n∈N be two sequences such that

∀n ∈ N : un ≤ vn

Then

1. limn→+∞ un = +∞ =⇒ limn→+∞ vn = +∞.

2. limn→+∞ vn = −∞ =⇒ limn→+∞ un = −∞.

Proof. 1. Assume that limn→+∞ un = +∞. We want to show that limn→+∞ vn = +∞.

Given any M > 0, since limn→+∞ un = +∞, there exists N1 ∈ N such that for all
n ≥ N1, we have un > M .

Since un ≤ vn for all n ∈ N, it follows that vn ≥ un > M for all n ≥ N1. This implies
that limn→+∞ vn = +∞.

2. Assume that limn→+∞ vn = −∞. We want to show that limn→+∞ un = −∞.

Given any M < 0, since limn→+∞ vn = −∞, there exists N2 ∈ N such that for all
n ≥ N2, we have vn < M .

Since un ≤ vn for all n ∈ N, it follows that un ≤ vn < M for all n ≥ N2. This implies
that limn→+∞ un = −∞.

Hence, both parts of the proposition have been proved.

3.3 Subsequence

Definition 3.7. Let (un)n∈N be a sequence and kn)n∈N be a strictly increasing sequence
of natural numbers . Then the sequence (ukn)n∈N is called a subsequence of (un)n∈N.

+ Example 3.4. • The sequences (u2n)n∈N, (u2n+1)n∈N are sub-sequences of (un)n∈N
(with kn = 2n, kn = 2n+ 1 respectively).

• The sequence (u6n)n∈N is a subsequence of (un)n∈N, with kn = 6n and it is a
subsequence of (u2n)n∈N with kn = 3n.

Proposition 3.7. If the sequence (un)n∈N is convergent, then every subsequence (ukn)n∈N

is also convergent and we have limn→+∞ ukn = limn→+∞ un.

Proof. Let (un)n∈N be a convergent sequence with limit `, and let (ukn)n∈N be a subsequence
(indexed by natural numbers kn, where k0 < k1 < k2 < k3 < . . . ). Since (un)n∈N converges
to `, for any given ε > 0, there exists N ∈ N such that

∀n ≥ N : |un − `| ≤ ε

Now, since (ukn)n∈N is a subsequence, then kn → +∞ as n → +∞. so we can find N ′

such that
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∀n ≥ N ′ : kn ≥ N.

By the convergence of (un)n∈N, we have

n ≥ N ′ =⇒ kn ≥ N =⇒ |ukn − `| ≤ ε

This satisfies the definition of convergence of the sub sequence.

Theorem 3.8. Every bounded sequence (un)n∈N has convergent subsequence.

Proof. Let (un)n∈N be a bounded sequence. This means that there exists a constantM > 0
such that |un| ≤M for all n ∈ N.

Consider the closed interval [u1−M,u1 +M ]. Since the sequence is bounded, all of its
terms must lie within this interval. Now, divide this interval into two closed subintervals
of equal length: [u1 −M,u1] and [u1, u1 +M ].

At least one of these subintervals must contain infinitely many terms of the sequence
(un)n∈N. Let’s denote the chosen subinterval as I1.

Next, divide I1 into two equal subintervals and proceed similarly: choose the one that
contains infinitely many terms of the sequence. Denote this subinterval as I2.

Continue this process recursively. At the k-th step, divide the current interval into two
equal subintervals and choose the one containing infinitely many terms of the sequence.
Denote this subinterval as Ik.

We now have a nested sequence of closed intervals:

I1 ⊇ I2 ⊇ I3 ⊇ . . .

By the nested interval property of real numbers, there exists a unique point c that
belongs to all of these intervals:

c ∈
⋂∞
k=1 Ik

Since each interval Ik contains infinitely many terms of the sequence, it follows that c
is a limit point of the sequence. Therefore, there exists a subsequence (unk

)k∈N converging
to c.

Thus, every bounded sequence has a convergent subsequence.

3.4 Cauchy sequence

Definition 3.8. The sequence (un)n∈N is called a Cauchy sequence, if

∀ε > 0, ∃N ∈ N, ∀p, q ≥ N : |up − uq| ≤ ε
2

Proposition 3.9. A convergent sequence is Cauchy.

Proof. Let (un)n∈N be a convergent sequence with limit `. This means that for any ε > 0,
there exists an N such that

∀n ≥ N : |un − `| < ε
2
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Now, let’s choose two arbitrary indices p and q such that p, q ≥ N . Then, by the triangle
inequality,

|up − uq| ≤ |up − `|+ |`− uq| ≤ ε
2

+ ε
2

= ε.

This shows that for any ε > 0, there exists an N such that for all p, q ≥ N , |up − uq| ≤ ε,
which is the definition of a Cauchy sequence. Hence, a convergent sequence is a Cauchy
sequence.

Proposition 3.10. Every Cauchy sequence is convergent

Proof. Let (un)n∈N be a Cauchy sequence. Let ε > 0. Then, there exists an N1 ∈ N such
that

∀p, q ≥ N1 : |up − uq| <
ε

2
. (3.3)

Since (un)n∈N is Cauchy, it is also bounded. By the Bolzano-Weierstrass theorem 3.8, there
exists a convergent subsequence (ukn)n∈N of (un). Let ` be the limit of this subsequence.
Then there exists an N2 ∈ N such that

∀n ≥ N2 : |ukn − `| <
ε

2
(3.4)

Now, we will show that the entire sequence (un) converges to `. By the definition of the
subsequence, we have kn → +∞ as n→ +∞, Hence, there exists N3 ∈ N such that

∀n ≥ N3 : kn ≥ N1. (3.5)

Choose N = max{N1, N2, N3}. Then, for all n ≥ N , we have from (3.3),(3.4) and (3.5) :

|un − `| ≤ |un − ukn|+ |ukn − `| < ε/2 + ε/2 = ε,

which proves that limn→∞ un = ` and the proposition is proved.

34



3.5 Exercises

Exercise 24. Using the definition of limit, show that

lim
n→∞

n
2n+1

= 1
2
, lim

n→∞
sinn
n

= 0, lim
n→∞

(
√
n+ 1−

√
n) = 0.

Exercise 25. 1. Show that every constant sequence is convergent.

2. Let (un)n be a sequence with terms in Z. Show that if (un)n is convergent, then it is
constant.

Exercise 26. Calculate the following limits

lim
n→+∞

(
√
n2 + n− n), lim

n→+∞
1
n

sin(n2), lim
n→+∞

n+(−1)n
2n+(−1)n , lim

n→+∞
n
√
a (a > 0)

lim
n→+∞

1+2+···+n
n2 , lim

n→+∞
1+22+···+n2

n3 , lim
n→+∞

∑n
k=1

1
k(k+1)

(ind. 1 + 2 + · · ·+ n = 1
2
n(n+ 1), 1 + 22 + · · ·+ n2 = 1

6
n(n+ 1)(2n+ 1))

Exercise 27. Using the squeeze theorem, show that the following sequences are convergent.∑n
k=1

n
n2+k

, 1
n2

∑n
k=1[kx], (x ∈ R).

Exercise 28. Let (un)n be the sequence defined by un =
∑n

k=1
1
k2
, for all n ≥ 1.

1. Show that (un)n is increasing.

2. Show that it is bounded (Ind. 1
k2
≤ 1

k(k−1) := 1
k−1 −

1
k
, ∀k ≥ 2).

3. Deduce.

Exercise 29. Let (un)n be the sequence defined by{
u0 = 1

2

un+1 = u2n + 3
16
, n ≥ 1

1. Show that for all n ∈ N : 1
4
< un ≤ 1

2

2. Study the monotonicity of (un)n and deduce its nature.

3. Calculate limn→∞ un and deduce inf{un/ n ∈ N} and sup{un/ n ∈ N}

Exercise 30. Let a > 0 and (un)n be the sequence defined by{
u0 = 1

un+1 = 1
2
(un + a

un
), n ≥ 1
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1. Show that for all n ∈ N : un > 0

2. Suppose that (un)n is convergent. Calculate its limit `

3. Show that for all n ∈ N∗ : un − ` ≥ 0

4. Deduce that (un)n∈N∗ is decreasing and conclude its nature.

5. Using a calculator, provide an approximation of
√

2 accurate to 10−4.

Exercise 31. Let (un)n be the sequence defined by{
u0 = a, u1 = b

un+1 = 1
2
(un + un−1) n ≥ 2

1. Calculate un − un−1 as a function of n for n ≥ 1.

2. Show that the sequence (un)n is convergent and determine its limit.

Exercise 32. Consider the two sequences (un)n and (vn)n defined by

∀n ∈ N : un =
∑n

k=0
1
k!
, vn = un + 1

n!

1. Calculate u0, u1, u2, v0, v1, v2.

2. Show that the two sequences are adjacent.

3. Let e be their limit. Show that e is not rational.

Exercise 33. Show that the following sequences are not convergent:

(−1)n, n
2
−
[
n
2

]
, sin(

√
nπ

2
)

Exercise 34. Let (un)n be the sequence defined by un =
∑n

k=1
(−1)k
k

, for n ≥ 1.

1. Show that the subsequence (u2n)n is decreasing.

2. Show that the subsequence (u2n+1)n is increasing.

3. Calculate limn→∞(u2n − u2n+1).

4. Deduce that the sequence (un)n is convergent.

Exercise 35. Using the Cauchy criterion, show that the sequence with general term (−1)n

is not convergent.

Exercise 36. 1. Show that the sequence with general term un =
∑n

k=1
1
k
is not Cauchy.

(Ind. Choose p = N and q = 2N , for any N ∈ N∗).

2. Deduce.

3. Show that (un)n is increasing and deduce its limit.

4. Repeat the same questions for the sequence vn =
∑n

k=2
1

ln k
.
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4 Real functions

4.1 Preliminaries

Definition 4.1. A function is a relation f between two sets E and F such that, every
element x ∈ E has at most a relation with an element y ∈ F denoted by f(x) and we write

f : E −→ F
x 7−→ y := f(x)

The domain of definition of f is the set defined by

Df := {x ∈ E : f(x) exists}.

4.2 Limits

Definition 4.2. Let I be an open interval, x0 ∈ I, ` ∈ R and f : I −→ R be a function.

1. We say the function f has a left limit ` at x0 and we write lim
x→x−0

f(x) = `, if

∀ε > 0,∃δ > 0, ∀x ∈ I : −δ < x− x0 < 0 =⇒ |f(x)− `| ≤ ε.

2. We say the function f has a right limit ` at x0 and we write lim
x→x+0

f(x) = `, if

∀ε > 0, ∃δ > 0,∀x ∈ I : 0 < x− x0 < δ =⇒ |f(x)− `| ≤ ε.

3. We say the function f has a limit ` at x0 and we write lim
x→x0

f(x) = `, if

∀ε > 0,∃δ > 0,∀x ∈ I : 0 < |x− x0| < δ =⇒ |f(x)− `| ≤ ε.

Or equivalently (prove it), if lim
x→x−0

f(x) = lim
x→x+0

f(x) = `.

+ Remark 4.1. • We also denote the limit by "arrow" notation f(x) → ` as
x→ x0 and say f(x) goes to ` as x goes to x0.

• It follows directly from the above definition that

lim
x→x0

f(x) = `⇐⇒ lim
x→x0

|f(x)− `| = 0

+ Example 4.1. Let f : R −→ R be a function.

37



1. If f(x) = 2x. Show that lim
x→1

f(x) = 2.

2. If f(x) = x sin 1
x
. Show that lim

x→0
f(x) = 0

3. If f(x) = sgn x :=


+1 if x > 0

0 if x = 0
−1 if x < 0

, (the sign function). Show that

lim
x→0−

f(x) = −1, lim
x→0+

f(x) = +1.

although the corresponding limit does not exist.

4. If f(x) = sin 1
x
. Show that lim

x→0
f(x) does not exist.

Definition 4.3 (Limits as x→ ±∞). Let f : R −→ R be a function well defined for
all x < −M and x > M for certain M > 0 and ` ∈ R. We say the limit of f equal to ` at
+∞ (resp. −∞) and we write lim

x→+∞
f(x) = ` (resp. lim

x→−∞
f(x) = ` if

∀ε > 0,∃A > 0,∀x ∈, I : x > A =⇒ |f(x)− `| ≤ ε

(resp. ∀ε > 0,∃B < 0,∀x ∈, I : x < B =⇒ |f(x)− `| ≤ ε

Proposition 4.1 (Algebraic properties). Let f, g, h : I −→ R be functions and x0 ∈ I.
Suppose that

lim
x→x0

f(x) = L, lim
x→x0

g(x) = M.

Then

• lim
x→x0

λf(x) = λL for every λ ∈ R .

• lim
x→x0

(f(x) + g(x)) = L+M .

• lim
x→x0

f(x)g(x) = LM .

• lim
x→x0

f(x)
g(x)

= L
M

if M 6= 0 and g(x) 6= 0,∀x ∈ I.
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Proof. We will prove each part separately using the epsilon-delta definition of limits.
Part 1: Let λ ∈ R∗ and ε > 0. Since limx→x0 f(x) = L, there exists δ > 0 such that

for all x ∈ I with 0 < |x− x0| < δ, we have |f(x)− L| < ε
|λ| . Now, for such x, we have

|λf(x)− λL| = |λ| · |f(x)− L| < |λ| · ε
|λ|

= ε.

This shows that limx→x0 λf(x) = λL.
Part 2: Let ε > 0. Since limx→x0 f(x) = L and limx→x0 g(x) = M , there exist δ1 > 0

and δ2 > 0 such that for all x ∈ I we have

0 < |x− x0| < δ1 =⇒ |f(x)− L| < ε
2

0 < |x− x0| < δ2 =⇒ |g(x)−M | < ε
2

.
Let δ = min(δ1, δ2). For all x ∈ I with 0 < |x− x0| < δ, we have

|f(x) + g(x)− (L+M)| ≤ |f(x)− L|+ |g(x)−M | < ε

2
+
ε

2
= ε.

This shows that limx→x0(f(x)+g(x)) = L+M . Part 3: Let ε > 0. Since limx→x0 f(x) = L
and limx→x0 g(x) = M , there exist δ1 > 0 and δ2 > 0 such that for all x ∈ I we have

0 < |x− x0| < δ1 =⇒ |f(x)− L| < ε

0 < |x− x0| < δ2 =⇒ |g(x)−M | < ε

where ε > 0 will be chosen later. Let δ = min(δ1, δ2). For all x ∈ I with 0 < |x− x0| < δ,
we have

|f(x)g(x)− LM | = |f(x)g(x)− f(x)M + f(x)M − LM |
≤ |f(x)||g(x)−M |+ |M ||f(x)− L|
≤ (|L|+ ε)ε+ |M |ε = ε2 + (|L|+ |M |)ε.

We can make the expression smaller than ε by appropriately choosing ε. Part 4: Let
ε > 0. Since M 6= 0, there exists δ1 > 0 such that for all x ∈ I with 0 < |x− x0| < δ1, we
have |g(x)−M | < |M |

2
.

Additionally, since limx→x0 f(x) = L, there exists δ2 > 0 such that for all x ∈ I with
0 < |x− x0| < δ2, we have |f(x)− L| < ε|M |

2
.

Let δ = min(δ1, δ2). For all x ∈ I with 0 < |x− x0| < δ, we have∣∣∣∣f(x)

g(x)
− L

M

∣∣∣∣ =
|f(x)M − g(x)L|
|g(x)M |

≤ |f(x)− L| · |M |+ |g(x)−M | · |L|
|g(x)| · |M |

<
ε|M |
2
· |M |+ |M |

2
· |L|

|M |
2
· |M |

.

Since |M | is not zero, we can choose δ small enough such that the expression becomes
smaller than ε.

39



4.3 Continuity

In this paragraph, I is an open interval, x0 ∈ I, f : I −→ R is a function well defined for
all x ∈ I.

Definition 4.4 (Continuity). 1. We say that f is continuous at x0 if lim
x→x0

f(x) = f(x0) ,

that is,

∀ε > 0,∃δ > 0,∀x ∈ I : |x− x0| < δ =⇒ |f(x)− f(x0)| ≤ ε.

2. We say f is continuous (on I) if it is continuous at every point x0 ∈ I.

3. We say that f is continuous from the left at x0 if lim
x→x−0

f(x) = f(x0) , that is

∀ε > 0,∃δ > 0,∀x ∈ I : −δ < x− x0 ≤ 0 =⇒ |f(x)− f(x0)| ≤ ε.

4. We say that f is continuous from the left at x0 if lim
x→x+0

f(x) = f(x0) , that is

∀ε > 0,∃δ > 0,∀x ∈ I : 0 ≤ x− x0 < +δ =⇒ |f(x)− f(x0)| ≤ ε.

+ Remark 4.2. • It follows from the above definition that f is continuous at x0
if and only if

lim
x→x−0

f(x) = lim
x→x+0

f(x) = f(x0).

+ Example 4.2. 1. The function f(x) = x2 is continuous at all points in R. Indeed

2. The function f(x) =

{
x lnx if x > 0

0 if x = 0
is continuous at 0+

3. The sign function f(x) = sgn x :=


+1 if x > 0

0 if x = 0
−1 if x < 0

is not continuous at 0 since

lim
x→x0

f(x) does not exist.

4. The function f(x) =

{
x2 if x 6= 0
1 if x = 0

is not continuous at 0, since lim
x→x0

f(x) = 0 6=

1 := f(0).

5. Study the continuity of the following function
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f(x) =

{
x2 if x < 1

x1 + 1 if x ≥ 1

Theorem 4.2. If f and g are continuous functions at x0, then so are λf , f + g and fg.
If in addition g(x0) 6= 0, then f/g is continuous at x0.

Proof. Exercise

Theorem 4.3. Let f : [a, b] −→ R be a continuous function such that f(a)f(b) ≤ 0.
Then, there exists c ∈ [a, b] such that f(c) = 0.

Proof. Let f : [a, b] → R be a continuous function such that f(a)f(b) ≤ 0. We aim to
show that there exists c ∈ [a, b] such that f(c) = 0. Without loss of generality, assume
f(a) ≤ f(b). If f(a) = 0 or f(b) = 0, we are done, so let’s consider the case where f(a) < 0
and f(b) > 0. Define the set

S = {x ∈ [a, b] | f(x) ≤ 0}.

Notice that a ∈ S since f(a) ≤ 0, and b /∈ S since f(b) > 0. Therefore, S is nonempty and
bounded above by b, so supS exists.

Let c = supS. We will show that f(c) = 0.
Since c is the supremum of S, for any ε > 0, there exists x ∈ S such that c− ε < x ≤ c.

This implies f(x) ≤ 0.
Because f is continuous, as ε approaches 0, f(x) approaches f(c). Since f(x) ≤ 0 for

all x ∈ S, we have f(c) ≤ 0.
Suppose, for the sake of contradiction, that f(c) < 0. Then by continuity of f , there

exists δ > 0 such that for all x with |x− c| < δ, we have f(x) < 0. This contradicts the
fact that c = supS.

Hence, we must have f(c) ≥ 0.
Since we’ve shown both f(c) ≤ 0 and f(c) ≥ 0, it follows that f(c) = 0.
Thus, in all cases, there exists c ∈ [a, b] such that f(c) = 0, completing the proof of

the Intermediate Value Theorem.

Theorem 4.4 ((Weierstrass extreme value)). If f : [a, b] −→ R is continuous on the
closed and bounded interval [a, b]. Then f is bounded on [a, b] and attains its maximum
and minimum values on [a, b]. That is

∃c1, c2 ∈ [a, b] : f(c1) = min
x∈[a,b]

f(x), f(c2) = max
x∈[a,b]

f(x)

4.4 Uniform continuity

Definition 4.5. Let f : I −→ R be a function. We say f is uniformly continuous if

∀ε > 0,∃δ > 0,∀x, y ∈ I : |x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ ε.
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+ Remark 4.3. In other words, f is uniformly continuous if f(x) − f(y) → 0 as
x− y → 0.

+ Example 4.3. 1. f : [0, 1] −→ R defined by f(x) = x2 is uniformly continuous .
Indeed, given ε > 0. We have

|f(x)− f(y)| = |x2 − y2| = |x+ y||x− y| ≤ 2|x− y|.

Taking δ = ε/2, so

|x− y| ≤ δ =⇒ 2|x− y| ≤ ε =⇒ |f(x)− f(y)| ≤ ε.

2. f : R −→ R defined by f(x) = x2 is not uniformly continuous. Indeed, for ε = 2,
taking xn = n + 1/n, yn = n. Then ∀δ > 0, there exists n ∈ N∗ such that
|xn − yn| = 1/n ≤ δ and

|f(xn)− f(yn)| = |(n+ 1/n)2 − n2| = 2 + 1/n2 ≥ 2 = ε.

3. f : R∗ −→ R defined by f(x) = 1/x is not uniformly continuous. Indeed, for ε = 1,
taking xn = 1/n, yn = 1

n+1
. Then ∀δ > 0, there exists n ∈ N∗ such that |xn − yn| ≤

1/n ≤ δ and

|f(xn)− f(yn)| = |(n+ 1)− n| = 1 ≥ 1 = ε.

Proposition 4.5. Every uniformly continuous function is continuous

Proof. Let f : I −→ R be uniformly continuous function. Given any x0 ∈ I, then

Theorem 4.6. Let f :]a, b[ be a continuous function such that lim
x→a+

f(x), lim
x→b−

f(x) exist

and finite. Then f is uniformly continuous .

Proof. Let ε > 0 be given. We need to show that there exists a δ > 0 such that for all
x, y ∈]a, b[ with |x− y| < δ, we have |f(x)− f(y)| < ε.

Since limx→a+ f(x) exists, there exists a δ1 > 0 such that if a < x < x+ δ1 < b, then
|f(x+ δ1)− f(x)| < ε/2. Similarly, since limx→b− f(x) exists, there exists a δ2 > 0 such
that if a < x− δ2 < x < b, then |f(x)− f(x− δ2)| < ε/2.

Now, choose δ = min(δ1, δ2). Let x, y ∈]a, b[ such that |x − y| < δ. Without loss of
generality, assume x < y. Then, we have |x − (x − δ2)| = δ2, and |(x + δ1) − y| = δ1.
Therefore, by the triangle inequality, we get

|f(x)− f(y)| ≤ |f(x)− f(x− δ2)|+ |f(x+ δ1)− f(y)| < ε

2
+
ε

2
= ε.

Thus, for any x, y ∈]a, b[ with |x− y| < δ, we have |f(x)− f(y)| < ε, which shows that f
is uniformly continuous.
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4.5 Differentiable functions

I is an open interval, x0 ∈ I, f : I −→ R is a function well defined at all points of I

Definition 4.6. 1. We say that f is differentiable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0
exists and finite.

This limit is denoted by f ′(x0) and called derivative of f at x0. Thus

f ′(x0) = lim
x→x0

f(x)−f(x0)
x−x0 .

If f is differentiable at all point of I, we say f is differentiable.

2. We say that f is left-differentiable at x0 if the left limit

lim
x→x0

f(x)− f(x0)

x− x0
exists and finite.

This limit is denoted by f ′(x−0 ) and called left-derivative of f at x0.

3. We say that f is right-differentiable at x0 if the right limit

lim
x→x0

f(x)− f(x0)

x− x0
exists and finite.

This limit is denoted by f ′(x+0 ) and called right-derivative of f at x0.

+ Remark 4.4. • It is sometimes convenient to let x = x0 + h and the above
limit becomes

f ′(x0) = lim
h→0

f(x0+h)−f(x0)
h

.

• It is easy to see that f is differentiable at x0 if and only if it is left and right
differentiable at x0 and f ′(x+0 ) = f ′(x−0 ).

+ Example 4.4. Study the differentiability of the following functions

1. f(x) = C, C ∈ R. Given x0 ∈ R. We have

lim
x→x0

f(x)−f(x0)
x−x0 = lim

x→x0
C−C
x−x0 = 0
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Thus f is differentiable and f ′(x0) = 0.

2. f : R −→ R defined by f(x) = x2. Given x0 ∈ R. We have

lim
x→x0

f(x)−f(x0)
x−x0 = lim

x→x0

x2−x20
x−x0 = lim

x→x0
(x+ x0) = 2x0

Thus f is differentiable and f ′(x0) = 2x0.

3. f(x) = xn, n ∈ N∗. Given x0 ∈ R. We have

lim
x→x0

f(x)− f(x0)

x− x0
:= lim

x→x0

xn − xn0
x− x0

= lim
x→x0

(x− x0)
n−1∑
k=0

xn−1−kxk0

x− x0

= lim
x→x0

(
n−1∑
k=0

xn−1−kxk0

)
= nxn−10

Thus, f is differentiable at x0 and f ′(x0) = nxn−10 . Since this holds for every x0 ∈ R,
then f is differentiable and f ′(x) = nn−1.

4. f : R∗ −→ R defined by f(x) = 1
x
.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

1/(x+ h)− 1/x

h

= lim
h→0

−1

x(x+ h)
= − 1

x2
.

Thus f is differentiable and f ′(x) = − 1
x2
.

5. f :]0,+∞[ defined by f(x) =
√
x.

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
x+ h−

√
x

h

= lim
h→0

(x+ h)− x
h(
√
x+ h) +

√
x

=
1

2
√
x
.

Thus f is differentiable and f ′(x) = 1
2
√
x
.

6. f : R −→ R defined by f(x) = |x|.

• If x > 0 then given h such that −x < h < x. Then

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

|x+ h| − |x|
h

= lim
h→0

(x+ h)− x
h

= 1.

Hence f is differentiable at x and f ′(x) = 1.
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• If x < 0 then given h such that −x < h < x. Then

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

|x+ h| − |x|
h

= lim
h→0

−(x+ h) + x

h
= −1.

Hence f is differentiable at x and f ′(x) = −1.

• If x = 0, then, we have

lim
h→0+

f(0 + h)− f(0)

h
= lim

h→0

|h|
h

= lim
h→0

h

h
= +1.

and

lim
h→0−

k(0 + h)− k(0)

h
= lim

h→0

|h|
h

= lim
h→0

−h
h

= −1.

Therefore, the limit of difference quotient does not exist. It follows that f is
not differentiable at 0.

Proposition 4.7. If f is differentiable at x0, then it is continuous at x0.

Proof. We have

|f(x)− f(x0)| =
∣∣∣f(x)−f(x0)x−x0

∣∣∣ |x− x0|
passing to the limit as x→ x0, taking into account that f is differentiable at x0, we obtain
lim
x→x0

|f(x)− f(x0)| = 0 which means that f is continuous at x0.

Theorem 4.8. Let f, g be a differentiable functions at x0 then so are λf , f + g, fg and
f/g if g(x0) 6= 0.

1. (λf)′(x0) = λf ′(x0)

2. (f + g)′(x0) = f ′(x0) + g′(x0)

3. (fg)′(x0) = f ′(x0)g(x0) + f(x0)g
′(x0)

4. If g(x0) 6= 0 then
(
f
g

)′
(x0) = f ′(x0)g(x0)−f(x0)g′(x0)

g(x0)2
. In particular, we have

(
1
g

)′
(x0) = − g′(x0)

g(x0)2

Proof. We will prove each part separately.
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1. Let λ be a constant. By the definition of the derivative, we have

(λf)′(x0) = lim
h→0

λf(x0 + h)− λf(x0)

h
.

Using the linearity of the limit, we can factor out λ and obtain

(λf)′(x0) = λ lim
h→0

f(x0 + h)− f(x0)

h
= λf ′(x0).

2. The derivative of the sum of two functions is the sum of their derivatives:

(f + g)′(x0) = lim
h→0

f(x0 + h) + g(x0 + h)− f(x0)− g(x0)

h
.

Using the linearity of the limit, we can separate the limit into two parts and apply
the definition of the derivatives of f and g:

(f + g)′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
+ lim

h→0

g(x0 + h)− g(x0)

h
= f ′(x0) + g′(x0).

3. For the product rule, we consider

(fg)′(x0) = lim
h→0

f(x0 + h)g(x0 + h)− f(x0)g(x0)

h
.

We can rewrite the above expression as

(fg)′(x0) = lim
h→0

(
f(x0 + h)

g(x0 + h)− g(x0)

h
+ g(x0)

f(x0 + h)− f(x0)

h

)
.

Applying the definition of derivatives and continuity, we get

(fg)′(x0) = f(x0)g
′(x0) + g(x0)f

′(x0).

4. Finally, for the quotient rule, we have(
f

g

)′
(x0) = lim

h→0

f(x0+h)
g(x0+h)

− f(x0)
g(x0)

h
= lim

h→0

f(x0 + h)g(x0)− f(x0)g(x0 + h)

hg(x0 + h)g(x0)

= lim
h→0

f(x0+h)−f(x0)
h

g(x0)− f(x0 + h)g(x0+h)−g(x0)
h

g(x0 + h)g(x0)

=
f ′(x0)g(x0)− f(x0)g

′(x0)

g(x0)2

This completes the proof.

Theorem 4.9. Let I, J be two open intervals, x0 ∈ I and f : I −→ J , g : J −→ R be
two functions such that f(x0) ∈ J . If f is differentiable at x0 and g is differentiable at
f(x0) then g ◦ f is differentiable at x0 and we have
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(g ◦ f)′(x0) = g′(f(x0))f
′(x0) .

Proof. Since f is differentiable at x0, by definition, there exists a derivative f ′(x0) given
by

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
.

Similarly, since g is differentiable at y0 = f(x0), there exists a derivative g′(f(x0)) given by

g′(f(x0)) = lim
y→y0

g(y)− g(y0)

y − y0
.

Now consider the composition of the two functions g ◦ f : I → R. The derivative of this
composition at x0 is given by

(g ◦ f)′(x0) = lim
x→x0

g(f(x))− g(f(x0))

x− x0
.

We set y = f(x) which go to y0 = f(x0) as x→ x0 since f is continuous. Then, we have

(g ◦ f)′(x0) = lim
x→x0

g(y)− g(y0)

y − y0
y − y0
x− x0

= lim
y→y0

g(y)− g(y0)

y − y0
lim
x→x0

f(x)− f(x0)

x− x0

= g′(y0)f
′(x0) = g′(f(x0))f

′(x0),

which completes the proof.

+ Example 4.5. 1. f(x) =
√
x2 + 1, calculate f ′(x).

f ′(x) = 2x 1
2
√
x2+1

= x√
x2+1

2. g(t) = f(x), x = et. Calculate g′(t). We have

g′(t) = (f(et))′ = etf ′(et) = xf ′(x)

4.6 Mean value theorem

[a, b] is a closed bounded interval with a < b.

Lemme 4.10. Let f :]a, b[−→ R be a differentiable function. Suppose that f has an
extreme value at a c ∈]a, b[. Then f ′(c) = 0
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Proof. Let f :]a, b[→ R be a differentiable function, and suppose that f has an extreme
value at c ∈]a, b[. We aim to show that f ′(c) = 0. Since f has an extreme value at c, it
means that either f(c) is a maximum or a minimum value. Without loss of generality,
let’s consider the case where f(c) is a maximum. By the definition of a maximum, for any
x ∈]a, b[, we have f(x) ≤ f(c). This implies that the difference quotient

f(x)− f(c)

x− c
≥ 0, ∀x < c , and

f(x)− f(c)

x− c
≤ 0, ∀x > c .

Then, taking the limit as x approaches c, we have

lim
x→c−

f(x)− f(c)

x− c
≥ 0 , and lim

x→c+

f(x)− f(c)

x− c
≤ 0 .

By the differentiability of f at c, those limits can be expressed as the derivative of f at c:

f ′(c) ≤ 0 and f ′(c) ≥ 0

which implies f ′(c) = 0.

Theorem 4.11 (Rolle’s theorem). Suppose that f : [a, b] −→ R is continuous and
differentiable on ]a, b[ such that f(a) = f(b). Then

∃c ∈]a, b[: f ′(c) = 0

+ Remark 4.5. It is absolutely necessary to suppose f differentiable at all points of
]a, b[. Consider the function f(x) = |x| on [−1, 1]. Clearly f(−1) = f(1), but there is no
point c where f ′(c) = 0.

Proof. By the Weierstrass extreme value theorem 4.4 f attains its global maximum and
minimum values on [a, b]. If these are both attained at the endpoints, then f is constant,
and f ′((c) = 0 for all points c ∈]a, b[. Otherwise, f attains at least one of its global
maximum or minimum values at an interior point c ∈]a, b[. Lemma 4.10 implies that
f ′(c) = 0.

We extend Rolle’s theorem to functions that attain different values at the endpoints.

Theorem 4.12 (Mean value theorem). Let f : [a, b] −→ R be a continuous function
differentiable on ]a, b[ . Then there exists a point c ∈]a, b[ such that

f(b)− f(a) = (b− a)f ′(c).

+ Remark 4.6. Graphically, this result says that there is c ∈]a, b[ such that the slope
of the tangent line at the point (c, f(c)) is equal to the slope of the chord between the
endpoints (a, f(a)) and (b, f(b)).

Proof. Apply Rolle’s theorem 4.11 to the function
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g(x) = f(x)−
[
f(b)−f(a)

b−a

]
(x− a).

Theorem 4.13. Let f :]a, b[−→ R be a differentiable function such that f ′(x) = 0 for
all x ∈]a, b[. Then f is constant.

Proof. f is constant if f(x) = f(y), ∀x, y ∈]a, b[. Take arbitrary x, y ∈]a, b[ with x < y.
As ]a, b[ is an interval, [x, y] ⊂]a, b[. Then f restricted to [x, y] satisfies the hypotheses of
the mean value theorem 4.12 . Therefore, there is a c ∈]x, y[ such that

f(x)− f(y) = (x− y)f ′(c).

Since f ′(c) = 0, we have f(x) = f(y). Hence, f is constant.

Proposition 4.14. Let f :]a, b[−→ R be a differentiable function. Then

• f is increasing if and only if f ′x) ≥ 0 for all x ∈]a, b[.

• f is decreasing if and only if f ′x) ≤ 0 for all x ∈]a, b[.

Proof. Let us denote that f is increasing (resp. decreasing) if and only if f(x)−f(y)
x−y ≥ 0,

(resp. ≤ 0), ∀x 6= y.
Let us prove the first item. Suppose f is increasing. For all x, c ∈]a, b[with x 6= c,

f(x)−f(c)
x−c ≥ 0

Taking a limit as x goes to c, we see that f ′(c) ≥ 0. For the other direction, suppose
f ′(c) ≥ 0 for all c ∈]a, b[. Take any x, y ∈]a, b[ with x < y, and note that [x, y] ⊂]a, b[. By
the mean value theorem 4.12, there is some c ∈]x, y[ such that

f(x)− f(y) = (x− y)f ′(c).

Hence
f(x)−f(y)

x−y = f ′(c) ≥ 0

and so f is increasing. We leave the second item to the reader as exercise.
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4.7 Exercises

Exercise 37. Find the domain of definition of the following functions

f(x) =
√
x2 + 3x− 4, g(x) = ln(x2 + 3x− 4), h(x) = ln(x+1)√

1−x2 , k(x) = 1
[x]−2022 .

Exercise 38. Calculate the following limits

lim
x→+∞

( 3
√
x3 + 1− x), lim

x→1

√
x−1√
x+8−3 , lim

x→1

4√x−1√
x−1 , lim

x→1

3√x−1√
x−1

lim
x→+∞

ex

x6
, lim
x→+∞

ln(1+x2)
x

, lim
x→0

[|x|]
x10
, lim
x→+∞

1−cosx
x2

, lim
x→π

sinx
x−π .

Exercise 39. 1. Using the definition of the derivative, calculate the following limits

lim
x→0

ln(1+x)
x

, lim
x→0

ex−1
x

2. Deduce the following limits

lim
x→+∞

(
1 + k

x

)x
, k ∈ R, lim

x→0

ax−bx
x

, a, b > 0.

Exercise 40. 1. Show that

∀x, y ≥ 0 : |
√
x−√y| ≤

√
|x− y|

2. Deduce that the function x 7→
√
x is uniformly continuous on R+.

3. Show that the function x 7→ 1
x
is not uniformly continuous on (0,∞) (Choose

x = 1
n
, y = 1

2n
).

Exercise 41. Let f : R −→ R be the function defined by

f(x) =

{
x3 + a

x2
if x 6= 0

0 if x = 0

1. Calculate limx→0 f(x)

2. Deduce the value of a for which f is continuous.

Exercise 42. Study the continuity of the function defined on R by f(x) = [x] (consider
the two cases: x ∈ Z and x 6∈ Z).

Exercise 43. Let f : R −→ R be a continuous function such that f(x) = 0 for all x ∈ Q.
Show that f(x) = 0 for all x ∈ R.
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Exercise 44. 1. Let f : [0, 1] −→ [0, 1] be a continuous function. Show that f has a
fixed point.

2. Let f : R −→ R be a continuous and decreasing function. Show that f has a unique
fixed point.

Exercise 45. 1. Let f : R −→ R be a continuous and periodic function such that
limx→+∞ f(x) exists. Show that f is constant.

2. Deduce that x 7→ sinx and x 7→ cosx do not have limits at +∞ and −∞.

Exercise 46. Calculate the derivatives of the following functions:
√

1+x2

x−1 , ln(1+cos(x2−
x+ 1))

Exercise 47. 1. Using the definition of the derivative, calculate the following limits

lim
x→0

ln(1+x)
x

, lim
x→0

ex−1
x

2. Deduce the following limits

lim
x→+∞

(
1 + k

x

)x
, k ∈ R, lim

x→0

ax−bx
x

, a, b > 0.

Exercise 48. Let f be the function defined on R∗ by f(x) = x2 sin 1
x2
.

1. Show that f can be extended to be continuous on R and give its extension f̃ .

2. Study the differentiability of f̃ and calculate its derivative f̃ ′

3. Is f̃ of class C1(R)?

Exercise 49. Let f : R −→ R be a function such that

∀x, y ∈ R : |f(x)− f(y)| ≤ |x− y|2.

1. Show that f is differentiable and calculate its derivative.

2. Deduce the value of f .

Exercise 50. Show the following inequalities

∀x > −1 : x
1+x
≤ ln(1 + x) ≤ x,

∀x ∈]0, 1[: 1 + x ≤ ex ≤ 1
1−x

(Apply the Mean Value Theorem to the functions: ex − x− 1, (1− x)ex − 1).

Exercise 51. Calculate the nth-order derivatives for n ∈ N of the following functions

(x2 + x+ 1)ex, ex

1−x ,
e−x

1+x
.
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5 Usual function

5.1 Definition of arcsin and aarccos Functions

Definition 5.1. 1. The arcsine function, denoted as arcsin(x) or sin−1(x), is the
inverse of the sine function sin : [−π/2, π/2] −→ [−1, 1] . In other words, arcsin :

[−1, 1] −→ [−π/2, π/2] such that ∀x ∈ [−1, 1], we have

arcsin(x) = θ where − π

2
≤ θ ≤ π

2
and sin(θ) = x.

2. The arccos function, denoted as arccos(x) or cos−1(x), is the inverse of the cosine
function cos : [0, π] −→ [−1, 1] . In other words, arccos : [−1, 1] −→ [0, π] such that
∀x ∈ [−1, 1], we have

arccos(x) = θ where 0 ≤ θ ≤ π and cos θ = x.

Proposition 5.1. (Properties of the Arcsine and Arccos Function).

1. arcsin(−x) = − arcsin(x), arccos(−x) = π − arccosx ∀x ∈ [−1, 1].

2. Derivative:

∀x ∈]− 1, 1[: arcsin′ x = 1√
1−x2 , arccos′ x = − 1√

1−x2

3. Inverse of sine and cosine:

arcsin(sin θ) = θ, for − π
2
≤ θ ≤ π

2

arccos(cos θ) = θ, for 0 ≤ θ ≤ π

5.2 Definition of hyperbolic functions ch and ash

The hyperbolic sine and hyperbolic cosine functions are defined on R as follows:

sh(x) =
ex − e−x

2

ch(x) =
ex + e−x

2

Let us denote that those functions are differentiable and we have

sh′(x) =
ex −+e−x

2
= chx

ch′(x) =
ex − e−x

2
= shx
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Definition 5.2. 1. The arcsine function, denoted as argsh(x) or sh−1(x), is the inverse
of the sine function sh : R −→ R . In other words, argsh : [−1, 1] −→ R such that
∀x ∈ [−1, 1], we have

argshx = y where shy = x.

2. The arccos function, denoted as argch(x) or ch−1(x), is the inverse of the cosine
function ch : [0,+∞] −→ [1,+∞[ . In other words, argch : [1,+∞[−→ [0,+∞]

such that ∀x ∈ [−1, 1], we have

argch(x) = y where chy = x.

Exercise 52. Calculate argch0, argsh0, argch1, args1

Proposition 5.2 (Derivative). The functions argch and argsh are differentiable and
we have

∀x ∈ R : argsh′x = 1√
x2+1

∀x ∈]1,+∞[: argch′x = 1√
x2−1

5.3 Exercises

Exercise 53. Show that for all x ∈ [−1, 1], we have

sin(arccosx) =
√

1− x2 = cos(arcsinx)

Exercise 54. Let f : D → [−1, 1] be the function defined by f(x) = sinx where
D = [π

2
, 3π

2
].

1. Verify that f is bijective and determine its inverse f−1 in terms of arcsin.

2. Same question for f(x) = cos x and D = [2022π, 2023π].

Exercise 55. 1. Calculate arcsin(sin π
3
), arccos cos(π

3
), arccos(sin π

3
).

2. Calculate arccos(cos 4π
3

), arccos(cos 7π
3

), arcsin(sin 2π
3

), arcsin(sin 7π
3

).

Exercise 56. 1. Show that arctan a+ arctan b = arctan a+b
1−ab , with ab < 1

2. Calculate arctan(1/2) + arctan(1/3)

Exercise 57. 1. Calculate

C =
∑n

k=0 ch(kx), S =
∑n

k=0 sh(kx)

2. Linearize shx.ch(2x), chx.ch2x

3. Verify that sh(2x) = 2shxchx and then calculate
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P = chx.ch(x
2
).ch( x

22
).......ch( x

2n
).

Exercise 58. Let f : R→ R be the function defined by f(x) = argch
√

1 + x2.

1. Determine the domain of definition of f .

2. Calculate argch(cht), for all t ∈ R

3. Show that ∀x ∈ R : f(x) = argsh|x|.

4. Calculate f ′(x), for all x ∈ R∗.

5. Is f differentiable at 0?.

Exercise 59. (Assignment)
Let f : R→ R be a continuous function defined by

f(x) =

{
arctan 1

x2
if x 6= 0

` if x = 0

1. Determine `.

2. Show that f is differentiable on R∗ and calculate f ′.

3. Show that f is differentiable at 0 and calculate f ′(0) (Apply MVT between 0 and x).

4. Deduce that f is C∞.

5. Calculate g′ where g is the function defined on R by g(x) = arctan x2.

6. Calculate arctanx2 + arctan 1
x2
, ∀x ∈ R∗ and deduce arctanx+ arctan 1

x
, ∀x ∈ R∗.

7. Show that g : [0,+∞[→ [0, π/2[ is bijective and calculate g−1.

8. Calculate (g−1)′ in two ways.

Reminder

cos(a+ b) = cos a cos b− sin a sin b, cos(a− b) = cos a cos b+ sin a sin b

sin(a+ b) = sin a cos b+ cos a sin b, sin(a− b) = sin a cos b− cos a sin b

cos(2x) = cos2 x− sin2 x, sin(2x) = 2 sinx cosx

arccos : [−1, 1]→ [0, π], arcsin : [−1, 1]→ [−π/2, π/2]

arccos′ x = −1√
1−x2 , arcsin′ x = 1√

1−x2
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arctan : R→]− π/2, π/2[, arctan′ x = 1
1+x2

chx = ex+e−x

2
, shx = ex−e−1

2
, chx+ shx = ex

ch′x = shx, sh′x = chx, ch2x− sh2x = 1

ch(a+ b) = chachb+ shashb, ch(a− b) = chachb− shashb

sh(a+ b) = shachb+ chashb, sh(a− b) = shachb− chashb

ch(2x) = ch2x+ sh2x, sh(2x) = 2shxchx

argch : [1,+∞[→ [0,+∞], argsh : R→ R

argch′x = 1√
x2−1 , argsh′x = 1√

1+x2

argth : [−1,+1]→ R, argth′x = 1
x2−1
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