Contents

1	Rea	l numbers	2
	1.1	Preliminaries	2
	1.2	The set of real numbers	5
	1.3	Absolute value	6
	1.4	Archimedean property, density and integer part property	6

1 Real numbers

1.1 Preliminaries

- **Definition 1.1.** 1. A set is a well-defined collection of distinct objects, called the elements or members of the set. Sets may be finite or infinite. They are typically denoted by curly braces { } and listing the elements separated by commas.
 - 2. The empty set denoted by ϕ is a set that has no elements.
 - 3. If x is an element of the set A, we write $x \in A$, if not we write $x \notin A$.
 - 4. A set A is subset of B or A is included in B if every element of A belongs to B and we write $A \subset B$, that is,

5. Tow sets A and B are equals if its have the same elements and we write A = B. In other terms A = B if $A \subset B$ and $B \subset A$, or

 $x \in A \iff x \in B.$

- Example 1.1. $A = \{1, 2, 3\}$ is a set containing the members 1, 2, and 3 (finite set).
 - $A = \{0, 2, 4, 6, ...\}$ is a set of positive even integers (infinite set).
 - $A = \{\frac{n^2+1}{n+1} \mid n \in \mathbb{N}\}$ is a set where the element are given by the expression $\frac{n^2+1}{n+1}$ for all $n \in \mathbb{N}$. We have $0 \notin A$, $1 \in A$ because $1 = \frac{1^2+1}{1+1}$, $2 \notin A$ because $2 \neq \frac{n^2+1}{n+1}$ for all $n \in \mathbb{N}$.
 - $A = \{x \in \mathbb{R} : x^2 + 3x + 1 \le 0\}$ is a set containing the solutions of the inequality $x^2 + x + 1 \le 0$. For example, $0 \notin A$ because $0^2 + 3 \times 0 + 1 = 1 \le 0, -1/2 \in A$ because $(-1/2)^2 + 3(-1/2) + 1 = -1/4 \le 0$.

Definition 1.2. 1. The set of natural numbers denoted by \mathbb{N} is defined by

 $\mathbb{N} := \{0, 1, 2, 3, \cdots\}$

2. The set of integers denoted by \mathbb{Z} is defined by

 $\mathbb{Z} := \{ \cdots - 2, -1, 0, 1, 2, \cdots \}$

- 3. Endowed by the operation of addition " + ", the set of integers is an Abelien group. That is is
 - Closure: For all $x, y \in E, x + y \in \mathbb{Z}$.

- + is commutative : $\forall x, y \in \mathbb{Z} : x + y = y + x$
- + is associative : $\forall x, y, z \in \mathbb{Z} : (x+y) + z = x + (y+z)$
- Identity Element: There exists an element $0 \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z} : x+0 = x$.
- symmetric Element: For every $x \in E$, there exists an element $-x \in \mathbb{Z}$ such that x + (-x) := x y = 0.

Definition 1.3 (Ordered sets). An ordered set is a set E endowed by a relation " < " such that

• For all $x, y \in E$, exactly one of the following holds

 $x < y, \ x = y, \text{ or } y < x$

• For all $x, y, z \in E : x < y \land y < z \Longrightarrow x < z$ (transitivity)

We write $x \leq y$ if x < y or x = y.

Example 1.2. • The set of natural numbers $\mathbb{N} := \{0, 1, 2, 3, \dots\}$ and the set of integers $\mathbb{Z} := \{\dots -2, -1, 0, 1, 2, \dots\}$ are ordered sets with the relation (lower than) < and we have

 $\dots - 3 < -2 < -1 < 0 < 1 < 2 < 3 < \dots$

Definition 1.4. Let (E, <) be an ordered set and let A be a subset of E.

• We say $a \in E$ is an lower-bound of A if

 $\forall x \in A : a \le x$

and if there exist an lower-bound of A, we say A is bounded below.

• We say $b \in E$ is an upper-bound of A if

 $\forall x \in A : x \le b$

and if there exist an upper-bound of A, we say A is bounded above.

• We say $a_0 \in E$ is the greatest lower-bound or the infimum of A if a_0 is an lower-bound of A and satisfies $a \leq a_0$ for every lower-bound $a \in E$. We write

 $a_0 := \inf A$

• We say $b_0 \in E$ is the least upper-bound or the supremum of A if b_0 is an upper-bound of A and satisfies $b_0 \leq b$ for every upper-bound $b \in E$. We write

 $b_0 := \sup A$

Example 1.3.

Definition 1.5. The set of rational numbers is the set denoted by \mathbb{Q} defined as follows

$$\mathbb{Q} = \{ \frac{p}{q} \mid (p,q) \in \mathbb{Z} \times \mathbb{Z}^* \}$$

or

$$\mathbb{Q} = \{ \tfrac{p}{q} \mid (p,q) \in \mathbb{Z} \times \mathbb{N}^* \}$$

or

$$\mathbb{Q} = \{ \frac{p}{q} \mid (p,q) \in \mathbb{Z} \times \mathbb{N}^*, \text{ with } p \wedge q = 1 \}$$

Remark 1.1. The set of rational numbers \mathbb{Q} is an ordered set with the relation < "lower than" defined as follow

 $x < y \Longleftrightarrow y - x = p/q$ where $p,q \in \mathbb{N}$

and then we say that y - x is negative, if it is not positive, we say that it is negative.

Definition 1.6. The addition and multiplicative operations on \mathbb{Q} are defined as follow

$$\frac{p}{q} + \frac{p'}{q'} = \frac{pq' + qp'}{p'q'}, \quad \frac{p}{q} \cdot \frac{p'}{q'} = \frac{pp'}{qq'}, \quad \text{for all } p \in \mathbb{Z}, q \in \mathbb{Z}^*.$$

Theorem 1.1. The set of rational numbers \mathbb{Q} endowed with the addition and multiplicative operations is an abilean field. That is

- 1. $(\mathbb{Q}, +)$ is an abeliean group
- 2. Multiplicative Associativity: For all $x, y, z \in \mathbb{Q}$, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
- 3. Multiplicative Identity Element: There exists an element $1 \in \mathbb{Q}$ such that for all $x \in \mathbb{Q}$, $x \cdot 1 = 1 \cdot x = x$.
- 4. Multiplicative Inverse Element (except for 0): For every non-zero $x \in \mathbb{Q}$, there exists an element $x^{-1} \in \mathbb{Q}$ such that $x \cdot x^{-1} = x^{-1} \cdot x = 1$.
- 5. Distributive Property: For all $x, y, z \in \mathbb{Q}, x \cdot (y+z) = x \cdot y + x \cdot z$.

Definition 1.7 (least upper bound property). Le *E* be an ordered set.

- 1. We say that E satisfies the least upper bound property if every non empty subset A of E that is bounded from above has the least upper bound (i.e. $\sup A$ exists in E).
- 2. We say that E satisfies the greatest lower bound property if every non empty subset A of E that is bounded from below has the greatest lower bound (i.e. $\inf A$ exists in E)

Remark 1.2. The ordered set \mathbb{Q} does not satisfy the least upper bound property. Indeed consider the following subset of \mathbb{Q} :

 $A = \{ x \in \mathbb{Q} : x^2 \le 2 \}.$

This set is bounded above by 2 because for every $x \in A$ we have $x \leq 2$ (if not then $x^2 \geq 4$ and $x \notin A$). Suppose by absurd that A has a least upper bound denoted by b. Assume, for the sake of contradiction, that the set $A = \{x \in \mathbb{Q} : x^2 \leq 2\}$ has a least upper bound α in \mathbb{Q} . We divide the proof in two steps

• We claim that $\alpha^2 = 2$. Indeed, if $\alpha^2 > 2$, then for $h := \frac{\alpha^2 - 2}{2\alpha}$, we have $\alpha - h < \alpha$ and

 $(\alpha - h)^2 = \alpha^2 - 2\alpha h + h^2 > \alpha^2 - 2\alpha h = 2.$

Thus, $\alpha - h$ is an upper bound of A, which contradicts the fact that $\alpha = \sup A$. If $\alpha^2 < 2$, then for $h := \min\{1, \frac{2-\alpha^2}{2\alpha+1}\} \in \mathbb{Q}$, we have $\alpha < \alpha + h$ and

 $(\alpha + h)^2 = \alpha^2 + 2\alpha h + h^2 \le \alpha^2 + 2\alpha h + h \le 2.$

Thus $\alpha + h \in A$ and $\alpha < \alpha + h$. Then α is not an upper bound. Contradiction. Hence $\alpha^2 = 2$.

• Let us show that $\alpha \notin \mathbb{Q}$. If not then $\alpha = \frac{p}{q}$, where p and q are integers with no common factors other than 1. Hence $2 = \alpha^2 = \frac{p^2}{q^2}$ and $p^2 = 2q^2$. This implies that p^2 is an even number, and therefore, p is also be even (because the square of an odd number is odd). So we can write p as p = 2k where k is an integer. Therefore $2q^2 = (2k)^2$. It follows that $q^2 = 2k^2$ is even and also is q However, this contradicts our initial assumption that p and q have no common factors other than 1, as both p and q are even. Consequently α is not rational number

Remark 1.3. The ordered set \mathbb{Z} has the least upper bound property and for every bounded set A of \mathbb{Z} , we have

 $\sup A \in A, \inf A \in A$

1.2 The set of real numbers

We have seen in the previous remark that the set of rational numbers \mathbb{Q} haven't the least upper bound property. So we need an other set larger than \mathbb{Q} , that satisfies this property. This set is the real number set \mathbb{R} given by the following definition

Definition 1.8. The real number set \mathbb{R} is an ordered field containing \mathbb{Q} and satisfies the least upper bound property.

The following theorem guaranties the existence of \mathbb{R} .

Theorem 1.2. There is a unique ordered field which extends the field of rational numbers \mathbb{Q} and satisfies the least upper bound property.

Proof. is accepted.

1.3 Absolute value

Definition 1.9. The absolute value denoted by $|\cdot|$ is a function defined from \mathbb{R} to \mathbb{R}_+ as follows

$$orall x \in \mathbb{R}: |x| = \left\{ egin{array}{cc} x & ext{if } x \geq 0 \ -x & ext{if } x \leq 0 \end{array}
ight.$$

or

 $\forall x \in \mathbb{R} : |x| = \max\{x, -x\}$

Proposition 1.3. for all $x, y \in \mathbb{R}$, we have

1.
$$|x| = |-x|$$
, $|xy| = |x||y|$
2. $|x| \le y \iff -|y| \le x \le |y|$, $|x| \ge y \ge 0 \iff x \le -y \lor x \ge y$
3. $-|x| \le x \le |x|$

4. $|x+y| \le |x|+|y|$ (Triangle inequality)

5.
$$||x| - |y|| \le |x - y|$$

1.4 Archimedean property, density and integer part property Definition 1.10. Let $x \in \mathbb{R}$

1. The integer part of x denoted as [x] is the unique integer satisfying

 $[x] \le x < [x] + 1$

or equivalently

 $x - 1 < [x] \le x.$

2. A set A is said to be dense in \mathbb{R} if

 $\forall x, y \in \mathbb{R}, x < y, \ \exists z \in A : x < z < y.$

Example 1.4. • [0.5] = 0 because $0 \le 0.5 < 1$.

- [-1.5] = -2 because $-2 \le -1.5 < -1$.
- If $x \in \mathbb{Z}$ then [x] = x because $x \le x < x + 1$.

Theorem 1.4 (Archimedean property). we have

$\forall x \in \mathbb{R}^*_+, y \in \mathbb{R}, \exists n \in \mathbb{N} : nx \ge y$

Proof. Divide through by x. Then the Archimedean property says that for every real number $a = \frac{y}{x}$, we can find $n \in \mathbb{N}$ such that $n \ge a$. In other words, says that the set of natural numbers \mathbb{N} is not bounded above. Suppose for contradiction that \mathbb{N} is bounded above. Then due to the least upper bound axiom, there is $b = \sup \mathbb{N}$. Therefore number b - 1 cannot be an upper bound for \mathbb{N} as it is strictly less than b (the least upper bound). Thus there exists an $m \in \mathbb{N}$ such that m > b - 1. it follows that n := m + 1 > b. This is contradiction since b being an upper bound.

Theorem 1.5. The following properties are equivalent

- 1. Archimedean property $\forall x \in \mathbb{R}^*_+, y \in \mathbb{R}, \exists n \in \mathbb{N} : nx \ge y$
- 2. integer part property: $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z} : n \leq x < n+1$
- 3. \mathbb{Q} is dense in \mathbb{R} , that is $\forall x, y \in \mathbb{R}, x < y, \exists r \in \mathbb{Q} : x < r < y$.
- *Proof.* 1) \Longrightarrow 2) Let $x \in \mathbb{R}$ be given. We want to show that there exists an integer $n \in \mathbb{Z}$ such that $n \leq x < n + 1$. Consider the set

 $S = \{ n \in \mathbb{Z} : n \le x \}.$

Due to the Archimedean property, the set S is non empty. Indeed. There is $n \in \mathbb{Z} : -n \ge -x$ then $n \le x$ so $x \in S$. Since S is bounded above by x. By the well-ordering property of integers, there exists a greatest element in S denoted as n. Since n is the greatest integer less than x, we have $n \le x < n+1$. Therefore, we have shown that for any real number x, there exists an integer n such that $n \le x < n+1$.

• 2) \implies 3). Given $x, y \in \mathbb{R}$: x < y. Due to 2) there exists $q \in \mathbb{Z}^*$ such that

$q-1 \leq \frac{1}{y-x} < q.$

Which implies that

Then

qx + 1 < qy

By 2), there exists $p \in \mathbb{Z}$ such that $p - 1 \leq qx < p$. Hence

$$qx$$

Consequently, dividing by q, it follows $x < \frac{p}{q} < y$.

• 3) \implies 1). Given $x \in \mathbb{R}^*_+$, $y \in \mathbb{R}$. If $x \ge y$ it is enough to take n = 1. If not then 0 < x < y. from 3), there are $p, q \in \mathbb{N}^*$ such that $\frac{p}{q} \ge \frac{y}{x}$ and then $px \ge qy \ge y$, $(q \ge 1)$.

Corollary 1.6. the irrational set $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

Proof. Given $x, y \in \mathbb{R}$ such that x < y. form the density of \mathbb{Q} , there are $r_1, r_2 \in \mathbb{Q}$ such that $x < r_1 < r_2 < y$. We know that $\sqrt{2}$ is irrational and greater than 1. Then taking $z = r_1 + \frac{1}{\sqrt{2}}(r_2 - r_1) \notin \mathbb{Q}$ we obtain $r_1 < z < r_2$.