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1 Real numbers

1.1 Preliminaries

Definition 1.1. 1. A set is a well-defined collection of distinct objects, called the
elements or members of the set. Sets may be finite or infinite. They are typically
denoted by curly braces { } and listing the elements separated by commas.

2. The empty set denoted by ¢ is a set that has no elements.
3. If x is an element of the set A, we write x € A, if not we write x ¢ A.

4. A set A is subset of B or A is included in B if every element of A belongs to B and
we write A C B, that is,

lrc A=z cB.]

5. Tow sets A and B are equals if its have the same elements and we write A = B. In
other terms A= B if AC B and B C A, or

lze A<=z €B.

5" Example 1.1. e A ={1,2,3} is a set containing the members 1, 2, and 3 (finite
set).

e A=1{0,2,4,6,...} is a set of positive even integers (infinite set).

e A=/ Ti—jll | n € N} is a set where the element are given by the expression ’;‘f—jll for
2 2
all n € N. We have 0 ¢ A, 1 € A because 1 = =5, 2 ¢ A because 2 # "L for all

n € N.

e A={reR: 2>+ 3x+1 <0} is a set containing the solutions of the inequality
2>+ 2+ 1 < 0. For example, 0 € A because 0> +3x0+1=1%0, -1/2€ A
because (—1/2)% +3(—=1/2) +1=—-1/4 <0.

Definition 1.2. 1. The set of natural numbers denoted by N is defined by

N:={0,1,2,3,-}

2. The set of integers denoted by Z is defined by

Z::{...—27—1,0,1,27"'}

3. Endowed by the operation of addition ” + 7, the set of integers is an Abelien group.
That is is

e Closure: For all x,y € E, v +y € Z.
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e + is commutative : Ve, y e Z v +y=y+=x
e -+ is associative : Vr,y,2 € Z: (z+y)+z=x+ (y+ 2)

Identity Element: There exists an element 0 € Z such that Ve € Z : x+0 = .

e symmetric Element: For every x € E, there exists an element —x € Z such
that x + (—z) == —y = 0.

Definition 1.3 (Ordered sets). An ordered set is a set E endowed by a relation 7 < 7
such that

e For all x,y € F, exactly one of the following holds

z <y, z=y, ory <z

o Forallz,y,z€ F: x <yAy < z=— x < z (transitivity)
We write z <y if v <yorx =y.

5" Example 1.2. e The set of natural numbers N :={0,1,2,3,---} and the set of
integers Z := {--- —2,—1,0,1,2,---} are ordered sets with the relation (lower than)
< and we have

o —-3<-2<-1<0<1<2<3<"|

Definition| 1.4. Let (E, <) be an ordered set and let A be a subset of E.

o We say a € E is an [[ONCIDONN of A if

"v’a:eA:an‘

and if there exist an lower-bound of A, we say A is |bounded below |.

° Wesa,ybEEisa,n_ofAif

‘Vl‘EAZZESb‘

and if there exist an upper-bound of A, we say A is |bounded above|.

e We say ap € F is the greatest lower-bound or the infimum of A if a¢ is an
lower-bound of A and satisfies a < aq for every lower-bound a € E. We write

e We say by € E is the least upper-bound or the supremum of A if by is an
upper-bound of A and satisfies by < b for every upper-bound b € E. We write
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5" Example 1.3.

Definition 1.5. The set of rational numbers is the set denoted by Q defined as follows

or

or

Q={2|(pg) eZxZ}

Q={t](p,q) € ZxN"}

Q={2|(p.q) €ZxN*, withpAgq=1}

1> JRGIEEE 1.1. The set of rational numbers Q is an ordered set with the relation <
"lower than" defined as follow

r<y<=y—x=p/qwhere p,qgeN

and then we say that y — z is negative, if it is not positive, we say that it is negative.

Definition 1.6. The addition and multiplicative operations on QQ are defined as follow

g.&/;%, forallpe Z,q € Z*.

=}

EBREBEER 1.1. The set of rational numbers Q endowed with the addition and multiplica-
tive operations is an abilean field. That is

1.

2.

d.

(Q, +) is an abeliean group
Multiplicative Associativity: For all z,y,2 € Q, (z-y) -z =x - (y - 2).

Multiplicative Identity Element: There exists an element 1 € Q such that for
alzeQ, x-1=1-2z=u=x.

Multiplicative Inverse Element (except for 0): For every non-zero z € Q,
there exists an element x7! € Q such that x -2 ! =271 - 2 = 1.

Distributive Property: For all z,y,2 € Q, z- (y+2) =2 -y+x - 2.

Definition 1.7 (least upper bound property). Le E be an ordered set.

1.

2.

We say that E satisfies the least upper bound property if every non empty subset A
of £ that is bounded from above has the least upper bound (i.e. sup A exists in F).

We say that E satisfies the greatest lower bound property if every non empty subset
A of E that is bounded from below has the greatest lower bound (i.e. inf A exists in
E)



= _ 1.2. The ordered set Q does not satisfy the least upper bound property.
Indeed consider the following subset of Q :

A={zeQ:2*<2}.

This set is bounded above by 2 because for every x € A we have < 2 (if not then x2 >4
and = € A). Suppose by absurd that A has a least upper bound denoted by b. Assume,
for the sake of contradiction, that the set A = {z € Q : * < 2} has a least upper bound
a in Q. We divide the proof in two steps

e We claim that o? = 2. Indeed, if o > 2, then for h := “;;2, we have o — h < o and

(a — h)? =a? — 2ah + h* > a? — 2ah = 2.

Thus, a — h is an upper bound of A, which contradicts the fact that a = sup A. If

a? < 2, then for h := min{1, g;ﬁ} € Q, we have @ < a+ h and

(a+h)?=a?+2ah+h?<a’*+2ah+h<2.

Thus o+ h € A and a < a+ h. Then « is not an upper bound. Contradiction.
Hence

e Let us show that a € Q. If not then a = §7 where p and ¢ are integers with no

common factors other than 1. Hence 2 = o? = Z—z and p? = 2¢%. This implies that
p? is an even number, and therefore, p is also be even (because the square of an
odd number is odd). So we can write p as p = 2k where k is an integer. Therefore
2¢% = (2k)2. Tt follows that ¢®> = 2k? is even and also is ¢ However, this contradicts
our initial assumption that p and ¢ have no common factors other than 1, as both p
and ¢ are even. Consequently « is not rational number

= _ 1.3. The ordered set Z has the least upper bound property and for every
bounded set A of Z, we have

’supAGA, infAe A

1.2 The set of real numbers

We have seen in the previous remark that the set of rational numbers Q haven’t the least
upper bound property. So we need an other set larger than Q, that satisfies this property.
This set is the real number set R given by the following definition

Definition 1.8. The real number set R is an ordered field containing Q and satisfies the
least upper bound property.

The following theorem guaranties the existence of R.

EBREEEE 1.2. There is a unique ordered field which extends the field of rational numbers
Q and satisfies the least upper bound property.

Proof. is accepted. O]



1.3 Absolute value

Definition| 1.9. The absolute value denoted by | - | is a function defined from R to R
as follows

z ifz>0

or

Vax € R : |z| = max{z, —z}

_ 1.3. for all x,y € R, we have

L |lz| =1 - =|

lzy| = |=||y|

2. |[z| <y<= -y <z <y}, |[lz]| 2y > 0=z < —yVa>y

3. |—lz| <z < |z

4. |z +y| < |z] + |y| | (Triangle inequality)

5.0 |z = lyl| < |z =y

1.4 Archimedean property, density and integer part property

[DERRIGOR] 1.10. Lot « € R

1. The integer part of x denoted as [z] is the unique integer satisfying

[z] <z <[z]+1

or equivalently

r—1<[z] <=

2. A set A is said to be dense in R if

‘Vm,yER,az<y, dzeA:x<z<y.

I Example 1.4. o [0.5] =0 because 0 < 0.5 < 1.
e [—1.5] = —2 because —2 < —1.5 < —1.
e If x € Z then [x] = x because z < x < z + 1.

BRSO 1.4 (Archimedean property). we have
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VeeRL,yeR,IneN:nx >y|

Proof. Divide through by x. Then the Archimedean property says that for every real
number a = £, we can find n € N such that n > a. In other words, says that the set of
natural numbers N is not bounded above. Suppose for contradiction that N is bounded
above. Then due to the least upper bound axiom, there is b = sup N. Therefore number
b — 1 cannot be an upper bound for N as it is strictly less than b (the least upper bound).
Thus there exists an m € N such that m > b — 1. it follows that n :=m + 1 > b. This is
contradiction since b being an upper bound. O]

_ 1.5. The following properties are equivalent

1. Archimedean property |Vz € Rl ,y € R,dne€N:nx > y|

2. integer part property: ’VLB eER,IneZ:n<zrx<n+ 1‘

3. Q is dense in R, that is ’Vx,yER,x<y,E|r€Q:$<r<y.‘

Proof. e 1) = 2) Let x € R be given. We want to show that there exists an integer
n € Z such that n <z < n + 1. Consider the set

S={neZ:n<z}

Due to the Archimedean property, the set S is non empty. Indeed. There is
n€Z:—n>—xthenn < xzsox &S. Since S is bounded above by x. By the
well-ordering property of integers, there exists a greatest element in S denoted as n.
Since n is the greatest integer less than x, we have n < x < n+1. Therefore, we have
shown that for any real number x, there exists an integer n such that n < x <n+ 1.

e 2) —> 3). Given z,y € R: x < y. Due to 2) there exists ¢ € Z* such that

g=1< -1 <q

= y—zx

Which implies that

1 <q(y— =)

Then

qr + 1 < qu

By 2), there exists p € Z such that p — 1 < gz < p. Hence

gz <p<gr+1<gqy|




Consequently, dividing by ¢, it follows |z < ’a’ <yl

e 3) = 1). Given z € RY, y € R. If > y it is enough to take n = 1. If not then
0 < z < y. from 3), there are p,q € N* such that § > Y and then pr > qy > v,

(¢>1).

_ 1.6. the irrational set R \ Q is dense in R.

Proof. Given z,y € R such that z < y. form the density of Q, there are r1,7ry € QQ such
that © < r; < 7y < y. We know that /2 is irrational and greater than 1. Then taking
z:r1+\%(r2—r1)¢Qweobtain7“1<z<r2. ]
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