Contents

1 Real numbers 2
1.1 Preliminaries 2
1.2 The set of real numbers 5
1.3 Absolute value 6
1.4 Archimedean property, density and integer part property 6

1 Real numbers

1.1 Preliminaries

Definition 1.1. 1. A set is a well-defined collection of distinct objects, called the elements or members of the set. Sets may be finite or infinite. They are typically denoted by curly braces $\}$ and listing the elements separated by commas.
2. The empty set denoted by ϕ is a set that has no elements.
3. If x is an element of the set A, we write $x \in A$, if not we write $x \notin A$.
4. A set A is subset of B or A is included in B if every element of A belongs to B and we write $A \subset B$, that is,

$$
x \in A \Longrightarrow x \in B
$$

5. Tow sets A and B are equals if its have the same elements and we write $A=B$. In other terms $A=B$ if $A \subset B$ and $B \subset A$, or

$$
x \in A \Longleftrightarrow x \in B
$$

19 Example 1.1. - $A=\{1,2,3\}$ is a set containing the members 1, 2, and 3 (finite set).

- $A=\{0,2,4,6, \ldots\}$ is a set of positive even integers (infinite set).
- $A=\left\{\left.\frac{n^{2}+1}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$ is a set where the element are given by the expression $\frac{n^{2}+1}{n+1}$ for all $n \in \mathbb{N}$. We have $0 \notin A, 1 \in A$ because $1=\frac{1^{2}+1}{1+1}, 2 \notin A$ because $2 \neq \frac{n^{2}+1}{n+1}$ for all $n \in \mathbb{N}$.
- $A=\left\{x \in \mathbb{R}: x^{2}+3 x+1 \leq 0\right\}$ is a set containing the solutions of the inequality $x^{2}+x+1 \leq 0$. For example, $0 \notin A$ because $0^{2}+3 \times 0+1=1 \not \leq 0,-1 / 2 \in A$ because $(-1 / 2)^{2}+3(-1 / 2)+1=-1 / 4 \leq 0$.

Definition 1.2. 1. The set of natural numbers denoted by \mathbb{N} is defined by

$$
\mathbb{N}:=\{0,1,2,3, \cdots\}
$$

2. The set of integers denoted by \mathbb{Z} is defined by

$$
\mathbb{Z}:=\{\cdots-2,-1,0,1,2, \cdots\}
$$

3. Endowed by the operation of addition " + ", the set of integers is an Abelien group. That is is

- Closure: For all $x, y \in E, x+y \in \mathbb{Z}$.
- + is commutative : $\forall x, y \in \mathbb{Z}: x+y=y+x$
- + is associative : $\forall x, y, z \in \mathbb{Z}:(x+y)+z=x+(y+z)$
- Identity Element: There exists an element $0 \in \mathbb{Z}$ such that $\forall x \in \mathbb{Z}: x+0=x$.
- symmetric Element: For every $x \in E$, there exists an element $-x \in \mathbb{Z}$ such that $x+(-x):=x-y=0$.

Definition 1.3 (Ordered sets). An ordered set is a set E endowed by a relation "<" such that

- For all $x, y \in E$, exactly one of the following holds

$$
x<y, x=y, \text { or } y<x
$$

- For all $x, y, z \in E: x<y \wedge y<z \Longrightarrow x<z$ (transitivity)

We write $x \leq y$ if $x<y$ or $x=y$.
■註 Example 1.2. - The set of natural numbers $\mathbb{N}:=\{0,1,2,3, \cdots\}$ and the set of integers $\mathbb{Z}:=\{\cdots-2,-1,0,1,2, \cdots\}$ are ordered sets with the relation (lower than) $<$ and we have

$$
\cdots-3<-2<-1<0<1<2<3<\cdots
$$

Definition 1.4. Let $(E,<)$ be an ordered set and let A be a subset of E.

- We say $a \in E$ is an lower-bound of A if

$$
\forall x \in A: a \leq x
$$

and if there exist an lower-bound of A, we say A is bounded below.

- We say $b \in E$ is an upper-bound of A if

$$
\forall x \in A: x \leq b
$$

and if there exist an upper-bound of A, we say A is bounded above.

- We say $a_{0} \in E$ is the greatest lower-bound or the infimum of A if a_{0} is an lower-bound of A and satisfies $a \leq a_{0}$ for every lower-bound $a \in E$. We write

$$
a_{0}:=\inf A
$$

- We say $b_{0} \in E$ is the least upper-bound or the supremum of A if b_{0} is an upper-bound of A and satisfies $b_{0} \leq b$ for every upper-bound $b \in E$. We write

$$
b_{0}:=\sup A
$$

1 Example 1.3.

Definition 1.5. The set of rational numbers is the set denoted by \mathbb{Q} defined as follows

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\,(p, q) \in \mathbb{Z} \times \mathbb{Z}^{*}\right\}
$$

or

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\,(p, q) \in \mathbb{Z} \times \mathbb{N}^{*}\right\}
$$

or

$$
\mathbb{Q}=\left\{\left.\frac{p}{q} \right\rvert\,(p, q) \in \mathbb{Z} \times \mathbb{N}^{*}, \text { with } p \wedge q=1\right\}
$$

14 Remark 1.1. The set of rational numbers \mathbb{Q} is an ordered set with the relation $<$ "lower than" defined as follow

$$
x<y \Longleftrightarrow y-x=p / q \text { where } p, q \in \mathbb{N}
$$

and then we say that $y-x$ is negative, if it is not positive, we say that it is negative.
Definition 1.6. The addition and multiplicative operations on \mathbb{Q} are defined as follow

$$
\frac{p}{q}+\frac{p^{\prime}}{q^{\prime}}=\frac{p q^{\prime}+q p^{\prime}}{p^{\prime} q^{\prime}}, \quad \frac{p}{q} \cdot \frac{p^{\prime}}{q^{\prime}}=\frac{p p^{\prime}}{q q^{\prime}}, \quad \text { for all } p \in \mathbb{Z}, q \in \mathbb{Z}^{*}
$$

Theorem 1.1. The set of rational numbers \mathbb{Q} endowed with the addition and multiplicative operations is an abilean field. That is

1. $(\mathbb{Q},+)$ is an abeliean group
2. Multiplicative Associativity: For all $x, y, z \in \mathbb{Q},(x \cdot y) \cdot z=x \cdot(y \cdot z)$.
3. Multiplicative Identity Element: There exists an element $1 \in \mathbb{Q}$ such that for all $x \in \mathbb{Q}, x \cdot 1=1 \cdot x=x$.
4. Multiplicative Inverse Element (except for 0): For every non-zero $x \in \mathbb{Q}$, there exists an element $x^{-1} \in \mathbb{Q}$ such that $x \cdot x^{-1}=x^{-1} \cdot x=1$.
5. Distributive Property: For all $x, y, z \in \mathbb{Q}, x \cdot(y+z)=x \cdot y+x \cdot z$.

Definition 1.7 (least upper bound property). Le E be an ordered set.

1. We say that E satisfies the least upper bound property if every non empty subset A of E that is bounded from above has the least upper bound (i.e. $\sup A$ exists in E).
2. We say that E satisfies the greatest lower bound property if every non empty subset A of E that is bounded from below has the greatest lower bound (i.e. $\inf A$ exists in E)
[固 Remark 1.2. The ordered set \mathbb{Q} does not satisfy the least upper bound property. Indeed consider the following subset of \mathbb{Q} :

$$
A=\left\{x \in \mathbb{Q}: x^{2} \leq 2\right\}
$$

This set is bounded above by 2 because for every $x \in A$ we have $x \leq 2$ (if not then $x^{2} \geq 4$ and $x \notin A$). Suppose by absurd that A has a least upper bound denoted by b. Assume, for the sake of contradiction, that the set $A=\left\{x \in \mathbb{Q}: x^{2} \leq 2\right\}$ has a least upper bound α in \mathbb{Q}. We divide the proof in two steps

- We claim that $\alpha^{2}=2$. Indeed, if $\alpha^{2}>2$, then for $h:=\frac{\alpha^{2}-2}{2 \alpha}$, we have $\alpha-h<\alpha$ and

$$
(\alpha-h)^{2}=\alpha^{2}-2 \alpha h+h^{2}>\alpha^{2}-2 \alpha h=2
$$

Thus, $\alpha-h$ is an upper bound of A, which contradicts the fact that $\alpha=\sup A$. If $\alpha^{2}<2$, then for $h:=\min \left\{1, \frac{2-\alpha^{2}}{2 \alpha+1}\right\} \in \mathbb{Q}$, we have $\alpha<\alpha+h$ and

$$
(\alpha+h)^{2}=\alpha^{2}+2 \alpha h+h^{2} \leq \alpha^{2}+2 \alpha h+h \leq 2
$$

Thus $\alpha+h \in A$ and $\alpha<\alpha+h$. Then α is not an upper bound. Contradiction. Hence $\alpha^{2}=2$.

- Let us show that $\alpha \notin \mathbb{Q}$. If not then $\alpha=\frac{p}{q}$, where p and q are integers with no common factors other than 1 . Hence $2=\alpha^{2}=\frac{p^{2}}{q^{2}}$ and $p^{2}=2 q^{2}$. This implies that p^{2} is an even number, and therefore, p is also be even (because the square of an odd number is odd). So we can write p as $p=2 k$ where k is an integer. Therefore $2 q^{2}=(2 k)^{2}$. It follows that $q^{2}=2 k^{2}$ is even and also is q However, this contradicts our initial assumption that p and q have no common factors other than 1 , as both p and q are even. Consequently α is not rational number
[2] Remark 1.3. The ordered set \mathbb{Z} has the least upper bound property and for every bounded set A of \mathbb{Z}, we have

$$
\sup A \in A, \inf A \in A
$$

1.2 The set of real numbers

We have seen in the previous remark that the set of rational numbers \mathbb{Q} haven't the least upper bound property. So we need an other set larger than \mathbb{Q}, that satisfies this property. This set is the real number set \mathbb{R} given by the following definition
Definition 1.8. The real number set \mathbb{R} is an ordered field containing \mathbb{Q} and satisfies the least upper bound property.

The following theorem guaranties the existence of \mathbb{R}.
Theorem 1.2. There is a unique ordered field which extends the field of rational numbers \mathbb{Q} and satisfies the least upper bound property.
Proof. is accepted.

1.3 Absolute value

Definition 1.9. The absolute value denoted by $|\cdot|$ is a function defined from \mathbb{R} to \mathbb{R}_{+} as follows

$$
\forall x \in \mathbb{R}:|x|=\left\{\begin{array}{cc}
x & \text { if } x \geq 0 \\
-x & \text { if } x \leq 0
\end{array}\right.
$$

or

$$
\forall x \in \mathbb{R}:|x|=\max \{x,-x\}
$$

Proposition 1.3. for all $x, y \in \mathbb{R}$, we have

1. $|x|=|-x|, \quad|x y|=|x||y|$
2. $|x| \leq y \Longleftrightarrow-|y| \leq x \leq|y|, \quad|x| \geq y \geq 0 \Longleftrightarrow x \leq-y \vee x \geq y$
3. $-|x| \leq x \leq|x|$
4. $|x+y| \leq|x|+|y|$ (Triangle inequality)
5. $||x|-|y|| \leq|x-y|$

1.4 Archimedean property, density and integer part property

Definition 1.10. Let $x \in \mathbb{R}$

1. The integer part of x denoted as $[x]$ is the unique integer satisfying

$$
[x] \leq x<[x]+1
$$

or equivalently

$$
x-1<[x] \leq x .
$$

2. A set A is said to be dense in \mathbb{R} if

$$
\forall x, y \in \mathbb{R}, x<y, \exists z \in A: x<z<y
$$

- 1 © - 0.5$]=0$ because $0 \leq 0.5<1$.
- $[-1.5]=-2$ because $-2 \leq-1.5<-1$.
- If $x \in \mathbb{Z}$ then $[x]=x$ because $x \leq x<x+1$.

Theorem 1.4 (Archimedean property). we have

$$
\forall x \in \mathbb{R}_{+}^{*}, y \in \mathbb{R}, \exists n \in \mathbb{N}: n x \geq y
$$

Proof. Divide through by x. Then the Archimedean property says that for every real number $a=\frac{y}{x}$, we can find $n \in \mathbb{N}$ such that $n \geq a$. In other words, says that the set of natural numbers \mathbb{N} is not bounded above. Suppose for contradiction that \mathbb{N} is bounded above. Then due to the least upper bound axiom, there is $b=\sup \mathbb{N}$. Therefore number $b-1$ cannot be an upper bound for \mathbb{N} as it is strictly less than b (the least upper bound). Thus there exists an $m \in \mathbb{N}$ such that $m>b-1$. it follows that $n:=m+1>b$. This is contradiction since b being an upper bound.

Theorem 1.5. The following properties are equivalent

1. Archimedean property $\forall x \in \mathbb{R}_{+}^{*}, y \in \mathbb{R}, \exists n \in \mathbb{N}: n x \geq y$.
2. integer part property: $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}: n \leq x<n+1$
3. \mathbb{Q} is dense in \mathbb{R}, that is $\forall x, y \in \mathbb{R}, x<y, \exists r \in \mathbb{Q}: x<r<y$.

Proof. - 1) $\Longrightarrow 2)$ Let $x \in \mathbb{R}$ be given. We want to show that there exists an integer $n \in \mathbb{Z}$ such that $n \leq x<n+1$. Consider the set

$$
S=\{n \in \mathbb{Z}: n \leq x\} .
$$

Due to the Archimedean property, the set S is non empty. Indeed. There is $n \in \mathbb{Z}:-n \geq-x$ then $n \leq x$ so $x \in S$. Since S is bounded above by x. By the well-ordering property of integers, there exists a greatest element in S denoted as n. Since n is the greatest integer less than x, we have $n \leq x<n+1$. Therefore, we have shown that for any real number x, there exists an integer n such that $n \leq x<n+1$.

- 2) $\Longrightarrow 3)$. Given $x, y \in \mathbb{R}: x<y$. Due to 2) there exists $q \in \mathbb{Z}^{*}$ such that

$$
q-1 \leq \frac{1}{y-x}<q
$$

Which implies that

$$
1<q(y-x)
$$

Then

$$
q x+1<q y
$$

By 2), there exists $p \in \mathbb{Z}$ such that $p-1 \leq q x<p$. Hence

$$
q x<p \leq q x+1<q y
$$

Consequently, dividing by q, it follows $x<\frac{p}{q}<y$.

- 3) $\Longrightarrow 1)$. Given $x \in \mathbb{R}_{+}^{*}, y \in \mathbb{R}$. If $x \geq y$ it is enough to take $n=1$. If not then $0<x<y$. from 3), there are $p, q \in \mathbb{N}^{*}$ such that $\frac{p}{q} \geq \frac{y}{x}$ and then $p x \geq q y \geq y$, ($q \geq 1$).

Corollary 1.6. the irrational set $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.
Proof. Given $x, y \in \mathbb{R}$ such that $x<y$. form the density of \mathbb{Q}, there are $r_{1}, r_{2} \in \mathbb{Q}$ such that $x<r_{1}<r_{2}<y$. We know that $\sqrt{2}$ is irrational and greater than 1 . Then taking $z=r_{1}+\frac{1}{\sqrt{2}}\left(r_{2}-r_{1}\right) \notin \mathbb{Q}$ we obtain $r_{1}<z<r_{2}$.

