Contents

1	Rea	l numbers	2
	1.1	Archimedean property, density and integer part property	2
	1.2	Bounded subset in \mathbb{R}	3

1 Real numbers

1.1 Archimedean property, density and integer part property Definition 1.1. Let $x \in \mathbb{R}$

1. The integer part of x denoted as [x] is the unique integer satisfying

$[x] \le x < [x]$	[x] + 1
-------------------	---------

or equivalently

 $|x - 1 < [x] \le x.$

2. A set A is said to be dense in \mathbb{R} if

 $\forall x, y \in \mathbb{R}, x < y, \ \exists z \in A : x < z < y.$

- **Example 1.1.** [0.5] = 0 because $0 \le 0.5 < 1$.
 - [-1.5] = -2 because $-2 \le -1.5 < -1$.
 - If $x \in \mathbb{Z}$ then [x] = x because $x \le x < x + 1$.

Theorem 1.1 (Archimedean property). we have

 $\forall x \in \mathbb{R}^*_+, y \in \mathbb{R}, \exists n \in \mathbb{N} : nx \ge y.$

Proof. Divide through by x. Then the Archimedean property says that for every real number $a = \frac{y}{x}$, we can find $n \in \mathbb{N}$ such that $n \ge a$. In other words, says that the set of natural numbers \mathbb{N} is not bounded above. Suppose for contradiction that \mathbb{N} is bounded above. Then due to the least upper bound axiom, there is $b = \sup \mathbb{N}$. Therefore number b-1 cannot be an upper bound for \mathbb{N} as it is strictly less than b (the least upper bound). Thus there exists an $m \in \mathbb{N}$ such that m > b - 1. it follows that n := m + 1 > b. This is contradiction since b being an upper bound.

Theorem 1.2. The following properties are equivalent

- 1. Archimedean property $\forall x \in \mathbb{R}^*_+, y \in \mathbb{R}, \exists n \in \mathbb{N} : nx \geq g$
- 2. integer part property: $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z} : n \leq x < n+1$
- 3. \mathbb{Q} is dense in \mathbb{R} , that is $\forall x, y \in \mathbb{R}, x < y, \exists r \in \mathbb{Q} : x < r < y$.

Proof. • 1) \Longrightarrow 2) Let $x \in \mathbb{R}$ be given. We want to show that there exists an integer $n \in \mathbb{Z}$ such that $n \leq x < n + 1$. Consider the set

$S = \{ n \in \mathbb{Z} : n \le x \}.$

Due to the Archimedean property, the set S is non empty. Indeed. There is $n \in \mathbb{Z} : -n \ge -x$ then $n \le x$ so $x \in S$. Since S is bounded above by x. By the well-ordering property of integers, there exists a greatest element in S denoted as n. Since n is the greatest integer less than x, we have $n \le x < n+1$. Therefore, we have shown that for any real number x, there exists an integer n such that $n \le x < n+1$.

• 2) \implies 3). Given $x, y \in \mathbb{R}$: x < y. Due to 2) there exists $q \in \mathbb{Z}^*$ such that

$$q-1 \le \frac{1}{y-x} < q.$$

Which implies that

$$1 < q(y - x)$$

Then

qx + 1 < qy

By 2), there exists $p \in \mathbb{Z}$ such that $p - 1 \leq qx < p$. Hence

qx

Consequently, dividing by q, it follows $x < \frac{p}{q} < y$

• 3) \implies 1). Given $x \in \mathbb{R}^*_+$, $y \in \mathbb{R}$. If $x \ge y$ it is enough to take n = 1. If not then 0 < x < y. from 3), there are $p, q \in \mathbb{N}^*$ such that $\frac{p}{q} \ge \frac{y}{x}$ and then $px \ge qy \ge y$, $(q \ge 1)$.

Corollary 1.3. the irrational set $\mathbb{R} \setminus \mathbb{Q}$ is dense in \mathbb{R} .

Proof. Given $x, y \in \mathbb{R}$ such that x < y. form the density of \mathbb{Q} , there are $r_1, r_2 \in \mathbb{Q}$ such that $x < r_1 < r_2 < y$. We know that $\sqrt{2}$ is irrational and greater than 1. Then taking $z = r_1 + \frac{1}{\sqrt{2}}(r_2 - r_1) \notin \mathbb{Q}$ we obtain $r_1 < z < r_2$.

1.2 Bounded subset in \mathbb{R}

Theorem 1.4 (Characterisation of the supremum and infimum). Let A be a bounded subset of \mathbb{R} . Then

$$\alpha := \inf A \iff \begin{cases} \forall x \in A : x \ge \alpha \quad (\alpha \text{ is a lower bound of A}) \\ \forall \varepsilon > 0, \exists x_0 \in A : x_0 < \alpha + \varepsilon \quad (\alpha \text{ is greater than any lower bound}) \end{cases}$$
$$\beta := \sup A \iff \begin{cases} \forall x \in A : x \le \beta \quad (\alpha \text{ is an upper bound of A}) \\ \forall \varepsilon > 0, \exists x_0 \in A : \alpha - \varepsilon < x_0 \quad (\beta \text{ is less than any upper bound}) \end{cases}$$

Definition 1.2 (Maximum and minimum). Let A be a subset of \mathbb{R} .

1. A maximum of A, denoted as max A, is the greatest element of A. That is

 $\max \in A$ and $\forall x \in A : x \le \max A$

2. A minimum of A, denoted as min A, is the least element of A. That is

```
\min \in A and \forall x \in A : x \ge \min A
```

Remark 1.1. Let A be a bounded subset.

- $\max A$ is an upper bound of A.
- If $\sup A \in A$, then $\max A = \sup A$.
- If max A exists then $\sup A = \max A$. Indeed, since $\max A$ is an upper bound of A, it suffices to show that

$$\forall \varepsilon > 0, \exists x_0 \in A : \max A - \varepsilon < x_0.$$

Given any $\varepsilon > 0$, we can take $x_0 = \max A$. Then we have $\max A - \varepsilon < \max A = x_0$.

- If $\sup A \notin A$, then $\max A$ does exists, because if not, $\sup A = \max A \in A$.
- Analogously for inf A and min A.

Example 1.2. Find $\sup A$, $\inf A$, $\max A$, $\min A$ if they exist, for the following cases.

- 1. Let $A := \{1, 2, 3\}$. We observe that min A = 1, max A = 3, leading to inf A = 1 and sup A = 3.
- 2. For A = [0, 1], using the interval definition, we note that 0 is a lower bound, and 1 is an upper bound of A. Since $1 \in A$, we conclude that $\sup A = \max A = 1$. We now prove that $\inf A = 0$. Given $\varepsilon > 0$ (we can assume ε is arbitrarily small), if we choose $x_0 := \frac{\varepsilon}{2} \in A$, we have $x_0 < 0 + \varepsilon$. This shows that $\inf A = 0$. As $0 \notin A$, $\min A$ doesn't exist.

3. Let $A := \left\{ \frac{n}{n^2+1} \mid n \in \mathbb{N} \right\}$. We observe that for all $n \in \mathbb{N}$, $0 < \frac{n}{n^2+1} \leq \frac{1}{2}$ (using $ab \leq \frac{1}{2}(a^2+b^2)$). Thus, $\frac{1}{2}$ is an upper bound of A. Since $\frac{1}{2} = \frac{1}{1^2+1} \in A$, we deduce max $A = \sup A = \frac{1}{2}$. Moreover, we can prove 0 is the infimum of A. For any $\varepsilon > 0$, we observe that

$$\frac{n}{n^2+1} \le \frac{n}{n^2} = \frac{1}{n}, \quad \frac{1}{n} \le \varepsilon \iff n \ge \frac{1}{\varepsilon}.$$

Due to the Archimedean property, choose n such that $n \ge \frac{1}{\varepsilon}$ (e.g., $n = \begin{bmatrix} \frac{1}{\varepsilon} \end{bmatrix} + 1$). This guarantees $\frac{n}{n^2+1} \le \frac{1}{n} \le \varepsilon$ Thus, 0 is indeed the infimum of A. As $0 \notin A$, min A doesn't exist.