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1 Real numbers

1.1 Archimedean property, density and integer part property

Definition 1.1. Let x ∈ R

1. The integer part of x denoted as [x] is the unique integer satisfying

[x] ≤ x < [x] + 1

or equivalently

x− 1 < [x] ≤ x.

2. A set A is said to be dense in R if

∀x, y ∈ R, x < y, ∃z ∈ A : x < z < y.

+ Example 1.1. • [0.5] = 0 because 0 ≤ 0.5 < 1.

• [−1.5] = −2 because −2 ≤ −1.5 < −1.

• If x ∈ Z then [x] = x because x ≤ x < x+ 1.

Theorem 1.1 (Archimedean property). we have

∀x ∈ R∗+, y ∈ R,∃n ∈ N : nx ≥ y .

Proof. Divide through by x. Then the Archimedean property says that for every real
number a = y

x
, we can find n ∈ N such that n ≥ a. In other words, says that the set of

natural numbers N is not bounded above. Suppose for contradiction that N is bounded
above. Then due to the least upper bound axiom, there is b = supN. Therefore number
b− 1 cannot be an upper bound for N as it is strictly less than b (the least upper bound).
Thus there exists an m ∈ N such that m > b− 1. it follows that n := m+ 1 > b. This is
contradiction since b being an upper bound.

Theorem 1.2. The following properties are equivalent

1. Archimedean property ∀x ∈ R∗+, y ∈ R,∃n ∈ N : nx ≥ y .

2. integer part property: ∀x ∈ R,∃n ∈ Z : n ≤ x < n+ 1

3. Q is dense in R, that is ∀x, y ∈ R, x < y, ∃r ∈ Q : x < r < y.

Proof. • 1) =⇒ 2) Let x ∈ R be given. We want to show that there exists an integer
n ∈ Z such that n ≤ x < n+ 1. Consider the set
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S = {n ∈ Z : n ≤ x}.

Due to the Archimedean property, the set S is non empty. Indeed. There is
n ∈ Z : −n ≥ −x then n ≤ x so x ∈ S. Since S is bounded above by x. By the
well-ordering property of integers, there exists a greatest element in S denoted as n.
Since n is the greatest integer less than x, we have n ≤ x < n+1. Therefore, we have
shown that for any real number x, there exists an integer n such that n ≤ x < n+ 1.

• 2) =⇒ 3). Given x, y ∈ R : x < y. Due to 2) there exists q ∈ Z∗ such that

q − 1 ≤ 1
y−x < q.

Which implies that

1 < q(y − x)

Then

qx+ 1 < qy

By 2), there exists p ∈ Z such that p− 1 ≤ qx < p. Hence

qx < p ≤ qx+ 1 < qy

Consequently, dividing by q, it follows x < p
q
< y .

• 3) =⇒ 1). Given x ∈ R∗+, y ∈ R. If x ≥ y it is enough to take n = 1. If not then
0 < x < y. from 3), there are p, q ∈ N∗ such that p

q
≥ y

x
and then px ≥ qy ≥ y,

(q ≥ 1).

Corollary 1.3. the irrational set R \Q is dense in R.

Proof. Given x, y ∈ R such that x < y. form the density of Q, there are r1, r2 ∈ Q such
that x < r1 < r2 < y. We know that

√
2 is irrational and greater than 1. Then taking

z = r1 +
1√
2
(r2 − r1) 6∈ Q we obtain r1 < z < r2.

1.2 Bounded subset in R
.

Theorem 1.4 (Characterisation of the supremum and infimum). Let A be a
bounded subset of R. Then
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α := inf A⇐⇒


∀x ∈ A : x ≥ α (α is a lower bound of A)

∀ε > 0,∃x0 ∈ A : x0 < α+ ε (α is greater than any lower bound)

β := supA⇐⇒


∀x ∈ A : x ≤ β (α is an upper bound of A)

∀ε > 0,∃x0 ∈ A : α− ε < x0 (β is less than any upper bound)

Definition 1.2 (Maximum and minimum). Let A be a subset of R.

1. A maximum of A, denoted as maxA, is the greatest element of A. That is

max ∈ A and ∀x ∈ A : x ≤ maxA

2. A minimum of A, denoted as minA, is the least element of A. That is

min ∈ A and ∀x ∈ A : x ≥ minA

+ Remark 1.1. Let A be a bounded subset.

• maxA is an upper bound of A.

• If supA ∈ A, then maxA = supA.

• If maxA exists then supA = maxA. Indeed, since maxA is an upper bound of A,
it suffices to show that

∀ε > 0,∃x0 ∈ A : maxA− ε < x0.

Given any ε > 0, we can take x0 = maxA. Then we have maxA− ε < maxA = x0.

• If supA /∈ A, then maxA does exists, because if not, supA = maxA ∈ A.

• Analogously for inf A and minA.

+ Example 1.2. Find supA, inf A, maxA, minA if they exist, for the following
cases.

1. Let A := {1, 2, 3}. We observe that minA = 1, maxA = 3, leading to inf A = 1 and
supA = 3.

2. For A =]0, 1], using the interval definition, we note that 0 is a lower bound, and 1
is an upper bound of A. Since 1 ∈ A, we conclude that supA = maxA = 1. We
now prove that inf A = 0. Given ε > 0 (we can assume ε is arbitrarily small), if
we choose x0 := ε

2
∈ A, we have x0 < 0 + ε. This shows that inf A = 0. As 0 /∈ A,

minA doesn’t exist.
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3. Let A :=
{

n
n2+1

| n ∈ N
}
. We observe that for all n ∈ N, 0 < n

n2+1
≤ 1

2
(using

ab ≤ 1
2
(a2 + b2)). Thus, 1

2
is an upper bound of A. Since 1

2
= 1

12+1
∈ A, we deduce

maxA = supA = 1
2
. Moreover, we can prove 0 is the infimum of A. For any ε > 0,

we observe that
n

n2 + 1
≤ n

n2
=

1

n
,

1

n
≤ ε⇐⇒ n ≥ 1

ε
.

Due to the Archimedean property, choose n such that n ≥ 1
ε
(e.g., n =

[
1
ε

]
+ 1).

This guarantees n
n2+1

≤ 1
n
≤ ε Thus, 0 is indeed the infimum of A. As 0 /∈ A, minA

doesn’t exist.
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