Contents

1 Real numbers 2
1.1 Archimedean property, density and integer part property 2
1.2 Bounded subset in \mathbb{R} 3

1 Real numbers

1.1 Archimedean property, density and integer part property

Definition 1.1. Let $x \in \mathbb{R}$

1. The integer part of x denoted as $[x]$ is the unique integer satisfying

$$
[x] \leq x<[x]+1
$$

or equivalently

$$
x-1<[x] \leq x
$$

2. A set A is said to be dense in \mathbb{R} if

$$
\forall x, y \in \mathbb{R}, x<y, \exists z \in A: x<z<y \text {. }
$$

10 Example 1.1. - $[0.5]=0$ because $0 \leq 0.5<1$.

- $[-1.5]=-2$ because $-2 \leq-1.5<-1$.
- If $x \in \mathbb{Z}$ then $[x]=x$ because $x \leq x<x+1$.

Theorem 1.1 (Archimedean property). we have

$$
\forall x \in \mathbb{R}_{+}^{*}, y \in \mathbb{R}, \exists n \in \mathbb{N}: n x \geq y
$$

Proof. Divide through by x. Then the Archimedean property says that for every real number $a=\frac{y}{x}$, we can find $n \in \mathbb{N}$ such that $n \geq a$. In other words, says that the set of natural numbers \mathbb{N} is not bounded above. Suppose for contradiction that \mathbb{N} is bounded above. Then due to the least upper bound axiom, there is $b=\sup \mathbb{N}$. Therefore number $b-1$ cannot be an upper bound for \mathbb{N} as it is strictly less than b (the least upper bound). Thus there exists an $m \in \mathbb{N}$ such that $m>b-1$. it follows that $n:=m+1>b$. This is contradiction since b being an upper bound.

Theorem 1.2. The following properties are equivalent

1. Archimedean property $\forall x \in \mathbb{R}_{+}^{*}, y \in \mathbb{R}, \exists n \in \mathbb{N}: n x \geq y$.
2. integer part property: $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z}: n \leq x<n+1$
3. \mathbb{Q} is dense in \mathbb{R}, that is $\forall x, y \in \mathbb{R}, x<y, \exists r \in \mathbb{Q}: x<r<y$.

Proof. - 1) $\Longrightarrow 2)$ Let $x \in \mathbb{R}$ be given. We want to show that there exists an integer $n \in \mathbb{Z}$ such that $n \leq x<n+1$. Consider the set

$$
S=\{n \in \mathbb{Z}: n \leq x\}
$$

Due to the Archimedean property, the set S is non empty. Indeed. There is $n \in \mathbb{Z}:-n \geq-x$ then $n \leq x$ so $x \in S$. Since S is bounded above by x. By the well-ordering property of integers, there exists a greatest element in S denoted as n. Since n is the greatest integer less than x, we have $n \leq x<n+1$. Therefore, we have shown that for any real number x, there exists an integer n such that $n \leq x<n+1$.

- 2) $\Longrightarrow 3$). Given $x, y \in \mathbb{R}: x<y$. Due to 2) there exists $q \in \mathbb{Z}^{*}$ such that

$$
q-1 \leq \frac{1}{y-x}<q
$$

Which implies that

$$
1<q(y-x)
$$

Then

$$
q x+1<q y
$$

By 2), there exists $p \in \mathbb{Z}$ such that $p-1 \leq q x<p$. Hence

$$
q x<p \leq q x+1<q y
$$

Consequently, dividing by q, it follows $x<\frac{p}{q}<y$.

- 3) $\Longrightarrow 1)$. Given $x \in \mathbb{R}_{+}^{*}, y \in \mathbb{R}$. If $x \geq y$ it is enough to take $n=1$. If not then $0<x<y$. from 3), there are $p, q \in \mathbb{N}^{*}$ such that $\frac{p}{q} \geq \frac{y}{x}$ and then $p x \geq q y \geq y$, ($q \geq 1$).

Corollary 1.3. the irrational set $\mathbb{R} \backslash \mathbb{Q}$ is dense in \mathbb{R}.
Proof. Given $x, y \in \mathbb{R}$ such that $x<y$. form the density of \mathbb{Q}, there are $r_{1}, r_{2} \in \mathbb{Q}$ such that $x<r_{1}<r_{2}<y$. We know that $\sqrt{2}$ is irrational and greater than 1 . Then taking $z=r_{1}+\frac{1}{\sqrt{2}}\left(r_{2}-r_{1}\right) \notin \mathbb{Q}$ we obtain $r_{1}<z<r_{2}$.

1.2 Bounded subset in \mathbb{R}

Theorem 1.4 (Characterisation of the supremum and infimum). Let A be a bounded subset of \mathbb{R}. Then
$\alpha:=\inf A \Longleftrightarrow\left\{\begin{array}{c}\forall x \in A: x \geq \alpha \quad(\alpha \text { is a lower bound of A) } \\ \forall \varepsilon>0, \exists x_{0} \in A: x_{0}<\alpha+\varepsilon \quad(\alpha \text { is greater than any lower bound })\end{array}\right.$

Definition 1.2 (Maximum and minimum). Let A be a subset of \mathbb{R}.

1. A maximum of A, denoted as $\max A$, is the greatest element of A. That is

$$
\max \in A \text { and } \forall x \in A: x \leq \max A
$$

2. A minimum of A, denoted as $\min A$, is the least element of A. That is

$\min \in A$ and $\forall x \in A: x \geq \min A$

0 Remark 1.1. Let A be a bounded subset.

- $\max A$ is an upper bound of A.
- If $\sup A \in A$, then $\max A=\sup A$.
- If $\max A$ exists then $\sup A=\max A$. Indeed, $\operatorname{since} \max A$ is an upper bound of A, it suffices to show that

$$
\forall \varepsilon>0, \exists x_{0} \in A: \max A-\varepsilon<x_{0}
$$

Given any $\varepsilon>0$, we can take $x_{0}=\max A$. Then we have $\max A-\varepsilon<\max A=x_{0}$.

- If $\sup A \notin A$, then $\max A$ does exists, because if not, $\sup A=\max A \in A$.
- Analogously for $\inf A$ and $\min A$.
[qfor Example 1.2. Find $\sup A, \inf A, \max A, \min A$ if they exist, for the following cases.

1. Let $A:=\{1,2,3\}$. We observe that $\min A=1, \max A=3$, leading to $\inf A=1$ and $\sup A=3$.
2. For $A=] 0,1$, using the interval definition, we note that 0 is a lower bound, and 1 is an upper bound of A. Since $1 \in A$, we conclude that $\sup A=\max A=1$. We now prove that $\inf A=0$. Given $\varepsilon>0$ (we can assume ε is arbitrarily small), if we choose $x_{0}:=\frac{\varepsilon}{2} \in A$, we have $x_{0}<0+\varepsilon$. This shows that $\inf A=0$. As $0 \notin A$, $\min A$ doesn't exist.
3. Let $A:=\left\{\left.\frac{n}{n^{2}+1} \right\rvert\, n \in \mathbb{N}\right\}$. We observe that for all $n \in \mathbb{N}, 0<\frac{n}{n^{2}+1} \leq \frac{1}{2}$ (using $a b \leq \frac{1}{2}\left(a^{2}+b^{2}\right)$). Thus, $\frac{1}{2}$ is an upper bound of A. Since $\frac{1}{2}=\frac{1}{1^{2}+1} \in A$, we deduce $\max A=\sup A=\frac{1}{2}$. Moreover, we can prove 0 is the infimum of A. For any $\varepsilon>0$, we observe that

$$
\frac{n}{n^{2}+1} \leq \frac{n}{n^{2}}=\frac{1}{n}, \quad \frac{1}{n} \leq \varepsilon \Longleftrightarrow n \geq \frac{1}{\varepsilon} .
$$

Due to the Archimedean property, choose n such that $n \geq \frac{1}{\varepsilon}$ (e.g., $n=\left[\frac{1}{\varepsilon}\right]+1$). This guarantees $\frac{n}{n^{2}+1} \leq \frac{1}{n} \leq \varepsilon$ Thus, 0 is indeed the infimum of A. As $0 \notin A$, min A doesn't exist.

