FIRST SERIES IN ALGEBRA 1

EXERCISEO1

Make a truth table for the statement $(P \lor Q) \to (P \land Q)$.

Make a truth table for the statement $\neg P \land (Q \rightarrow P)$.

What can you conclude about P and Q if you know the statement is true?

Determine whether the following two statements are logically equivalent:

Determine whether the following two statements are logically equivalent: $\neg(P \to Q)$ and $P \land \neg Q$.

EXERCISE02

Among the following expressions, which ones are propositions? For propositions, indicate whether they are true or false.

(a)
$$2+3=5$$

(b)
$$\forall n \in \mathbb{N}, \quad n+2=4$$

(c)
$$\exists n \in \mathbb{N} \quad n+2=3$$

- (d) This exercise is difficult
- (e) $x \in \mathbb{N}$

EXERCISE03

Consider the following four propositions:

Are these propositions true or false? Provide their negations.

a-
$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y > 0$$

b-
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x + y > 0$$

c-
$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x+y>0$$

 $\mathbf{d}\text{-}\ \exists x\in\mathbb{R}, \forall y\in\mathbb{R}\quad y^2>x.$

EXERCISE04

- 1) Let $n \in \mathbb{N}$. Prove by cases that $n(n^2 + 2)$ is a multiple of 3.
- **2)** Prove by contradiction that $(\forall n \in \mathbb{N}^*, \exists p \in \mathbb{N}^* : n = p^2) \Rightarrow (\forall q \in \mathbb{N}^* : 2n \neq q^2).$

SOLUTION

P		Q	$(P \vee Q) \to (P \wedge Q)$
Т		Т	Т
Т		F	F
F		Т	F
F		F	Т
	P	Q	$\neg P \land (Q \to P)$
	Т	Т	F
	Т	F	F
	F	Т	F
	F	F	Т

If the statement is true, then both ${\cal P}$ and ${\cal Q}$ are false.

Make a truth table for each and compare. The statements are logically equivalent.

Exercise3

- (a) True
- (b) False
- (c) False
- (d) False

Theire negation change for all by existe and existe by for all And change < by \ge

- a. This expression is a true proposition.
- **b.** This expression is a false proposition because for $n = 1 \in \mathbb{N}$, we have $n + 2 = 3 \neq 4$.
- **c.** This expression is a true proposition because there exists an element $n=1\in\mathbb{N}$ such that n+2=3.
- d. This expression is not a proposition because we cannot assign a truth value to it.
- e. This expression is not a proposition because we don't know the nature of the element x, so we cannot assign a truth value to it.
- 1) Let $n \in \mathbb{N}$. We have:

<u>1st case</u>: If n = 3k, with $k \in \mathbb{N}$, then $n(n^2 + 2) = 3k((3k)^2 + 2)$, which is a multiple of 3.

 $\underline{2^{\text{nd}} \text{ case}}$: If n = 3k + 1, with $k \in \mathbb{N}$, then $n(n^2 + 2) = (3k + 1)((3k + 1)^2 + 2) = (3k + 1)(9k^2 + 6k + 1 + 2)$

$$=3(3k+1)(3k^2+2k+1)$$
 which is a multiple of 3

 3^{rd} case: If n = 3k + 2, with $k \in \mathbb{N}$, then

$$n(n^2+2) = (3k+2)((3k+2)^2+2) = (3k+2)(9k^2+12k+4+2)$$

= $3(3k+2)(3k^2+4k+2)$ which is a multiple of 3.

Therefore, in all cases, $n(n^2 + 2)$ is a multiple of 3.

2) Suppose that $(\forall n \in \mathbb{N}^*, \exists p \in \mathbb{N}^* : n = p^2)$ and $(\exists q \in \mathbb{N}^* : 2n = q^2)$.

Let $n \in \mathbb{N}^*$, then $n = p^2$ and $2n = q^2$ with $p, q \in \mathbb{N}^*$, so $2p^2 = q^2$, which implies $\sqrt{2} = \frac{q}{p} \in \mathbb{Q}$, which is absurd since $\sqrt{2}$ is irrational.